
Circular Coinduction

–A Proof Theoretical Foundation–

Grigore Roşu1 and Dorel Lucanu2

1 Department of Computer Science
University of Illinois at Urbana-Champaign, USA, grosu@cs.uiuc.edu

2 Faculty of Computer Science
Alexandru Ioan Cuza University, Iaşi, Romania, dlucanu@info.uaic.ro

Abstract. Several algorithmic variants of circular coinduction have been
proposed and implemented during the last decade, but a proof theoreti-
cal foundation of circular coinduction in its full generality is still missing.
This paper gives a three-rule proof system that can be used to formally
derive circular coinductive proofs. This three-rule system is proved be-
haviorally sound and is exemplified by proving several properties of in-
finite streams. Algorithmic variants of circular coinduction now become
heuristics to search for proof derivations using the three rules.

1 Introduction

Circular coinduction is a generic name associated to a series of algorithmic tech-
niques to prove behavioral equivalence mechanically. A variant of circular coin-
duction was published for the first time in [12] in March 2000, and then other
more general or more operational variants not too long afterwards first in [13]
and then in [4, 5]; the system BOBJ had implemented an earlier variant of circu-
lar coinduction back in 1998. The name “circular coinduction” was inspired from
how it operates: it systematically searches for circular behaviors of the terms to
prove equivalent. More specifically, it derives the behavioral equational task until
one obtains, on every derived path, either a truth or a cycle. Its correctness can
be informally argued in several ways: (1) since each derived path ends up in a
cycle, it means that there is no way to show the two original terms behaviorally
different by applications of derivatives, so they must be behaviorally equivalent;
(2) the obtained circular graph structure can be used as a backbone to “con-
sume” any possible experiment applied on the two original terms, rolling it until
it becomes a visible equality, so the graph is a witness that the two terms are “in-
distinguishable under experiments”; and (3) when/if it stabilizes, it “discovers”
a relation which is compatible with the derivatives and is the identity on data,
so the stabilized set of equations, which includes the original task, is included in
the behavioral equivalence (because the latter is the largest with that property).

At our knowledge, variants of circular coinduction have been implemented
in three systems so far: in a behavioral extension of OBJ called BOBJ [13] (not
maintained anymore), in Isabelle/HOL for CoCasl [7], and in CIRC [9]. The

latter implements a more general circular reasoning principle that will be dis-
cussed elsewhere in its full generality; the coinductive projection of this general
principle is the subject of this paper and will be discussed in detail in the sequel.

The definition and proof of correctness of the original circular coinduction
variant in [12, 13] were rather complex. Moreover, the setting in those and other
papers on circular coinduction was model theoretical, with hidden algebras as
models, making one naturally wonder whether the applicability of circular coin-
duction was limited to hidden algebra models or not. In this paper we adopt
a general proof theoretical approach, without fixing any particular models (and
implicitly any particular model based notions of behavioral equivalence) and any
particular base deductive system. Instead, our approach here is parametric in a
given base entailment relation `, which one can use to discard “obvious” proof
tasks, and in a set of derivatives ∆, which are special terms with a hole (i.e., con-
texts) allowing us to define a syntactic notion of behavioral equivalence on terms
without referring to any model but only to `. This syntactic notion of behavioral
equivalence is so natural that it is straightforwardly sound in all models that we
are aware of. More importantly, it allows for more succinct and clean definitions
and proofs for circular coinduction, independent of the underlying models.

·
H �

	 ∅

H �
	 G, H ` e

H �
	 G ∪ { e }

H ∪ { e } �
	 G ∪ ∆[e]

H �
	 G ∪ { e }, e hidden

Fig. 1. Circular coinduction

Figure 1 shows our novel formulation of cir-
cular coinduction as a three-rule proof system
deriving pairs of the form H �

	 G, where H
(hypotheses) and G (goals) are sets of equations.
Some equations can be frozen and written in
a box (e.g., e), with the intuition that those
equations cannot be used in contextual reason-
ing (i.e., the congruence rule of equational logic
cannot be applied on them), but only at the top;
this is easily achieved by defining the box as
a wrapper operator of a fresh sort result, say
Frozen. G contains only frozen equations, while
H can contain both frozen and normal (or “unfrozen”) equations. The first rule
says that we are done when there are no goals left. The second rule discards
those goals which can be proved with the base entailment system. The third rule
is the distinguished rule of circular coinduction that enables circular reasoning
and it essentially says the following, where the involved equations are all frozen:

To prove behavioral property e, assume it and prove its derivatives ∆[e];
or, metaphorically, “if one cannot show it wrong then it is right”.

Without freezing, the above would hold vacuously by the congruence rule of
equational reasoning; freezing inhibits the applications of congruence, so one
needs to find other means to eliminate the derivative operations. We prove this
circular coinductive proof system sound when H is a proper behavioral specifi-
cation (has only unfrozen equations): if H �

	 G is provable then H behaviorally
satisfies all the unfrozen variants of the equations in G (see Theorem 3).

Circular coinduction has been implemented and extensively evaluated in
CIRC [9], a behavioral extension of Maude [2] optimized for automated inductive

2

and coinductive proving. Even though versions of CIRC have been available for
download and online experimentation at http : //fsl.cs.uiuc.edu/circ for more
than 3 years, this is the first paper about its foundations from a proof theoretical
rather than algorithmic perspective, explaining how its automated coinductive
proving technique works and why it is sound. Since CIRC can automatically
prove using the discussed technique all the behavioral properties in this paper
(see Appendix A) and since its syntax minimally extends that of Maude, which
we assume known, we give our running specification, that of streams, using
CIRC. Consider streams of 0/1 bits defined using head/tail:

op hd : Stream -> Bit . derivative hd(*:Stream) .
op tl : Stream -> Stream . derivative tl(*:Stream) .

Declaring hd and tl as derivatives tells CIRC that one can use them to derive
(or observe, or destruct) the task to prove. One can define several operations
on streams. For example, not(S) reverses each bit in stream S and is trivial to
define; odd, even and zip are standard and can be defined as follows:

ops odd even : Stream -> Stream . op zip : Stream Stream -> Stream .
eq hd(odd(S)) = hd(S) . eq hd(zip(S,S’)) = hd(S) .
eq tl(odd(S)) = even(tl(S)) . eq tl(zip(S,S’)) = zip(S’,tl(S)) .
eq even(S) = odd(tl(S)) .

One can now ask CIRC to prove zip(odd(S), even(S)) = S. Using the circular
coinductive proof system, CIRC proves it automatically and here are the steps:
(1) assume zip(odd(S), even(S)) = S as frozen hypothesis; (2) add its derivatives
hd(zip(odd(S), even(S))) = hd(S) and tl(zip(odd(S), even(S))) = tl(S) as new
proof tasks; (3) prove first derivative using the stream equations; (4) prove the
second derivative by first reducing it to zip(odd(tl(S)), even(tl(S))) = tl(S)
using the stream equations, and then using the frozen hypothesis (1) at its top
with substitution S 7→ tl(S).

Sometimes it is easier to prove more tasks at the same time than each task
separately, because they can help each other. Here is an example. The famous
Thue-Morse sequence (see, e.g., [1]) has several interesting properties and can be
defined as a stream in several ways (we give one definition below). Interestingly,
morse is a fixed point of the operation f also defined below:

--- Thue-Morse sequence: --- morse is a fixed point of f
op morse : -> Stream . op f : Stream -> Stream .
eq hd(morse) = 0 . eq hd(tl(morse)) = 1 . eq hd(f(S)) = hd(S) .
eq tl(tl(morse)) eq hd(tl(f(S))) = not(hd(S)) .

= zip(tl(morse), not(tl(morse))) . eq tl(tl(f(S))) = f(tl(S)) .

If we try to prove f(morse) = morse (either manually or using CIRC), then we
see that larger and larger frozen equations are derived and the process does not
terminate. Analyzing the new equations (as humans), we see that the source
of problems is the lack of an equation f(S) = zip(S, not(S)). We can then ei-
ther prove it first as a lemma, or simply add it to the set of goals and then
restart the coinductive proving process with the goal {f(morse) = morse, f(S) =
zip(S, not(S))}, this time succeeding in ten steps (see Example 4 in Section 5).

3

The rest of the paper is structured as follows. Section 2 introduces basic no-
tions and notations. A key notion is that of a ∆-contextual entailment system;
one such system is assumed given and acts as a parameter of our generic tech-
niques developed in the rest of the paper. Section 3 recasts behavioral satisfaction
in our generic setting and shows it a contextual entailment relation extending
the original one. Section 4 is dedicated to defining behavioral equivalence and
coinduction in our generic setting, showing that behavioral equivalence remains
the largest relation closed under derivatives. Our novel circular coinductive proof
system is presented in Section 5, together with its behavioral soundness result.

2 Preliminaries

We assume the reader familiar with basics of many sorted algebraic specifica-
tions and only briefly recall our notation. An algebraic specification, or simply
a specification, is a triple (S, Σ, E), where S is a set of sorts, Σ is a (S∗ × S)-
signature and E is a set of Σ-equations of the form (∀X) t = t′ if ∧i∈I ui = vi

with t, t′, ui, and vi Σ-terms with variables in X , i = 0, . . . , n; the two terms
appearing in any equality in an equation, that is the terms t, t′ and each pair ui,
vi for each i ∈ I, have, respectively, the same sort. If the sort of t and t′ is s we
may say that the sort of the equation is also s. When i = 0 we call the equation
unconditional and omit the condition (i.e., write it (∀X) t = t′). When X = ∅
we drop the quantifier and call the equation ground.

If Σ is a many sorted signature, then a Σ-context C is a Σ-term which has
one occurrence of a distinguished variable ∗:s of sort s; to make this precise, we
may write C[∗:s] instead of just C. When Σ is understood, a Σ-context may be
called just a context. When the sort s of ∗ is important, we may call C[∗:s] a
context for sort s; also, when the sort of a context C (regarded as a term), say s′,
is important, C may be called a context of sort s′. If C[∗:s] is a context for sort
s of sort s′ and t is a term of sort s, then C[t] is the term of sort s′ obtained by
replacing t for ∗:s in C. A Σ-context C[∗:s] induces a partially defined equation
transformer e 7→ C[e]: if e is an equation (∀X) t = t′ if c of sort s, then C[e] is
the equation (∀X ∪Y)C[t] = C[t′] if c, where Y is the set of non-star variables
occurring in C[∗:s]. Moreover, if C is a set of contexts and E a set of equations,
then C[e] = {C[e] | C ∈ C}, C[E] = {C[e] | e ∈ E} and C[E] =

⋃
e∈E

C[e].
The theoretical results in this paper will be parametric in a given entailment

relation ` on many sorted equational specifications, which may, but is not en-
forced to, be the usual equational deduction relation [6]. For instance, it can also
be the “rewriting” entailment relation (E ` t = t′ iff t and t′ rewrite to the same
term using E as a rewrite system), or some behavioral entailment system, etc.
We need though some properties of `, which we axiomatize here by adapting to
our context the general definition of entailments system as given in [10]. Fix a
signature Σ (in a broader setting, ` could be regarded as a set {`Σ| Σ signature}
indexed by the signature; however, since we work with only one signature in this
paper and that signature is understood, for simplicity we fix the signature).

4

Definition 1. If ∆ is a set of Σ-contexts, then a ∆-contextual entailment
system is an (infix) relation ` between sets of equations and equations, with:

1. (reflexivity) {e} ` e;
2. (monotonicity) If E1 ⊇ E2 and E2 ` e then E1 ` e;
3. (transitivity) If E1 ` E2 and E2 ` e then E1 ` e;
4. (∆-congruence) If E ` e then E ` ∆[e].

In the above, E, E1, E2 range over sets of equations and e over equations; also,
we tacitly extended ` to relate two sets of equations as expected: E1 ` E2 iff
E1 ` e for any e ∈ E2. We let E• denote the set of equations {e | E ` e}.

One can use the above to prove many properties of ` on sets of equations. Here
are some of them used later in the paper (their proofs are simple exercises):
E ` ∅, E ` E, if E1 ` E2 and E2 ` E3 then E1 ` E3, if E1 ` E2 then
E ∪ E1 ` E ∪ E2, if E1 ` E2 then E1 ` ∆[E2], if E1 ` E2 then E1 ` E1 ∪ E2, if
E1 ⊇ E2 then E1 ` E2, if E ` E1 and E ` E2 then E ` E1 ∪ E2.

We take the liberty to slightly abuse the syntax of entailment and allow one
to write a specification instead of a set of equations, with the obvious meaning:
if B = (S, Σ, E) is a specification and e is a Σ-equation, then B ` e iff E ` e.
Also, if B = (S, Σ, E) then we may write B• instead of E•.

3 Behavioral Specification and Satisfaction

Our approach in this paper is purely proof theoretical, that is, there are no mod-
els involved. We prefer this approach because we think that it is the most general
one for our purpose in this paper. As pointed out in [13], there is a plethora of
model theoretical variants of behavioral logics, some with models with fixed data
others with loose data, some which are co-algebraic (i.e., isomorphic to a cat-
egory of coalgebras) others which are not (e.g., some do not even admit final
models), some which come with a behavioral equality others whose behavioral
equality can be computed, etc. However, the proof theoretical behavioral entail-
ment relation defined in this section is sound for all these different variants of
behavioral logics. On the other hand, as shown in [13, 11], neither of the behav-
ioral logics is complete. Therefore, one looses nothing by working with a proof
theoretical instead of a model theoretical notion of behavioral entailment. On
the contrary, this allows us to define behavioral equivalence and coinduction in
a more general way, independent upon the particular (adhoc) choice for models.

A behavioral specification is a pair (B, ∆), where B = (S, Σ, E) is a many
sorted algebraic specification and ∆ is a set of Σ-contexts, called derivatives. We
let ∆s denote all the derivatives of sort s in ∆. If δ[∗:h] ∈ ∆ is a derivative, then
the sort h is called a hidden sort ; we let H ⊆ S denote the set of all hidden sorts
of B. Remaining sorts are called data, or visible, sorts and we let V = S − H

denote their set. A data operator is an operator in Σ taking and returning only
visible sorts; a data term is a term built with only data operators and variables
of data sorts; a data equation is an equation built with only data terms.

Sorts are therefore split into hidden and visible, so that one can derive terms
of hidden sort until they possibly become visible. Formally, a ∆-experiment is

5

a ∆-context of visible sort, that is: (1) each δ[∗:h] ∈ ∆v with v ∈ V is an
experiment, and (2) if C[∗:h′] is an experiment and δ[∗:h] ∈ ∆h′ , then so is
C[δ[∗:h]]. An equation (∀X) t = t′ if c is called a hidden equation iff the common
sort of t and t′ is hidden, and it is called a data, or visible, equation iff the
common sort of t and t′ is visible. In this paper we consider only equations
whose conditions are conjunctions of visible equalities. If ∆ is understood, then
we may write experiment for ∆-experiment and context for ∆-context; also, we
may write only B instead of (B, ∆) and, via previous conventions, identify B with
its set of equations. If G is a set of Σ-equations, we let visible(G) and hidden(G)
denote the sets of G’s visible and hidden equations, respectively.

From here on in the paper we fix a signature Σ, a set of Σ-contexts ∆,
and a generic ∆-contextual entailment system, `. For the sake of concreteness,
one may think of ` as the ordinary equational entailment relation; however, the
proofs in the sequel rely only on the axioms in Definition 1. Unless otherwise
specified, we also assume a fixed behavioral specification (B, ∆).

Example 1. Let STREAM be the behavioral specification of streams discussed in
Section 1, with the conventional equational reasoning as basic entailment rela-
tion; in other words, STREAM ` e iff e is derivable using equational reasoning
from the equations in STREAM. The experiments one can perform on streams are
therefore contexts of the form hd(tli(∗:Stream)), where i ≥ 0.

Definition 2. B behaviorally satisfies equation e, written B � e, iff: B ` e

if e is visible, and B ` C[e] for each appropriate experiment C if e is hidden.

Example 2. In the case of streams, we have that STREAM � str = str′ iff
STREAM ` hd(tli(str)) = hd(tli(str′)) for all i ≥ 0. For example, one can
directly show that STREAM � zip(odd(S), even(S)) = S by showing by induction
on i that hd(tli(zip(odd(S), even(S)))) = hd(tli(S)). Also, one can show that
STREAM � f(not(S)) = not(f(S)), by showing that STREAM ` hd(tli(f(not(S))))
= g(i, hd(S)) and STREAM ` hd(tli(not(f(S)))) = g(i, hd(S)) for all i ≥ 0,
where g(i, B) = not(B) if i is even, and g(i, B) = B if i is odd. Such direct
proofs based on direct exhaustive analysis of experiments are essentially proofs
by context induction [8], known to be problematic in practice due to the large
number of lemmas needed (see [3] for an early reference to this aspect) and diffi-
cult to mechanize. We are going to give more elegant behavioral proofs of these
properties, first by coinduction and then by circular coinduction.

Proposition 1. � is a ∆-contextual entailment system extending `. In other
words, � satisfies the axioms in Definition 1 and if B ` e then B � e.
Proof. To make � a ∆-contextual entailment relation, we need to first extend
it to sets of equations. Since we fixed Σ and ∆, then we can define E1 � E2

iff the behavioral specification containing the equations E1 and the derivatives
∆ behaviorally satisfies each equation in E2. It is then easy to check that the
properties of entailment relations in Definition 1 hold. Let us now show that if
B ` e for some specification B and equation e, then B � e. If e is visible then

6

it holds by the extension of the definition of � above. If e is hidden, then by
the ∆-congruence property of ` in Definition 1, it follows that B ` C[e] for any
appropriate ∆-context C, in particular for any ∆-experiment. Hence, B � e.

To avoid confusion, we continue to use the notation B• for the entailment
closure of B under the original entailment relation `, that is, B• = {e | B ` e}.

4 Behavioral Equivalence and Coinduction

Definition 3. The behavioral equivalence of B is the set ≡B

def
= {e | B � e}.

Thus, the behavioral equivalence of B is the set of equations behaviorally
satisfied by B. When B is clear, we may write ≡ instead of ≡B. Note that ≡ may
contain also conditional equations with visible conditions. However, the visible
conditions can be regarded as data side conditions, so we took the liberty to
make the slight abuse of terminology above and called ≡B an equivalence.

A major result of any behavioral logic, making proofs by coinduction sound,
is that behavioral equivalence is the largest relation that is consistent with the
data and is compatible with the behavioral operations, or the observers. In what
follows we capture this same result in our proof theoretical setting. To do that,
we first need to formally define what is meant here by “consistent with data and
compatible with behavioral operators”.

Definition 4. A set of equations G is behaviorally closed iff B ` visible(G)
and ∆(G − B•) ⊆ G.

In other words, a set of equations G is behaviorally closed iff for any e ∈ G,
we have that B ` e or otherwise e is hidden and ∆[e] ⊆ G. Therefore, G can
contain as many equations entailed by B as needed, both visible and hidden,
even all of them. The first condition says that if G contains any visible equation
at all, then that equation must be entailed by B. The second condition says that
if a hidden equation e ∈ G is not entailed by B then it must be the case that its
derivatives are also in G. A degenerate case is when G = B, in which case the
second condition is superfluous. In other words, G is closed under, or compatible
with, the derivatives and the only way to “escape” this derivative closing process
is by a direct proof using B and the original entailment system.

Theorem 1. (Coinduction) For any behavioral specification, the behavioral
equivalence ≡ is the largest behaviorally closed set of equations.

Proof. Let (B, ∆) be a behavioral specification and let ≡ be its behavioral equiv-
alence. It is easy to see that ≡ is behaviorally closed. Consider now some be-
haviorally closed set of equations G. First, note that each equation e in G of
visible sort is also in ≡: indeed, G behaviorally closed implies B ` e, which by
the extended definition of ≡ to visible equations implies e ∈ ≡. To show that
each hidden equation in G is also in ≡, it suffices to prove by induction on ex-
periments C[∗:h] that the property “B ` C[e] for any hidden equation e of sort
h in G”, say P (C), holds:
The basis step. Let C be a derivative of visible sort, that is, C ∈ ∆v for some

7

v ∈ V , and let e ∈ G be some equation of sort h. Since G is behaviorally closed,
it follows that B ` e or C[e] ∈ G; any of these implies that B ` C[e].
The inductive step. Suppose now that C = D[δ[∗:h]] for some derivative δ ∈ ∆h′

of hidden sort h′ and some experiment D for h′, and let e ∈ G be an equation of
hidden sort h. Since G is behaviorally closed, it follows that B ` e or δ[e] ∈ G.
If B ` e then, since ` is ∆-congruent (Definition 1), it follows that B ` D[δ[e]].
On the other hand, if δ[e] ∈ G then by the induction hypothesis it follows that
P (D) holds, which in particular means that B ` D[δ[e]]. Therefore, B ` C[e].

Theorem 1 justifies the correctness of behavioral proofs by coinduction. In-
deed, in order to prove that B behaviorally satisfies an equation e, all we need to
do is to find some behaviorally closed set of equations G such that e ∈ G. Then
by Theorem 1 we have B � G, and since � is an entailment system (Proposi-
tion 1) we conclude that B � e. More generally, to prove that B behaviorally
satisfies a set of conditional equations G, one can find some behaviorally closed
set of equations G such that B ∪ G ` G: indeed, if that is the case then since
B � G (Theorem 1), we get by Proposition 1 and the axioms in Definition 1
that B � B ∪ G; also by Proposition 1, B ∪ G ` G implies B ∪ G � G, so by the
transitivity of � as an entailment system it follows that B � G. In practice it is
often the case that G ⊆ G, in which case the condition B∪G ` G is superfluous.

Experience with many coinductive proofs suggests that the following simple
proving technique works in most practical cases of interest:

(Coinductive proving technique) Goal is to prove B � e.

1. If one can show B ` e then stop with success, otherwise continue;
2. If e is visible then stop with failure;
3. Find some (typically finite) set of hidden equations G with e ∈ G;
4. Let G be the closure of G∪B• under substitution, symmetry, and transitivity;
5. Show ∆[G] ⊆ G;

The most difficult part is to find the right G at step 3. If G is too small, in
particular if one picks G = {e}, then G may be too small and thus one may not be
able to show step 5 because it may be the case for some f ∈ G and appropriate
δ ∈ ∆ that δ[f] 6∈ G and one cannot show B ` δ[f]. If G is too large, then the
number of proof tasks at step 5 may be prohibitive. Finding a good G at step 3
is the most human-intensive part (the rest is, to a large extent, mechanizable).
The correctness of the technique above follows from the following proposition:

Proposition 2. Let G be a set of hidden equations such that ∆[G] ⊆ G, where
G is the closure of G ∪ B• under substitution, symmetry, and transitivity. Then
∆[G] ⊆ G and G is behaviorally closed.

Proof. If E is a set of equations, let E be the closure of E under substitution,
symmetry, and transitivity, and note that ∆[E] = ∆[E]. Taking E = G ∪ B•,
we get ∆[G] = ∆[G ∪ B•] = ∆[G ∪ B•] = ∆[G] ∪ ∆[B•] ⊆ G ∪ B• = G = G.
Since G contains only hidden equations and since substitution, symmetry and
transitivity are sort preserving, we conclude that visible(G) = visible(B•). It is
now clear that G is behaviorally closed (both conditions in Definition 4 hold).

8

Proposition 2 therefore implies that the G in the coinductive proving tech-
nique above is behaviorally closed. Since e ∈ G ⊆ G, Theorem 1 implies that
B � e, so our coinductive proving technique is indeed sound.

Example 3. Let us prove by coinduction the two stream properties in Example
2, STREAM � zip(odd(S), even(S)) = S and STREAM � f(not(S)) = not(f(S)).

For the first property, let G be the set {zip(odd(S), even(S)) = S} containing
only the equation to prove, and let G be the closure of G ∪ STREAM• under
substitution, symmetry and transitivity. Since

hd(zip(odd(S), even(S))) = hd(S)
tl(zip(odd(S), even(S))) = zip(odd(tl(S)), even(tl(S)))

are in STREAM• (and hence in G), the following equations are in G as well:

zip(odd(tl(S)), even(tl(S))) = tl(S) (substitution)
tl(zip(odd(S), even(S))) = tl(S) (transitivity)

Therefore ∆(G) ⊆ G, so we are done.

For the second property, f(not(S)) = not(f(S)), let G be the two equation
set {f(not(S)) = not(f(S)), tl(f(not(S))) = tl(not(f(S)))}, which includes
the equation to prove, and let G the closure under substitution, symmetry and
transitivity of G ∪ STREAM•. Since the following equations

hd(f(not(S))) = not(hd(S)) hd(not(f(S))) = not(hd(S))
tl(not(f(S))) = not(tl(f(S)))

hd(tl(f(not(S)))) = hd(S) hd(tl(not(f(S)))) = hd(S)
tl(tl(f(not(S)))) = f(not(tl(S))) tl(tl((not(f(S)))) = not(f(tl(S)))

are all in STREAM• (and hence in G), the following equations are in G as well:

hd(f(not(S))) = hd(not(f(S))) (symm. & trans.)
hd(tl(f(not(S)))) = hd(tl(not(f(S)))) (symm. & trans.)
tl(tl(f(not(S)))) = tl(tl(not(f(S)))) (subst. & symm. & trans.)

Therefore ∆(G) ⊆ G, so we are done with the second proof as well.

The set G was straightforward to choose in the first proof in the example
above, but it was not that easy in the second one. If we take G in the second
proof to consist only of the initial goal like in the first proof, then we fail to
prove that tl(f(not(S))) = tl(not(f(S))) is in G.

Unfortunately, there is no magic recipe to choose good sets G, which is what
makes coinduction hard to automate. In fact, a naive enumeration of all sets
G followed by an attempt to prove ∆(G) ⊆ G leads to a Π0

2 algorithm, which
matches the worst case complexity of the behavioral satisfaction problem even
for streams [11]. In practice, however, we can do better than enumerating all G.
For example, after failing to prove tl(f(not(S))) = tl(not(f(S))) in the second
example above when one naively chooses G = {f(not(S)) = not(f(S))}, then one
can add the failed task to G and resume the task of proving that ∆(G) ⊆ G, this
time successfully. We will see in the next section that this way of searching for a
suitable G is the basis on which the circular coinductive reasoning is developed.

9

5 Circular Coinduction

A key notion in our formalization and even implementation of circular coinduc-
tion is that of a “frozen” equation. The motivation underlying frozen equations
is that they structurally inhibit their use underneath proper contexts; because
of that, they will allow us to capture the informal notion of “circular behav-
ior” elegantly, rigorously, and generally (modulo a restricted form of equational
reasoning). Formally, let (B, ∆) be a behavioral specification and let us extend
its signature Σ with a new sort Frozen and a new operation - : s → Frozen
for each sort s. If t is a term, then we call t the frozen (form of) t. Note that

freezing only acts on the original sorts in Σ, so double freezing, e.g., t , is not
allowed. If e is an equation (∀X) t = t′ if c, then we let e be the frozen equa-
tion (∀X) t = t′ if c; note that the condition c stays unfrozen, but recall that
we only assume visible conditions. By analogy, we call the equations over the
original signature Σ unfrozen equations. If e is an (unfrozen) visible equation
then e is called a frozen visible equation; similarly when e is hidden. If C is a
context for e, then we take the freedom to write C[e] as a shortcut for C[e] .
It is important to note here that if E ∪ F ` G for some unfrozen equation set
E and frozen equation sets F and G, then it is not necessarily the case that
E ∪F ` C[G] for a context C. Freezing therefore inhibits the free application of
the congruence deduction rule of equational reasoning.

Recall that, for generality, we work with an arbitrary entailment system
in this paper, which may or may not necessarily be the entailment relation of
equational deduction. We next add two more axioms:

Definition 5. A ∆-contextual entailment system with freezing is a ∆-
contextual entailment system extended as above such that:

(A1) E ∪ F ` e iff E ` e;
(A2) E ∪ F ` G implies E ∪ δ[F] ` δ[G] for each δ ∈ ∆, equivalent to

saying that for any ∆-context C, E∪F ` G implies E∪C[F] ` C[G].

Above, E ranges over unfrozen equations, e over visible unfrozen equations, and
F and G over frozen hidden equations.

The first axiom says that frozen hidden equations do not interfere with the
entailment of frozen or unfrozen visible equations. The second equation says
that if some frozen hidden equations F can be used to derive some other frozen
hidden equations G, then one can also use the frozen equations δ[F] to derive δ[G].
Freezing acts as a protective shell that inhibits applications of the congruence
rule on frozen equations but instead allows the application of derivatives both
onto the hypothesis and the conclusion of an entailment pair at the same time.

Therefore, our working entailment system ` is now defined over both un-
frozen and frozen equations. Note, however, that this extension is conservative,
in that one cannot infer any new entailments of unfrozen equations that were
not possible before; because of that, we take the liberty to use the same sym-
bol, `, for the extended entailment system. It is easy to check these additional
axioms for concrete entailment relations. Consider, for example, the equational

10

deduction entailment: (A1) follows by first noticing that E ∪ F ` e iff E ` e

(because there is no way to make use of the equations in F in any derivation
of e) and then that E ` e iff E ` e (because E contains no frozen equations);
and (A2) holds because any proof π of a frozen hidden equation eG in G from
E ∪ F can use the frozen equations in F only “at the top”, that is, not under-
neath operators via an equational congruence deduction step, so one can simply
replace any frozen term t in π by δ[t] and thus get a proof for eG .

Theorem 2. (coinductive circularity principle) If B is a behavioral speci-
fication and F is a set of hidden equations with B ∪ F ` ∆[F] then B � F .

Proof. We first prove by well-founded induction on the depth of C that the
hypothesis of the theorem implies B ∪ F ` C[F] for any ∆-context C. If C

is a degenerated context ∗:h then C[F] is a subset of F (its equations of sort
h), so the result follows by the fact that ` is an entailment system. The case
C ∈ ∆ follows from the theorem hypothesis. If C[∗:h] = C1[C2[∗:h]] for some
proper contexts C1 and C2 strictly smaller in depth than C, then we have by the
induction hypothesis that B ∪ F ` C1[F] and B ∪ F ` C2[F] . Since ` is an

entailment system with freezing, by (A2) it follows that B∪ C1[F] ` C1[C2[F]] .

Now, since B ∪ F ` C1[F] implies B ∪ F ` B ∪ C1[F] , by the transitivity of

` (both of these properties of entailment systems), we get B ∪ F ` C[F] .

Therefore, B∪ F ` C[F] for any ∆-context C, in particular B∪ F ` C[F]
for any ∆-experiment C. Then by axiom (A1) of entailment systems with freezing
we obtain that B ` C[e] for any e ∈ F and any ∆-experiment C for which C[e]
is defined. Therefore, B � F .

Theorem 2 serves as the foundation of circular coinduction, because what
circular coinduction essentially does is to iteratively attempt to complete a set
of hidden equations that it starts with until it becomes a set F that satisfies
the hypothesis of Theorem 2. Interestingly, Theorem 1 becomes now a simple
corollary of Theorem 2: given a behaviorally closed G like in the hypothesis of
Theorem 1, take F to be the set of all hidden equations in G; then for an e ∈ F

of sort h and a δ[∗:h] ∈ ∆, δ[e] either is visible and so B ` δ[e] or is in F , so the
hypothesis of Theorem 2 holds vacuously; therefore, B � G. This is not entirely
unexpected, because the F in Theorem 2 is stated to be a fixed point w.r.t.
∆-derivability; what may be slightly unexpected is that such fixed points can be
safely calculated modulo reasoning into an entailment system with freezing, in
particular modulo equational deduction with inhibited congruence.

Figure 2 defines circular coinduction as a proof system for deriving pairs of
the form H �

	 G, where H, the hypotheses, can contain both frozen and unfrozen
equations, and where G, the goals, contains only frozen equations. Initially, H
is the original behavioral specification B and G is the frozen version G of the
original goals G to prove. The circular coinductive proving process proceeds as
follows. At each moment when G 6= ∅, a frozen equation e is picked from G.
If H ` e holds, then e may be discarded via a [Reduce] step. The core rule
of circular coinduction is [Derive], which allows one to assume e as hypothesis

11

and generate ∆[e] as new proof obligations. This rule gives the user of our proof
system the impression of circular reasoning, because one appears to assume what
one wants to prove and go on. The key observation here is that the equation e

is assumed as hypothesis in its frozen form, which means that it cannot be
freely used to prove its derivatives; otherwise, those would follow immediately
by applying the congruence rule of equational deduction. One is done when the
set of goals becomes empty. When that happens, one can conclude that B � G.

·
H �

	 ∅
[Done]

H �
	 G, H ` e

H �
	 G ∪ { e }

[Reduce]

H ∪ { e } �
	 G ∪ ∆[e]

H �
	 G ∪ { e }

, if e hidden [Derive]

Fig. 2. Circular coinduction as a proof system:
If B �

	 G is derivable then B � G

The soundness of the cir-
cular coinductive proof system
in Figure 2, which is proved
below, is a monolithic result
depending upon a derivation
of the complete proof for a
task of the form B �

	 G . We
have failed to find any way to
decompose the proof of sound-
ness by proving the soundness
of each derivation rule, as it is
commonly done in soundness
proofs. For example, one may
be tempted to attempt to show that H �

	 G derivable implies H◦
� G◦, where

H◦ unfreezes all the frozen equations in H (and similarly for G◦). Unfortunately,
this simplistic approach cannot be used to show the [Derive] rule “sound”, as
it is not sound in this sense: indeed, H◦ ∪ {e} � G◦ ∪ ∆[e] is equivalent to
H◦ ∪{e} � G◦ because {e} � ∆[e], and there is no way to show from these that
H◦

� G◦∪{e}. The soundness arguments of circular coinduction can be found in
the complete proof, not in each particular derivation rule, which is what makes
the theorem below unexpectedly hard to prove (note it also uses Theorem 2).

Theorem 3. (soundness of circular coinduction) If B is a behavioral spec-
ification and G is a set of equations such that B �

	 G is derivable using the
proof system in Figure 2, then B � G.

Proof. Any derivation of H �
	 G using the proof system in Figure 2 yields a

sequence of pairs H0 �
	 G0, H1 �

	 G2, ... Hn �
	 Gn, where H0 = B, G0 = G ,

Gn = ∅, and for every 0 ≤ i < n, there is some e ∈ Gi such that one of the
following holds, each corresponding to one of the rules [Reduce] or [Derive]:

[Reduce] Hi ` e and Gi+1 = Gi − { e } and Hi+1 = Hi; or
[Derive] e is hidden and Gi+1 = (Gi − { e }) ∪ ∆[e] and Hi+1 = Hi ∪ e .

Let G =
⋃

n

i=0
Gi, let G◦ = {e | e ∈ G}, and let F = hidden(G◦). Note that for

each 0 ≤ i < n, Hi = B ∪ Fi for some set of frozen hidden equations Fi with
Fi ∪ ∆[Fi] ⊆ G: indeed, only frozen hidden equations are added to H and only
by the rule [Derive], which also adds at the same time the derivatives of those
equations to G. This implies that if i corresponds to a [Reduce] step with Hi ` e

for some e ∈ G, then either B ` e by (A1) when e is visible, or B∪∆[Fi] ` ∆[e]
by (A2) when e ∈ F .

12

If e ∈ G◦ visible, then there must be some 0 ≤ i < n such that Hi ` e , so
B ` e. Since ∆[Fi] ⊆ G, equations f ∈ ∆[Fi] either are visible and so B ` f , or

are hidden and f ∈ F ; in either case, we conclude that B ∪ F ` ∆[Fi] for any

0 ≤ i < n, so B ∪ F ` ∆[e] for any e ∈ F such that Hi ` e in some [Reduce]

rule applied at step 0 ≤ i < n. If e ∈ F such that a δ[e] for each appropriate
δ ∈ ∆ is added to G via a [Derive] rule, then it is either that δ[e] ∈ G◦ and
so B ` δ[e], or that δ[e] ∈ F ; in either case, for such e ∈ F we conclude that
B∪ F ` ∆[e] . We covered all cases for e ∈ F , so B∪ F ` ∆[F] ; then Theorem
2 implies that B � F . Since F contains all the hidden equations of G◦ and since
we already proved that B ` e, i.e., B � e, for all e ∈ G◦ visible, we conclude that
B � G◦. Since G ⊆ G◦, it follows that B � G.

Example 4. Let us now derive by circular coinduction the two stream properties
proved manually by coinduction in Example 3, as well as the fixed point property
of the morse stream defined in Section 1.

The table below summarizes the derivation steps for the first property. Each
raw comprises a derived pair Hi �

	 Gi, using the notation in the proof of
Theorem 3: first column is the proof step index 0 ≤ i ≤ n, second column is the
rule applied, third column is the unfrozen set of current goals, and fourth column
is the set of additional hypotheses (besides B) in Hi, also shown in unfrozen form.

Rule G
◦

i F
◦

i

0 zip(odd(S), even(S)) = S

1 [Derive]
hd(zip(odd(S), even(S))) = hd(S)
tl(zip(odd(S), even(S))) = tl(S)

zip(odd(S), even(S)) = S

2 [Reduce] tl(zip(odd(S), even(S))) = tl(S) zip(odd(S), even(S)) = S

3 [Reduce] zip(odd(S), even(S)) = S

The first [Reduce] step follows by equational reasoning using only the equations
of STREAM. The second [Reduce] uses the frozen hypothesis: the goal is reduced
first to zip(odd(tl(S)), odd(even(S))) using the equations of STREAM and then
to tl(S) = tl(S) using the frozen hypothesis in F2.

Similarly, next table shows a derivation of STREAM �
	 f(not(S)) = not(f(S)):

Rule G
◦

i F
◦

i

0 f(not(S)) = not(f(S))

1 [Derive]
hd(f(not(S))) = hd(not(f(S)))
tl(f(not(S))) = tl(not(f(S)))

f(not(S)) = not(f(S))

2 [Reduce] tl(f(not(S))) = tl(not(f(S))) f(not(S)) = not(f(S))

3 [Derive]
hd(tl(f(not(S)))) = hd(tl(not(f(S))))
tl

2(f(not(S))) = tl
2(not(f(S)))

f(not(S)) = not(f(S))
tl(f(not(S))) = tl(not(f(S)))

4 [Reduce] tl
2(f(not(S))) = tl

2(not(f(S)))
f(not(S)) = not(f(S))
tl(f(not(S))) = tl(not(f(S)))

5 [Reduce]
f(not(S)) = not(f(S))
tl(f(not(S))) = tl(not(f(S)))

The first two [Reduce] steps follow by equational reasoning using only the equa-
tions of STREAM. The last [Reduce] uses a frozen hypothesis from F4. The last

13

goal is reduced to f(not(tl(S))) = not(f(tl(S))) by equational reasoning using
only the equations of STREAM, and then to not(f(tl(S))) = not(f(tl(S))) using
the first frozen hypothesis from F4. Note that circular coinduction has therefore
“discovered” automatically the second equation that was necessary to prove the
property by plain coinduction in Example 3.

Finally, next table shows a circular coinductive proof that, with the streams
defined in Section 1, morse is a fixed point of f. Note that one cannot prove
directly the fixed point property (see Appendix A for how CIRC fails to prove
it); instead, we prove G = {f(morse) = morse, (∀S) zip(S, not S) = f(S)}.

Step Rule G
◦

i F
◦

i

0
f(morse) = morse
zip(S, not S) = f(S)

1 Derive
zip(S, not S) = f(S)
hd(f(morse)) = hd(morse)
tl(f(morse)) = tl(morse)

f(morse) = morse

2 Derive

hd(f(morse)) = hd(morse)
tl(f(morse)) = tl(morse)
hd(zip(S, not S)) = hd(f(S))
tl(zip(S, not S)) = tl(f(S))

zip(S, not S) = f(S)
f(morse) = morse

3 Reduce
tl(f(morse)) = tl(morse)
hd(zip(S, not S)) = hd(f(S))
tl(zip(S, not S)) = tl(f(S))

zip(S, not S) = f(S)
f(morse) = morse

4 Derive

hd(zip(S, not S)) = hd(f(S))
tl(zip(S, not S)) = tl(f(S))
hd(tl(f(morse))) = hd(tl(morse))
tl(tl(f(morse))) = tl(tl(morse))

tl(f(morse)) = tl(morse)
zip(S, not S) = f(S)
f(morse) = morse

5 Reduce
tl(zip(S, not S)) = tl(f(S))
hd(tl(f(morse))) = hd(tl(morse))
tl(tl(f(morse))) = tl(tl(morse))

tl(f(morse)) = tl(morse)
zip(S, not S) = f(S)
f(morse) = morse

6 Derive

hd(tl(f(morse))) = hd(tl(morse))
tl(tl(f(morse))) = tl(tl(morse))
hd(tl(zip(S, not S))) = hd(tl(f(S)))
tl(tl(zip(S, not S))) = tl(tl(f(S)))

tl(zip(S, not S)) = tl(f(S))
tl(f(morse)) = tl(morse)
zip(S, not S) = f(S)
f(morse) = morse

7 Reduce
tl(tl(f(morse))) = tl(tl(morse))
hd(tl(zip(S, not S))) = hd(tl(f(S)))
tl(tl(zip(S, not S))) = tl(tl(f(S)))

tl(zip(S, not S)) = tl(f(S))
tl(f(morse)) = tl(morse)
zip(S, not S) = f(S)
f(morse) = morse

8 Reduce hd(tl(zip(S, not S))) = hd(tl(f(S)))
tl(tl(zip(S, not S))) = tl(tl(f(S)))

tl(zip(S, not S)) = tl(f(S))
tl(f(morse)) = tl(morse)
zip(S, not S) = f(S)
f(morse) = morse

9 Reduce tl(tl(zip(S, not S))) = tl(tl(f(S)))

tl(zip(S, not S)) = tl(f(S))
tl(f(morse)) = tl(morse)
zip(S, not S) = f(S)
f(morse) = morse

10 Reduce

tl(zip(S, not S)) = tl(f(S))
tl(f(morse)) = tl(morse)
zip(S, not S) = f(S)
f(morse) = morse

14

6 Conclusion

Previous formalizations of circular coinduction were either algorithmic in nature,
or limited. For example, [4] introduces circular coinductive rewriting as an oper-
ational technique to extend rewriting with coinductive steps. On the other hand,
[5] attempts to capture circular coinduction as a proof rule, but, unfortunately,
it only works with properties that need at most one derivation step and it is
melted away within a particular entailment system for hidden algebra, making
it hard to understand what circular coinduction really is.

This paper presented circular coinduction as a sound, generic, self-contained
and easy to understand proof system. We believe that this result will enhance
understanding of circular coinduction, will allow it to be applicable to various
coalgebraic settings, and will lead to improved implementations and extensions.

References

1. J.-P. Allouche and J. Shallit. The ubiquitous prouhet-thue-morse sequence. In
T. H. C. Ding and H. Niederreiter, editors, Sequences and Their applications (Proc.
SETA’98), pages 1–16. Springer-Verlag, 1999.

2. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. L.
Talcott, editors. All About Maude - A High-Performance Logical Framework, How
to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture
Notes in Computer Science. Springer, 2007.

3. M.-C. Gaudel and I. Privara. Context induction: an exercise. Technical Report
687, LRI, Université de Paris-Sud, 1991.

4. J. Goguen, K. Lin, and G. Rosu. Circular coinductive rewriting. In ASE ’00:
Proceedings of the 15th IEEE international conference on Automated software en-
gineering, pages 123–132, Washington, DC, USA, 2000. IEEE Computer Society.

5. J. Goguen, K. Lin, and G. Rosu. Conditional circular coinductive rewriting with
case analysis. In M. Wirsing, D. Pattinson, and R. Hennicker, editors, WADT,
volume 2755 of Lecture Notes in Computer Science, pages 216–232. Springer, 2002.

6. J. Goguen and J. Meseguer. Completeness of Many-Sorted Equational Logic. Hous-
ton Journal of Mathematics, 11(3):307–334, 1985.

7. D. Hausmann, T. Mossakowski, and L. Schröder. Iterative circular coinduction for
cocasl in isabelle/hol. In M. Cerioli, editor, FASE, volume 3442 of Lecture Notes
in Computer Science, pages 341–356. Springer, 2005.

8. R. Hennicker. Context induction: a proof principle for behavioral abstractions.
Formal Aspects of Computing, 3(4):326–345, 1991.

9. D. Lucanu and G. Rosu. Circ : A circular coinductive prover. In T. Mossakowski,
U. Montanari, and M. Haveraaen, editors, CALCO, volume 4624 of Lecture Notes
in Computer Science, pages 372–378. Springer, 2007.

10. J. Meseguer. General logics. In H.-D. E. et al., editor, Logic Colloquium ’87, pages
275–329, North Holland, Amsterdam, 1989.

11. G. Roşu. Equality of streams is a pi02-complete problem. In Proceedings of the 11th
ACM SIGPLAN International Conference on Functional Programming (ICFP’06).
ACM, 2006.

12. G. Roşu and J. Goguen. Circular coinduction. 2001. Short paper at the Interna-
tional Joint Conference on Automated Reasoning (IJCAR’01).

13. G. Rosu. Hidden Logic. PhD thesis, University of California at San Diego, 2000.

15

This appendix is for reviewers’ convenience, to see how the circular coin-
ductive proof system in the paper works in CIRC. If this paper is ac-
cepted then the appendix will be removed and the reader will be referred
to CIRC’s website at http : //fsl.cs.uiuc.edu/circ, where these examples
and many others can be executed online.

A CIRC Proofs

Here we show the behavioral specification of streams discussed in Section 1
formalized in CIRC, the proof scripts of all the properties mentioned in the
paper, as well as CIRC’s output. The input file is called stream.maude. Note
that CIRC is instructed to output all the proof details with the command “set
show details on .”. One can add multiple goals and then attempt to prove all
of them at the same time, as described in Section 5 (the advantage being that
they can help each other). The command “coinduction .” attempts to prove
all the existing goals. Once a goal is proved, it is automatically made available
in any subsequent proof. One can start it over using the command “quit proof

.”, which is what we do before the last proof task. The last proof task shows
that one cannot prove the fixed point property in isolation; we have to quit the
existing proof to make sure that the previously proved properties, including the
fixed point itself, are discarded. We also set the maximum number of steps to
100, which is sufficient to see the problem. The number of steps made by the
CIRC tool is bigger than the number of circularities (how many times the rule
[Derive] is applied), because the implementation includes some additional rules.
Note also that the real run time is that written in parentheses and NOT the
CPU time.

A.1 Input

loop init .

(set show details on .)

(theory BIT is

sort Bit . var B : Bit .

ops 0 1 : -> Bit .

op not : Bit -> Bit .

eq not(0) = 1 . eq not(1) = 0 . eq not(not(B)) = B .

endtheory)

(theory EQ-STREAM is including BIT .

sort Stream . vars S S’ : Stream .

--- these will be derivatives; here they are just ordinary operations

op hd : Stream -> Bit . op tl : Stream -> Stream .

16

--- odd and even streams --- zip of streams

ops odd even : Stream -> Stream . op zip : Stream Stream -> Stream .

eq hd(odd(S)) = hd(S) . eq hd(zip(S,S’)) = hd(S) .

eq tl(odd(S)) = even(tl(S)) . eq tl(zip(S,S’)) = zip(S’,tl(S)) .

eq even(S) = odd(tl(S)) .

--- complements a Bit stream --- alternative function

op not : Stream -> Stream . op f : Stream -> Stream .

eq hd(not(S)) = not(hd(S)) . eq hd(f(S)) = hd(S) .

eq tl(not(S)) = not(tl(S)) . eq hd(tl(f(S))) = not(hd(S)) .

eq tl(tl(f(S))) = f(tl(S)) .

--- Thue-Morse seqence M = 0:zip(inv(M),tail(M))

op morse : -> Stream .

eq hd(morse) = 0 .

eq hd(tl(morse)) = 1 .

eq tl(tl(morse)) = zip(tl(morse), not(tl(morse))) .

endtheory)

(ctheory STREAM is

including EQ-STREAM .

derivative hd(*:Stream) .

derivative tl(*:Stream) .

endctheory)

---> STREAM |||- zip(odd(S), even(S)) = S

(add goal zip(odd(S:Stream), even(S:Stream)) = S:Stream .)

(coinduction .)

---> STREAM |||- f(not(S)) = not(f(S))

(add goal f(not(S:Stream)) = not(f(S:Stream)) .)

(coinduction .)

---> STREAM |||- { f(S) = zip(S, not(S)), f(morse) = morse }

(add goal f(S:Stream) = zip(S:Stream, not(S:Stream)) .)

(add goal f(morse) = morse .)

(coinduction .)

17

---> STREAM |||- f(morse) = morse does not terminate

(quit proof .)

(set max no steps 100 .)

(add goal f(morse) = morse .)

(coinduction .)

A.2 Output

> in stream.maude

rewrites: 6 in 783421600ms cpu (4ms real) (0 rewrites/second)

CIRC 1.4 (May 19th, 2008)

rewrites: 20 in 6094666579ms cpu (39ms real) (0 rewrites/second)

Details will be shown.

rewrites: 805 in 6094666579ms cpu (13ms real) (0 rewrites/second)

Introduced theory BIT

rewrites: 3499 in 6094666579ms cpu (59ms real) (0 rewrites/second)

Introduced theory EQ-STREAM

rewrites: 862 in 6094666579ms cpu (18ms real) (0 rewrites/second)

..

__

Introduced ctheory STREAM

==

---> STREAM |||- zip(odd(S), even(S)) = S

rewrites: 359 in 6094666579ms cpu (11ms real) (0 rewrites/second)

Goal added: zip(odd(S:Stream),even(S:Stream)) = S:Stream

rewrites: 2425 in 6094666579ms cpu (90ms real) (0 rewrites/second)

Goal zip(odd(S:Stream),even(S:Stream)) = S:Stream reduced to

zip(odd(S:Stream),odd(tl(S:Stream))) = S:Stream

Hypo zip(odd(S:Stream),odd(tl(S:Stream))) = S:Stream added and coexpanded to

1. hd(zip(odd(S:Stream),odd(tl(S:Stream)))) = hd(S:Stream)

2. tl(zip(odd(S:Stream),odd(tl(S:Stream)))) = tl(S:Stream)

18

Goal hd(zip(odd(S:Stream),odd(tl(S:Stream)))) = hd(S:Stream) reduced to

hd(S:Stream) = hd(S:Stream)

Goal hd(S:Stream) = hd(S:Stream) proved by reduction.

Goal tl(zip(odd(S:Stream),odd(tl(S:Stream)))) = tl(S:Stream) reduced to

tl(S:Stream) = tl(S:Stream)

Goal tl(S:Stream) = tl(S:Stream) proved by reduction.

Proof succeeded.

==

---> STREAM |||- f(not(S)) = not(f(S))

rewrites: 339 in 6094666579ms cpu (8ms real) (0 rewrites/second)

Goal added: f(not(S:Stream)) = not(f(S:Stream))

rewrites: 3738 in 6094666579ms cpu (157ms real) (0 rewrites/second)

Hypo f(not(S:Stream)) = not(f(S:Stream)) added and coexpanded to

1. hd(f(not(S:Stream))) = hd(not(f(S:Stream)))

2. tl(f(not(S:Stream))) = tl(not(f(S:Stream)))

Goal hd(f(not(S:Stream))) = hd(not(f(S:Stream))) reduced to

not(hd(S:Stream)) = not(hd(S:Stream))

Goal not(hd(S:Stream)) = not(hd(S:Stream)) proved by reduction.

Goal tl(f(not(S:Stream))) = tl(not(f(S:Stream))) reduced to

tl(f(not(S:Stream))) = not(tl(f(S:Stream)))

Hypo tl(f(not(S:Stream))) = not(tl(f(S:Stream))) added and coexpanded to

1. hd(tl(f(not(S:Stream)))) = hd(not(tl(f(S:Stream))))

2. tl(tl(f(not(S:Stream)))) = tl(not(tl(f(S:Stream))))

Goal hd(tl(f(not(S:Stream)))) = hd(not(tl(f(S:Stream)))) reduced to

hd(S:Stream) = hd(S:Stream)

Goal hd(S:Stream) = hd(S:Stream) proved by reduction.

Goal tl(tl(f(not(S:Stream)))) = tl(not(tl(f(S:Stream)))) reduced to

not(f(tl(S:Stream))) = not(f(tl(S:Stream)))

Goal not(f(tl(S:Stream))) = not(f(tl(S:Stream))) proved by reduction.

Proof succeeded.

==

---> STREAM |||- { f(S) = zip(S, not(S)), f(morse) = morse }

rewrites: 365 in 6094666579ms cpu (9ms real) (0 rewrites/second)

Goal added: f(S:Stream) = zip(S:Stream,not(S:Stream))

rewrites: 261 in 6094666579ms cpu (7ms real) (0 rewrites/second)

19

Goal added: f(morse) = morse

rewrites: 6620 in 6094666579ms cpu (350ms real) (0 rewrites/second)

Hypo f(morse) = morse added and coexpanded to

1. hd(f(morse)) = hd(morse)

2. tl(f(morse)) = tl(morse)

Hypo f(S:Stream) = zip(S:Stream,not(S:Stream)) added and coexpanded to

1. hd(f(S:Stream)) = hd(zip(S:Stream,not(S:Stream)))

2. tl(f(S:Stream)) = tl(zip(S:Stream,not(S:Stream)))

Goal hd(f(morse)) = hd(morse) reduced to

0 = 0

Goal 0 = 0 proved by reduction.

Hypo tl(f(morse)) = tl(morse) added and coexpanded to

1. hd(tl(f(morse))) = hd(tl(morse))

2. tl(tl(f(morse))) = tl(tl(morse))

Goal hd(f(S:Stream)) = hd(zip(S:Stream,not(S:Stream))) reduced to

hd(S:Stream) = hd(S:Stream)

Goal hd(S:Stream) = hd(S:Stream) proved by reduction.

Goal tl(f(S:Stream)) = tl(zip(S:Stream,not(S:Stream))) reduced to

tl(f(S:Stream)) = zip(not(S:Stream),tl(S:Stream))

Hypo tl(f(S:Stream)) = zip(not(S:Stream),tl(S:Stream)) added and coexpanded to

1. hd(tl(f(S:Stream))) = hd(zip(not(S:Stream),tl(S:Stream)))

2. tl(tl(f(S:Stream))) = tl(zip(not(S:Stream),tl(S:Stream)))

Goal hd(tl(f(morse))) = hd(tl(morse)) reduced to

1 = 1

Goal 1 = 1 proved by reduction.

Goal tl(tl(f(morse))) = tl(tl(morse)) reduced to

f(tl(morse)) = f(tl(morse))

Goal f(tl(morse)) = f(tl(morse)) proved by reduction.

Goal hd(tl(f(S:Stream))) = hd(zip(not(S:Stream),tl(S:Stream))) reduced to

not(hd(S:Stream)) = not(hd(S:Stream))

Goal not(hd(S:Stream)) = not(hd(S:Stream)) proved by reduction.

Goal tl(tl(f(S:Stream))) = tl(zip(not(S:Stream),tl(S:Stream))) reduced to

f(tl(S:Stream)) = f(tl(S:Stream))

Goal f(tl(S:Stream)) = f(tl(S:Stream)) proved by reduction.

Proof succeeded.

==

---> STREAM |||- f(morse) = morse does not terminate

rewrites: 196 in 6094666579ms cpu (23ms real) (0 rewrites/second)

All hypotheses and lemmas gathered during previous proofs have been removed.

rewrites: 42 in 6094666579ms cpu (8ms real) (0 rewrites/second)

20

The maximum number of proving steps was set to 100 .

rewrites: 265 in 6094666579ms cpu (9ms real) (0 rewrites/second)

Goal added: f(morse) = morse

rewrites: 14137 in 6094666579ms cpu (734ms real) (0 rewrites/second)

Hypo f(morse) = morse added and coexpanded to

1. hd(f(morse)) = hd(morse)

2. tl(f(morse)) = tl(morse)

Goal hd(f(morse)) = hd(morse) reduced to

0 = 0

Goal 0 = 0 proved by reduction.

Hypo tl(f(morse)) = tl(morse) added and coexpanded to

1. hd(tl(f(morse))) = hd(tl(morse))

2. tl(tl(f(morse))) = tl(tl(morse))

Goal hd(tl(f(morse))) = hd(tl(morse)) reduced to

1 = 1

Goal 1 = 1 proved by reduction.

Goal tl(tl(f(morse))) = tl(tl(morse)) reduced to

f(tl(morse)) = zip(tl(morse),not(tl(morse)))

Hypo f(tl(morse)) = zip(tl(morse),not(tl(morse))) added and coexpanded to

1. hd(f(tl(morse))) = hd(zip(tl(morse),not(tl(morse))))

2. tl(f(tl(morse))) = tl(zip(tl(morse),not(tl(morse))))

Goal hd(f(tl(morse))) = hd(zip(tl(morse),not(tl(morse)))) reduced to

1 = 1

Goal 1 = 1 proved by reduction.

Goal tl(f(tl(morse))) = tl(zip(tl(morse),not(tl(morse)))) reduced to

tl(f(tl(morse))) = zip(not(tl(morse)),zip(tl(morse),not(tl(morse))))

Hypo tl(f(tl(morse))) = zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))) added

and coexpanded to

1. hd(tl(f(tl(morse)))) =

hd(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))))

2. tl(tl(f(tl(morse)))) =

tl(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))))

Goal hd(tl(f(tl(morse)))) = hd(zip(not(tl(morse)),zip(tl(morse),not(tl(

morse))))) reduced to

0 = 0

Goal 0 = 0 proved by reduction.

Goal tl(tl(f(tl(morse)))) =

tl(zip(not(tl(morse)),zip(tl(morse),not(tl(morse))))) reduced to

f(zip(tl(morse),not(tl(morse)))) =

zip(zip(tl(morse),not(tl(morse))),not(zip(tl(morse),not(tl(morse)))))

21

Hypo f(zip(tl(morse),not(tl(morse)))) =

zip(zip(tl(morse),not(tl(morse))),not(zip(tl(morse),not(tl(morse)))))

added and coexpanded to

1. hd(f(zip(tl(morse),not(tl(morse))))) =

hd(zip(zip(tl(morse),not(tl(morse))),not(zip(tl(morse),not(tl(morse))))))

2. tl(f(zip(tl(morse),not(tl(morse))))) =

tl(zip(zip(tl(morse),not(tl(morse))),not(zip(tl(morse),not(tl(morse))))))

Goal hd(f(zip(tl(morse),not(tl(morse))))) = hd(zip(zip(tl(morse),not(tl(

morse))),not(zip(tl(morse),not(tl(morse)))))) reduced to

1 = 1

Goal 1 = 1 proved by reduction.

Goal tl(f(zip(tl(morse),not(tl(morse))))) =

tl(zip(zip(tl(morse),not(tl(morse))),not(zip(tl(morse),not(tl(morse))))))

reduced to

tl(f(zip(tl(morse),not(tl(morse))))) =

zip(not(zip(tl(morse),not(tl(morse)))),

zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))))

Hypo tl(f(zip(tl(morse),not(tl(morse))))) = zip(not(zip(tl(morse),

not(tl(morse)))),zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))))

added and coexpanded to

1. hd(tl(f(zip(tl(morse),not(tl(morse)))))) =

hd(zip(not(zip(tl(morse),not(tl(morse)))),zip(not(tl(morse)),

zip(tl(morse),not(tl(morse))))))

2. tl(tl(f(zip(tl(morse),not(tl(morse)))))) =

tl(zip(not(zip(tl(morse),not(tl(morse)))),

zip(not(tl(morse)),zip(tl(morse),not(tl(morse))))))

Goal hd(tl(f(zip(tl(morse),not(tl(morse)))))) =

hd(zip(not(zip(tl(morse),not(tl(morse)))),

zip(not(tl(morse)),zip(tl(morse),not(tl(morse))))))

reduced to

0 = 0

Goal 0 = 0 proved by reduction.

Goal tl(tl(f(zip(tl(morse),not(tl(morse)))))) =

tl(zip(not(zip(tl(morse),not(tl(morse)))),

zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))))) reduced to

f(zip(not(tl(morse)),zip(tl(morse),not(tl(morse))))) =

zip(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))),

not(zip(not(tl(morse)),zip(tl(morse),not(tl(morse))))))

Hypo f(zip(not(tl(morse)),zip(tl(morse),not(tl(morse))))) =

zip(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))),

not(zip(not(tl(morse)),zip(tl(morse),not(tl(morse))))))

added and coexpanded to

1. hd(f(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))))) =

hd(zip(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))),

not(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))))))

2. tl(f(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))))) =

tl(zip(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))),

not(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))))))

22

Goal hd(f(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))))) =

hd(zip(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))),

not(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))))))

reduced to

0 = 0

Goal 0 = 0 proved by reduction.

Goal tl(f(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))))) =

tl(zip(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))),

not(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))))))

reduced to

tl(f(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))))) =

zip(not(zip(not(tl(morse)),zip(tl(morse),not(tl(morse))))),

zip(zip(tl(morse),not(tl(morse))),not(zip(tl(morse),not(tl(morse))))))

Hypo tl(f(zip(not(tl(morse)),zip(tl(morse),not(tl(morse)))))) =

zip(not(zip(not(tl(morse)),zip(tl(morse),not(tl(morse))))),

zip(zip(tl(morse),not(tl(morse))),not(zip(tl(morse),not(tl(morse))))))

added and coexpanded to

1. hd(tl(f(zip(not(tl(morse)),zip(tl(morse),not(tl(morse))))))) =

hd(zip(not(zip(not(tl(morse)),zip(tl(morse),not(tl(morse))))),

zip(zip(tl(morse),not(tl(morse))),not(zip(tl(morse),not(tl(morse)))))))

2. tl(tl(f(zip(not(tl(morse)),zip(tl(morse),not(tl(morse))))))) =

tl(zip(not(zip(not(tl(morse)),zip(tl(morse),not(tl(morse))))),

zip(zip(tl(morse),not(tl(morse))),not(zip(tl(morse),not(tl(morse)))))))

Goal hd(tl(f(zip(not(tl(morse)),zip(tl(morse),not(tl(morse))))))) =

hd(zip(not(