Visual Modelling of Data Warehousing Flows
with UML Profiles*

Jestis Pardillo!, Matteo Golfarelli?, Stefano Rizzi?, and Juan Trujillo*

! Lucentia Research Group, University of Alicante, Spain
{jesuspv, jtrujillo}@dlsi.ua.es
2 DEIS, University of Bologna, Italy
{matteo.golfarelli, stefano.rizzi}@unibo.it

Abstract. Data warehousing involves complex processes that transform
source data through several stages to deliver suitable information ready
to be analysed. Though many techniques for visual modelling of data
warehouses from the static point of view have been devised, only few
attempts have been made to model the data flows involved in a data
warehousing process. Besides, each attempt was mainly aimed at a spe-
cific application, such as ETL, OLAP, what-if analysis, data mining.
Data flows are typically very complex in this domain; for this reason,
we argue, designers would greatly benefit from a technique for uniformly
modelling data warehousing flows for all applications. In this paper, we
propose an integrated visual modelling technique for data cubes and data
flows. This technique is based on UML profiling; its feasibility is evalu-
ated by means of a prototype implementation.

Keywords: OLAP, UML, conceptual modelling, data warehouse.

1 Introduction

Data transformations are the main subject of visual modelling concerning data
warehousing dynamics. A data warehouse integrates several data sources and
delivers the processed data to many analytical tools to be used by decision mak-
ers. Therefore, these data transformations are everywhere: from data sources to
the corporate data warehouse by means of the ETL processes, from the cor-
porate repository to the departmental data marts, and finally from data marts
to the analytical applications (such as OLAP, data mining, what-if analysis).
Data warehousing commonly implies complex data flows, either because of the
large number of steps data transformations may consist of, or of the differ-
ent types of data they carry. These issues rise interesting challenges concerning
design-oriented modelling of data warehousing flows. In particular, the thorough
visualisation of these models has a deep impact on the current trends for data

* Supported by the Spanish projects: ESPIA (TIN2007-67078), QUASIMODO
(PACO08- 0157-0668), and DEMETER (GVPRE/2008/063). Jesuis Pardillo is funded
by MEC under FPU grant AP2006-00332. Special thanks to the anonymous review-
ers for their helpful comments.

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2009, LNCS 5691, pp. 36-[47] 2009.
© Springer-Verlag Berlin Heidelberg 2009

Visual Modelling of Data Warehousing Flows with UML Profiles 37

warehousing design, where the so-called model-driven technologies [I] promote
diagrams as the main, tentatively unique, design artefacts managed by software
engineers. Cognitive aspects, such as diagrams readability, are thus related to
the productivity of the whole development process.

Nevertheless, the main research efforts made so far have concerned the static
modelling of the data warehouse repository [2] and, even when data warehousing
flows were considered, it was done within specific business intelligence applica-
tions (OLAP, data mining and so on). While these efforts were addressed at
designing individual modelling frameworks, all of them characterised nothing
but data transformations.

Our contribution in this paper is twofold: firstly, we identify and formally
define data warehousing flows (f*’s) as the founding concept for every visual
modelling technique studied so far, which means that flows can be applied to
model any data transformation, from OLAP to data mining (§2)). Due to space
constraints, this paper is focused on OLAP f"’s that, as a matter of fact, are
the backbone of data warehousing. In general, an OLAP session model can be
useful in different contexts: (1) it can be a relevant part of more complex data
warehousing flows (e.g., it could describe a set of transformations to be applied
to multidimensional data in a what-if analysis application); (2) it can be used
to design or document a semi-static report, where a limited number of OLAP
operators can be applied depending on the data currently visualized; (3) it can
represent auditing information showing system administrators the more frequent
operators applied to cubes.

Secondly, we present an integrated visual modelling framework for f*’s based
on UML [3]. The proposal consists in the diagramming of data cubes, meant as
results of multidimensional queries (§3]), and data transformations (§4)). These
diagrams have been implemented in a prototype illustrated in §5 Remarkably,
our solution covers the modelling gaps identified in the state-of-the-art as it is
shown in §6l Finally, conclusions are drawn in {7l

2 The f* Framework for Visual Modelling

A data warehousing flow f* may be functionally characterised as f : I — O
where f is the (probably complex) data transformation, I is the universe of
data objects managed by f and O is the universe of the processed data objects.
Moreover, f is defined as the composition of other functions, f = f1o0...0 f,,
that may recursively be defined as compositions.

f*’s may be classified according to the actual data-object type they manip-
ulate, i.e., the domain I and codomain O. Data cubes, we argue, are the most
important factor in this classification because they are the building blocks of
data warehouses. Let C' be the universe of all data cubes involved in an f%, and
X denote any unspecified sort of data objects; we can distinguish the disjoint
categories shown in Table [T}

For instance, mining flows may be characterised as f~¢, because they trans-
form data cubes into other data objects, namely data-mining patterns such as

38 J. Pardillo et al.

Table 1. General taxonomy of data flows based on their data-object types

Name | Notation | Definition
OLAP flow fe fc:C=C
ETL flow fre ffe: X —=cC
mining flow f f:C—-X
object flow f° XX

association rules or clusters. Though the names for flow types were chosen ac-
cording to the field where they mainly appear, in practice they are not bound
to a single application domain, such as in the case of what-if analysis, where
different types may be involved.

The canonical f* may be decomposed (regarding Table [I]) into: f¥ = %o
f~Co fCo fT¢o f? where o is any composition operator and the f*’s from the
right to the left respectively characterise: (1) transactional flows for populating
data sources; (2) ETL flows for populating the data warehouse; (3) OLAP flows
occurring during an OLAP session; (4) mining flows aimed at extracting pat-
terns from the data warehouse; and (5) flows for manipulating and visualising
patterns. Though there are in practice many ways of connecting f*’s (e.g., mul-
tiple branches are valid structures), it is evident that f™’s involving data cubes
either in input or in output are the actual backbone of the data warehousing
process. Noticeably, all f*’s that involve data cubes might also be characterised
as atomic f?’s at the finest detail level, because cubes can be decomposed into
their elements (dimensions, measures, etc.). For this reason, f~’s and f1¢’s will
be sometimes visually modelled as a composition of detailed f?’s instead of be-
ing considered as atomic. Conversely, visually modelling internal details of f’s
is out of the scope of this paper.

Visual modelling of f“’s should comply with the following wish-list: (i) it
should be based on some multidimensional diagrams that model data warehouse
facts and dimensions, (ii) it should be easy to understand, (iii) its semantics
should have formal foundation, and (iv) it should rely on a standard notation.

The need to manage % complexity suggests to create separate diagrams for
data cubes. For this reason, our framework provides two kinds of diagrams,
namely data cube and f" diagrams. Data cube diagrams represent a multidi-
mensional query formulated on the data warehouse. f* diagrams represent how
actions transform data cubes.

For such diagrams to be cognitively effective, their notations should achieve
a conceptual integration of information from separate diagrams into a coher-
ent user’s mental model and a perceptual integration by means of perceptuals
cues (orienting, contextual and directional information) in order to support nav-
igation between diagrams [4]. In f* diagrams, data cubes are just rendered
as information scents [5] (like the scent of food) that encourage readers to
look for more detailed diagrams (where more succulent information could be
found). Conversely, data cube diagrams render each data cube in detail. In ad-
dition, data cubes are visually modelled over the multidimensional diagrams [6]

Visual Modelling of Data Warehousing Flows with UML Profiles 39

of the underlying data warehouse facts, thus providing the required percep-
tual cued]. The following two sections describe data cube and f“ diagrams,
respectively.

3 Data Cube Diagrams

Our aim is to propose a visual modelling technique based on standard repre-
sentations of f*’s. A well-known extension technique such as UML profiling [3]
seems then appropriate. Profiling enables to easily but formally extend (in terms
of both semantics and notation) the UML language, the de facto standard for
general-purpose modelling in software engineering. By means of profiling, data
cubes can be smoothly hosted in a UML multidimensional diagram describing
the data warehouse. To accomplish this goal we will use the UML profile for
multidimensional modelling presented in [6], namely the DataWarehouse UML
profile, which also provides a proper iconography that improves diagram read-
ability.

Fig. Millustrates a sample multidimensional diagram (host diagram) to which
the data cube diagram of Fig. 2lis allocated (guest diagram). The host diagram
represents the database for analysing the sales facts (Bf in Fig.[) by product,
customer, location, and date (f=;). Each dimension allows sales to be aggre-
gated (@) at different granularities. For instance, sales may be aggregated by
month and year (/). In addition, facts and dimensions can be respectively de-
scribed by measures (M, e.g., quantity) and descriptors (b, e.g., city name).

On the other hand, the guest diagram represents a query that may be eas-
ily referred to the host diagram. For instance, Fig. 2] shows a cube of sales
quantity grouped by month, store city and product branch; in particular, only
the branches whose code is food.

3.1 A UML Profile for the Integrated Diagramming of Data Cubes

Our DataCube profile is based on the DataWarehouse profile by Lujan-Mora
et al. [6]. Both profiles are represented in Fig. Bl with the standard notation for
UML profiling [3], i.e., the profile diagrams where stereotypes of UML modelling
elements are presented. On the one hand, the DataWarehouse profile contains a
set of stereotypes (e.g., Fact and Dimension). Each stereotype represents a single
multidimensional concept by extending the specific UML metaclass considered
as the most semantically close to that concept. Fig [l also shows the proper
iconography. On the other hand, the DataCube profile (see Fig. B) introduces
five stereotypesd:

! Indeed, visual models contain two kinds of data: statements about the reality that
they model and metadata about how they are represented, such as canvas locations.

2 We chose names for the DataCube profile stereotypes according to the terminology of
the multidimensional expressions (MDX) from Microsoft, the most spread language
for OLAP querying, to emphasise that data cubes are the result of queries.

40 J. Pardillo et al.

product T\Z.* date T‘Z,x
(B] <@—(B] _{B]-®>/B/]—@—~>/B/
branch product \0 O/ day month year
D code D code ﬁ D code D name D number
D descr sales D number
M quantity
customerm M amount location TUA:,C
[B] <@—(B] B/ @>{B/-@>(B/
age customer store city country
D range D nid D code D name D name
D fullname D street D code

Fig. 1. Multidimensional diagram by using the DataWarehouse UML profile

cd food profitabity) [B-&>[A]
(B <—0 o

branch product\g [7name
/) coqe

| sales 6\ —@J—)@

O quantity store city
E {code = food} [7name

Fig. 2. Data-cube diagram by using the DataCube UML profile

Cell, summarising a set of Facts of a given cube.

Axis, showing each Base (component of the group-by clause) of a given cube.
CellMember & AxisMember, representing each returned Measure and Descriptor.
Slice, representing the predicate formulated on CellMembers and/or AxisMembers.

All these stereotypes specialise the CubeElement abstract stereotype. Every
CubeElement has references to both the extended metaclass and the supporting
entity of the multidimensional diagram (shown by a use dependency in Fig. B]).
The cube attribute of the CubeElement stereotype is a tag definition referring
to all the cubes that contain a cube element. Let F' be a class stereotyped as
Fact. In order to represent a cube c resulting from a query on fact F', you need
to additionally stereotype F' as Cell and annotate class F' with tagged value ¢
for the cube attribute of Cell.

All CubeElements (except Slices) have two abstraction levels:

Space Specification, where either Cell or Axis stereotypes are applied to
Facts or Bases, respectively. Each retrieved cell or axis member are left to the
designer as a wvariation point [3] whose options are: (i) all owned properties
(measures or descriptors) are retrieved in that cell; or (ii) they still remain
unspecified. Unless differently stated, the second option is assumed.

Visual Modelling of Data Warehousing Flows with UML Profiles 41

«stereotype» _|«use»| _[«stereotype» A
Cell E Fact @

«stereotype» £, «metaclass»
Dimension - »| Class

«stereotype» _‘«stereotype» Etfyge_»_ «stereotype» @/

CubeElement Axis Base
cube: String [*] «stereotype» ® «metaclass»
Rolly " | Association
stereotype» «use» «stereotype»
G yp! O F{euseds i yp! M @\‘
Propert

«stereotype» _|«use»| _ [«stereotype» — |

sitvenres 0 V5 Bezit © I o
«metaclass»

«stereotype» H
Slice Constraint

© ©

I

i

Fig. 3. DataCube and DataWarehouse UML profiles

Member Specification, where CellMember or AxisMember stereotypes must
be applied together with the owner Cell or Axis, respectively. The under-
lying space specification is thus explicitly shown. The application of these
stereotypes may be managed by diagramming tools as we shall discuss next.

The rules about how to apply and combine the proposed stereotypes are
formally specified in OCL [7] (i.e., a declarative language to query and specify
constraints in UML models), and thus, they could be automatically managed by
the corresponding checking engine. For instance, the OCL constraint to check
the rule of CellMember specifications is

context CellMember inv ‘Member Specification Rule’:
self .base_Property.class.extension_Cell.cube->includesAll (self.cube)

3.2 Rendering Data Cube Diagrams

UML profiles allow to adapt the UML notation to include new iconography.
In this way, the DataCube profile provides a new version of the DataWarehouse
stereotypes whose aim is to emphasise the retrieved data. This marking is accom-
plished by swapping the DataWarehouse icons, rendered in grayscale, with new
coloured versions. The aesthetics decision of colouring is justified by the cog-
nitive studies about preattentive processing [8], stating that coloured diagram
nodes are distinguished from grayscale ones before conscious attention occurs,
thus showing CubeElements “at a glance”. In addition, the selected colours are
complementary (red vs. green), so they can be distinguished very well from each
other. Due to black-and-white printing, this iconography also uses shapes (re-
sembling the underlying DataWarehouse elements) for codifying CubeElements.
It is worth noting that there is not a DataWarehouse counterpart of the Slice
stereotype, because particular predicates regarding specific data instances only
concern data cube diagrams, not multidimensional diagrams.

42 J. Pardillo et al.

Nevertheless, rendering DataCubes over DataWarehouses requires special cus-
tomisations of diagramming tools. Since every CubeElement references all the
cubes it belongs to, the DataCube iconography setting should be context-aware.
The context is the current diagram itself: only the CubeElements, whose cube
property includes the name given to the current diagram, are actually rendered
with DataCube icons (though they may internally refer to other cubes). Of course,
this assumes that both the CubeElement: : cubes and diagram names refer to the
same set of values, i.e., the actual names of the data cubes being diagrammed.

3.3 Drawing Data Cubes
The workflow for drawing DataCubes consists of the following steps:

1. Copying the DataWarehouse diagram, representing the repository from
which the data cube will be retrieved, into a new DataCube-to-be diagram.
Renaming this DataCube diagram in order to identify the desired cube.
3. Specifying CubeElements by following one of the two specifying conven-
tions discussed above (namely, space or member) and by attaching the proper
Slices to the corresponding CubeElements. This step is actually decomposed
into (i) application of CubeElement stereotypes if they were not already ap-
plied for a previous data cube, and (ii) addition of the current diagram name
as a CubeElement : : cube tagged value. Since the second step could be some-
times cumbersome, it can be automatically managed in diagramming tools
by implementing the corresponding controllers for context-aware marking.
4. Hiding undesired DataWarehouse elements (optional) for enhancing the
final diagram readability. This step is mainly targeted to visually remove
from the diagram (not from the metamodel occurrence) the unused Measures,
Dimensions, and Descriptors, or to prune aggregations (Bases).

[\

4 The Data Warehousing Flows Visual Library

Data cube diagrams visualise the static aspects of f™’s. In this section, we
discuss how to manage the dynamic aspects. According to the well-known
software-engineering principle of separation of concerns [9], the dynamic and
static features of f“’s are represented in separate diagrams. By setting aside
the complexity of data cubes, f*’s can be visualised in a more readable form.
However, we recall that both kinds of diagrams are closely related, and they
were devised as artefacts to be used together, as described in §2

To represent the dynamic aspects of f™’s, we could use any type of diagram
aimed at process modelling, such as flow charts, data flows, etc. We selected ac-
tivity diagrams because they enable designers to model f* dynamics intuitively
by means of UML. In this way, both static and dynamic diagrams discussed in
this paper may be smoothly integrated to be managed together. Like for data
cubes, the many kinds of activities involved in an f% require an additional cus-
tomisation. Therefore, we propose (i) a UML profile for adapting the activity
diagram notation to represent data cubes, and (ii) a set of f* catalogues that

Visual Modelling of Data Warehousing Flows with UML Profiles 43

capture the f* diversity. Due to the space constraints, we shall only discuss the
OLAP catalogue of the f* libraryﬁ. However, all of them share the same principles.

4.1 A UML Profile for Diagramming the f* Library

As for data cube diagrams, we also devised a UML profile to adapt the notation
of activity diagrams. The main issues this profile deals with are: (i) notational
improvement, emphasising object flows ([3], p. 386) for data cubes, and (ii) val-
idation of action names that model f*’s ([3], p.311). As to the first issue, the
notation decorates the edges that connect actions by highlighting data cube
flows (with the B icon) as shown in Fig. @l These flows are related to data cube
diagrams. As to the second issue, the naming patterns used for actions express
the semantics of actions and of their parameters. In such a way, naming patterns
can be checked using regular expressions codified by OCL constraints. Due to
space constraints, we overlook the details of the profile definition. All the same,
the library that applies this profile for visualising f*’s is described next.

The OLAP catalogue is the main entity of the f* library due to the relevance of
OLAP applications. This catalogue includes the best-known operators of OLAP
algebras [10]. With a few exceptions, all operators are f¢. Note that the f*
library contains the best practices in data warehouse modelling, and it is not
limited to the presented operators. For instance, some modellers may believe
that the pivoting operator is relevant enough to be added to the f* library.

Fig.[Mshows that each OLAP operator is modelled as an action taking cubes in
input and output. Naming patterns formalise the vocabulary widely understood
among OLAP analysts [10]. Each naming pattern may encode several parame-
ters, represented as <parameter>. Optional parameters are enclosed in square
brackets. Parameters with multiple occurrences are followed by a “+” mark; in
this case, occurrences are separated by commas. Parameters commonly refer to
cube elements, and they are instantiated with the same name of the element
they refer to. Next, we briefly discuss how the OLAP algebra is rendered; for a
deep understanding of this topic, interesting readers may be referred to [10]:

slice by has a criterion (i.e., a constraint) for filtering values of cube mem-
bers. This constraint may be given in natural language, e.g., this year, or
in a formal language such as OCL, e.g., year = now.year.

dice by is similar to slice, but applied to several dimensions at the same time.

roll up & drill down aggregate and disaggregate data cubes. They are pa-
rameterised with a dimension and optionally a base when multiple aggre-
gation paths are possible from the current aggregation level (e.g., sales by
day could be aggregated into months but also weeks).

md-project selects one or more data cube measures.

drill anywhere groups cells by aset of dimensions. This OLAP operation, also
known as change base, generalises the add & remove dimension operators, that

3 Herein, the term ‘library’ refers to the whole metamodel for the f* dynamic mod-
elling, whereas each part of this is called ‘catalogue’.

44

J. Pardillo et al.

OLAP
(from DataWarehousingFlows)

theCube
[diced]

aCube
[rolled up]

aCube
[drill down]

aCube
[projected]
md-project ==
<measure>+

aCube
[decorated]
drill anyway 3

control

query for
L <cube>

[queried]

aCube <set-op> otherCube]

where
| set-op € {union, intersection, difference}

Fig. 4. The f“ catalogue of OLAP actions

can be simulated by using an extended notation: [+-]dimension for adding
or removing dimension to/from the current cube base.

push converts a dimension into a measure.

pull converts a measure into a dimension.

query for queries a data warehouse in order to retrieve a data cube. This is
the only operation that takes a control flow rather than a cube in input. The
cube parameter is bound to a cube diagram.

drill across joins a cube with a fact to change the set of measures.

union, intersection, & difference manipulate data cubes by using set se-
mantics, thus they are the only actions that require two data cubes in input.
In addition, other set operations such as symmetric difference may be defined
by means of the previous ones.

5 Prototype and Example Application

Our framework has been implemented in the ECLIPSE development platfornﬁ7
whose modular, plugin-based architecture enables a proper implementation of
the UML extensions proposed. In particular, we have enhanced the plugin for
UML modelling, UML2TooLS, with the functionalities of diagram rendering
and event controller for both data cube diagrams and f* library (see Fig. ().
The proposed models are stored in two kinds of files: those that contain the
diagramming metadata and those that contain the modelled elements.

We consider as a case study an OLAP analysis of profitability in the food
market domain. The screenshot in Fig. Bl shows in its upper part the whole f€
modelled as an activity diagram: naming patterns are used to name actions, and

*http://www.eclipse.org (UML2TOOLS are also located here)

http://www.eclipse.org

Visual Modelling of Data Warehousing Flows with UML Profiles 45

™ O) Resource - OLAP/PIM/olap.datacube.umlclass - Eclipse SDK - fUsers/jesuspv/Desktop/dwing-platform/Eclipse Workspaces/ e.dawak0d
[c3- |@ |2 | &1~ 5~ or o T [(9Resource &java
J Tahoma BICERE b s ‘ ‘,H-' =N ‘ 100% .
[d] olap.dwflows.umlact &2 =0
faod profitability OLAP analysis | 3 palerre
| =
EB——=8 oritl across inventory for stock | |
ftabil slice by state.country = Spain guplicats cubs
query for faod profitability FE-==FH = |) Activity |
|) Activity |
| Parameter ||
arill anyway +customer B—==HH union L = Activity |
| Partition
|||, 59 Accept Event
| Action
H =
anit anyway -proguct [J] duplicate cube [} sl md-project sales :quantiy drill anyway +product B || = Ci:!::‘;t‘:;;
|
(@) Call Behavior
| Action
|
W @cal
Operation
Action
roll up location B——==B roll up tocation B——==H roliup date EB——==BH aritl down location 41 Create Object
4 ~ Action
T | @ opague
[- KIS Action
1] olap.datacube.umiclass 53
L& Palette 3
fand profitability
= product date] FEEEE
/B product B sates /B] day [A] montn Ceiass
rbutes stributes strbuten st
e quantity B LT name [Package
B price o aperations
operations — (] Enumeration
dasacs
PrimitiveType
[A]branch (A store
rutes e {2} Constraint
L code H { code = food } L7 nae & Association
aperations aperstiont
dasse e i
v | = interface ']
v

I J

Fig. 5. Prototype for the f* visual-modelling framework implemented in ECLIPSE

the manipulated data cubes are properly emphasized by the notation introduced,
the B icon. For each data cube involved, a data cube diagram like the one in
Fig. 2 may be drawn. For instance, the data cube diagram in the bottom part of
the figure shows the input data cube for food profitability. Remarkably, it
was possible to simply label data cube flows in activity diagrams with a measure
name (such as quantity or price) because data cubes are properly represented
in their own diagrams. Furthermore, f¢ semantics is clearly stated by naming
patterns, so that automated generation of executable code is made possible.

In more detail, the ¢y data cube obtained by action query for food
profitability is first sliced (flow f§) by selecting Spanish sales only. Then,
the resulting cube f§(co) is duplicated to fork the analysis process into two
branches, one focusing on sales location and time, one on sales quantity. In the
first branch, whose overall flow we denote with f{, the product dimension is re-
moved (drill anyway -product), then a sequence of roll up actions are car-
ried out, twice for location (from store to city, then from city to country),
and once for date (from month to year). After these operations, sales are anal-
ysed by location and date at country and year granularity. The analyst then
drills down location to show details on cities by years. Finally, products
are added to the data cube axes (drill anyway +product) to prepare to a later
union. As to the second branch, it first applies a multidimensional projection to
focus only on sales quantity (md-project sales::quantity, denoted with f5).

46 J. Pardillo et al.

Then it is further decomposed into two sub-branches, the first (f5) perform-
ing a drill across inventory for stock to traverse interesting data cubes,
the second (fS,) adding the customer dimension (drill anyway +customer).
Finally, the two output data cubes ¢; and co for this f¢ may be denoted as
e1 = (f o f§(co)) U (f5, o f§ o fe(co)); e2 = f5, o f§ o f(co). Note that, though
the f% library is extensively used in this example, additional utility actions—such
as duplicate cube-have also been modelled.

6 Literature Review

There are many modelling frameworks presented in the scientific literature re-
garding the particular f*’s. Specifically, concerning OLAP, there are a few works
proposing visual modelling techniques for OLAP. [I1] presents a specific ap-
proach where OLAP sessions are represented by UML state diagrams. Regarding
OLAP query modelling, [12] employs a graph-based representation to highlight
the f* dependencies from analytical tools to the data sources. While [12] is ori-
ented to visual modelling of dynamic aspects, [13] achieves static representation
of queries by annotating structural conceptual models of a data warehouse, sim-
ilarly to the data cube diagrams we propose in §3l A compact representation of
OLAP queries is achieved by means of UML class-like structures also in [I1].

Overall, even OLAP works point out the dichotomy between visualising f*’s
as data states wvs. data transformations. This is related to the classical debate
on state vs. flow charts: they are complementary and emphasising one aspect
rather than another. It is also related to the dilemma of visualising structural
vs. dynamic aspects of f*’s. Citing [14], “every notation highlights some kinds
of information at the expense of obscuring other kinds”.

7 Conclusions

The state-of-the-art for visual modelling of f*’s comprises a wide range of tech-
niques, each taking into account specific aspects of application domains, but
overlooking their common foundational concepts. In this work we identified two
challenging issues concerning design-oriented f* visual modelling: how to handle
complex data structures such as data cubes, and how to specify the semantics
of the involved data transformations in a formal and straightforward mode. For
this reason, we devised an f" visual modelling framework where two kinds of
diagrams are provided by using UML as scaffolding. Their suitability to visu-
ally manage the complexity involved in f*’s is shown by applying them to an
example scenario relying on the Eclipse platform.

The results of this work have interesting implications for data warehouse
practitioners. Regarding the integrated vision of f*’s, the current modelling
tools, that were conceived for a specific kind of f*, may be reused for the others.
This fact sets a bridge between current visual modelling techniques. Thanks
to the unifying definition of f“’s, we presented a general framework for their

Visual Modelling of Data Warehousing Flows with UML Profiles 47

modelling. This proposal is aligned with model-driven technologies [I] such as
those presented in [I5] for designing data warehouses.

Some challenging new research topics appear next. Two of them are spe-
cially encouraged: automatic code generation from these diagrams by applying
model transformations (according to [I5]), and the empirical validation of their
enhancement in cognitive issues such as readability.

References

1. Favre, J.: Towards a Basic Theory to Model Model Driven Engineering. In: 3rd
Workshop in Software Model Engineering, WiSME (2004)

2. Romero, O., Abell6, A.: A Survey of Multidimensional Modeling Methodologies.
International Journal of Data Warehousing & Mining 5(2), 1-23 (2009)

3. OMG: Unified Modeling Language (UML) Superstructure, version 2.1.2. (Novem-
ber 2007), http://www.omg.org/technology/documents/formal/uml.htm

4. Moody, D.: What Makes a Good Diagram? Improving the Cognitive Effectiveness
of Diagrams in IS Development. In: Adv. in Inform. Syst. Dev.; New Methods and
Pract. for the Networked Soc., pp. 481-492 (2007)

5. Pirolli, P.: Information Foraging Theory: Adaptive Interaction with Information.
Oxford University Press, USA (2007)

6. Lujan-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional mod-
eling in data warehouses. Data Knowl. Eng. 59(3), 725-769 (2006)

7. Object Management Group: Object Constraint Language (OCL), version 2.0. (Oc-
tober 2003), http://www.omg.org/technology/documents/formal/ocl.htm

8. Ware, C.: Information Visualization: Perception for Design, 2nd edn. Morgan Kauf-
mann, San Francisco (2004)

9. Tarr, P.L., Ossher, H., Harrison, W.H., Sutton Jr., S.M.: N Degrees of Separation:
Multi-Dimensional Separation of Concerns. In: Proc. ICSE, pp. 107-119 (1999)

10. Romero, O., Abelld, A.: On the need of a reference algebra for OLAP. In: Song,
I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 99-110.
Springer, Heidelberg (2007)

11. Trujillo, J., Lujdn-Mora, S., Song, [.-Y.: Applying UML For Designing Multidi-
mensional Databases And OLAP Applications. In: Advanced Topics in Database
Research, vol. 2, pp. 13-36 (2003)

12. Papastefanatos, G., Vassiliadis, P., Simitsis, A., Vassiliou, Y.: Design Metrics for
Data Warehouse Evolution. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.)
ER 2008. LNCS, vol. 5231, pp. 440-454. Springer, Heidelberg (2008)

13. Cabibbo, L., Torlone, R.: From a Procedural to a Visual Query Language for
OLAP. In: Proc. SSDBM, pp. 74-83 (1998)

14. Green, T.R.G., Petre, M.: Usability Analysis of Visual Programming Environ-
ments: A ‘Cognitive Dimensions’ Framework. J. Vis. Lang. Comput. 7(2), 131-174
(1996)

15. Mazén, J.-N., Trujillo, J.: An MDA approach for the development of data ware-
houses. Decis. Support Syst. 45(1), 41-58 (2008)

http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/ocl.htm

	Visual Modelling of Data Warehousing Flows with UML Profiles
	Introduction
	The fw Framework for Visual Modelling
	Data Cube Diagrams
	A UML Profile for the Integrated Diagramming of Data Cubes
	Rendering Data Cube Diagrams
	Drawing Data Cubes

	The Data Warehousing Flows Visual Library
	A UML Profile for Diagramming the fw Library

	Prototype and Example Application
	Literature Review
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

