Skip to main content

Abstract

Model-based design issues of fuzzy logic control systems for Single Input-Single Output (SISO) nonlinear time-varying plants are discussed. The emphasis is given to the stable design of fuzzy logic controllers (FLCs). The accepted FLCs belong to the classes of type-II fuzzy systems and type-III fuzzy systems according to Sugeno’s classification. Two original theorems that ensure the uniformly stability and the uniformly asymptotically stability of fuzzy logic control systems are given. The stability analyses are done in the sense of Lyapunov and the approaches are expressed in terms of sufficient inequality-type stability conditions. The effectiveness of the theoretical results is proved by their application in the stable design of Takagi-Sugeno FLCs for two SISO nonlinear time-varying plants, the Lorenz chaotic system and a laboratory Anti-lock Braking System. Digital simulation and real-time experimental results are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arino, C., Sala, A.: Relaxed LMI Conditions for Closed-Loop Fuzzy Systems with Tensor-Product Structure. Eng. Appl. Artif. Intell. 20, 1036–1046 (2007)

    Article  Google Scholar 

  2. Baranyi, P.: TP Model Transformation as a Way to LMI-based Controller Design. IEEE Transactions Ind. Electron 51, 387–400 (2004)

    Article  Google Scholar 

  3. Baranyi, P., Korondi, P., Tanaka, K.: Parallel Distributed Compensation-based Stabilization of a 3-DOF RC Helicopter: a Tensor Product Transformation-based Approach. J. Adv. Comput. Intell. Intell. Inform 13, 25–34 (2009)

    Google Scholar 

  4. Blažič, S., Škrjanc, I.: Design and Stability Analysis of Fuzzy Model-based Predictive Control - a case study. J. Intell. Robot Syst. 49, 279–292 (2007)

    Article  Google Scholar 

  5. Horváth, L., Rudas, I.J.: Modeling and Problem Solving Methods for Engineers. Academic Press, Elsevier, Burlington (2004)

    Google Scholar 

  6. Johansen, T.A., Shorten, R., Murray-Smith, R.: On the Interpretation and Identification of Dynamic Takagi-Sugenofuzzy Models. IEEE Trans. Fuzzy Syst. 8, 297–313 (2000)

    Article  Google Scholar 

  7. Johanyák, Z.C., Tikk, D., Kovács, S., Wong, K.K.: Fuzzy Rule Interpolation Matlab Toolbox - FRI Toolbox. In: Proceedings of 15th IEEE International Conference on Fuzzy Systems, pp. 1427–1433 (2006)

    Google Scholar 

  8. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  9. Kim, S.H., Park, P.G.: Observer-based Relaxed H ∞  Control for Fuzzy Systems Using a Multiple Lyapunov Function. IEEE Trans. Fuzzy Syst. 17, 477–484 (2009)

    Article  Google Scholar 

  10. Kóczy, L.T.: Fuzzy If-Then Rule Models and Their Transformation into one Another. IEEE Trans. Syst. Man Cybern. A 26, 621–637 (1996)

    Article  Google Scholar 

  11. Kruszewski, A., Wang, R., Guerra, T.M.: Nonquadratic Stabilization Conditions for a Class of Uncertain Nonlinear Discrete Time TS Fuzzy Models: a New Approach. IEEE Trans. Autom. Control 53, 606–611 (2008)

    Article  MathSciNet  Google Scholar 

  12. Lam, H.K., Leung, F.H.F.: Stability Analysis of Discrete-Time Fuzzy-Model-based Control Systems with Time Delay: Time-Delay Independent Approach. Fuzzy Sets Syst 159, 990–1000 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lam, H.K., Seneviratne, L.D.: Tracking Control of Sampled-Data Fuzzy-Model-based Control Systems. IET Control Theory Appl. 3, 56–67 (2009)

    Article  MathSciNet  Google Scholar 

  14. Lee, H.C., Choi, J.W.: Linear Time-Varying Eigenstructure Assignment with Flight Control Application. IEEE Trans. Aerosp. Eletron Eng. 40, 145–157 (2004)

    Google Scholar 

  15. Lendek, Z., Babuška, R., De Schutter, B.: Stability Analysis and Observer Design for Decentralized TS Fuzzy Systems. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 631–636 (2008)

    Google Scholar 

  16. Lorenz, E.N.: Deterministic Nonperiodic Flow. Journal Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  17. Lorenz, E.N.: The Essence of Chaos. University of Washington Press, Seattle (1993)

    MATH  Google Scholar 

  18. Michels, K., Klawonn, F., Kruse, R., Nürnberger, A.: Fuzzy Control: Fundamentals, Stability and Design of Fuzzy Controllers. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  19. Oblak, S., Škrjanc, I., Blažič, S.: Fault Detection for Nonlinear Systems with Uncertain Parameters Based on the Interval Fuzzy Model. Eng. Appl. Artif. Intell. 20, 503–510 (2007)

    Article  Google Scholar 

  20. Pang, C.T., Lur, Y.Y.: On the Stability of Takagi-Sugeno Fuzzy Systems with Time-Varying Uncertainties. IEEE Trans. Fuzzy Syst. 16, 162–170 (2008)

    Article  Google Scholar 

  21. Petres, Z., Baranyi, P., Korondi, P., Hashimoto, H.: Trajectory Tracking by TP Model Transformation: Case Study of a Benchmark Problem. IEEE Trans. Ind. Electron 54, 1654–1663 (2007)

    Article  Google Scholar 

  22. Precup, R.E., Preitl, S., Rudas, I.J., et al.: Design and Experiments for a Class of Fuzzy Logic Controlled Servo Systems. IEEE/ASME Trans. Mechatron. 13, 22–35 (2008a)

    Article  Google Scholar 

  23. Precup, R.E., Preitl, S., Ursache, I.B., et al.: On the Combination of Tensor Product and Fuzzy Models. In: Proceedings of 2008 IEEE International Conference on Automation, Quality and Testing, Robotics, vol. 2, pp. 48–53 (2008b)

    Google Scholar 

  24. Rădac, M.B., Precup, R.E., Preitl, S., et al.: Linear and Fuzzy Control Solutions for a Laboratory Anti-Lock Braking System. In: Proceedings of 6th International Symposium on Intelligent Systems and Informatics paper index, vol. 49, p. 6 (2008)

    Google Scholar 

  25. Ruspini, E.H.: A new Approach to Clustering. Inf. Control 15, 22–32 (1969)

    Article  MATH  Google Scholar 

  26. Sala, A., Guerra, T.M., Babuška, R.: Perspectives of Fuzzy Systems and Control. Fuzzy Sets Syst. 156, 432–444 (2005)

    Article  MATH  Google Scholar 

  27. Sugeno, M.: On Stability of Fuzzy Systems Expressed by Fuzzy Rules with Singleton Consequents. IEEE Trans. Fuzzy Syst. 7, 201–224 (1999)

    Article  Google Scholar 

  28. Sun, C.H., Wang, W.J.: An Improved Stability Criterion for T-S Fuzzy Discrete Systems via Vertex Expression. IEEE Trans. Syst. Man Cybern. B 36, 672–678 (2006)

    Article  Google Scholar 

  29. Škrjanc, I., Blažič, S., Agamennoni, O.E.: Interval Fuzzy Modeling Applied to Wiener Models with Uncertainties. IEEE Trans. Syst. Man Cybern. B 35, 1092–1095 (2005)

    Article  Google Scholar 

  30. Tanaka, K., Ohtake, H., Wang, H.O.: A Descriptor System Approach to Fuzzy Control System Design via Fuzzy Lyapunov Functions. IEEE Trans. Fuzzy Syst. 15, 333–341 (2007)

    Article  Google Scholar 

  31. Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy Regulators and Fuzzy Observers: Relaxed Stability Conditions and LMI-based Design. IEEE Trans. Fuzzy Syst. 6, 250–265 (1998)

    Article  Google Scholar 

  32. Tanaka, K., Yamaguchi, K., Ohtake, H., Wang, H.O.: Sensor Reduction for Backing-up Control of a Vehicle with Triple Trailers. IEEE Trans. Ind. Electron 56, 497–509 (2009)

    Article  Google Scholar 

  33. Thiele, H.: A Characterization of Arbitrary Ruspini Partitions by Fuzzy Similarity Relations. In: Proceedings of Sixth IEEE International Conference on Fuzzy Systems, vol. 1, pp. 131–134 (1997)

    Google Scholar 

  34. Van der Kloet, P., Neerhoff, F.L.: Dynamic Eigenvalues for Scalar Linear Time-Varying Systems. In: Proceedings of 15th International Symposium on Mathematical Theory of Networks and Systems paper index, vol. 14423, p. 8 (2002)

    Google Scholar 

  35. Vaščák, J.: Fuzzy Cognitive Maps in Path Planning. Acta Tech. Jaurinensis Ser. Intell. Comput. 1, 467–479 (2008)

    Google Scholar 

  36. Wang, W.H., Sun, C.H.: Relaxed Stability and Stabilization Conditions for a TS Fuzzy Discrete System. Fuzzy Sets Syst. 156, 208–225 (2005)

    Article  MATH  Google Scholar 

  37. Wei, G., Feng, G., Wang, Z.: Robust H ∞  Control for Discrete-Time Fuzzy Systems with Infinite-distributed Delays. IEEE Trans. Fuzzy Syst. 17, 224–232 (2009)

    Article  Google Scholar 

  38. Yang, C., Zhang, Q.: Multiobjective Control for T-S Fuzzy Singularly Perturbed Systems. IEEE Trans. Fuzzy Syst. 17, 104–115 (2009)

    Article  Google Scholar 

  39. Yoneyama, J.: Robust Stability and Stabilization for Uncertain Takagi-Sugeno Fuzzy Time-Delay Systems. Fuzzy Sets Syst. 158, 115–134 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  40. Yuan, X., Wang, Y.: A Novel Electronic-Throttle-Valve Controller-based on Approximate Model Method. IEEE Trans. Ind. Electron. 56, 883–890 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Preitl, S., Precup, RE., Tomescu, ML., Rădac, MB., Petriu, E.M., Dragoş, CA. (2009). Model-Based Design Issues in Fuzzy Logic Control. In: Rudas, I.J., Fodor, J., Kacprzyk, J. (eds) Towards Intelligent Engineering and Information Technology. Studies in Computational Intelligence, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03737-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03737-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03736-8

  • Online ISBN: 978-3-642-03737-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics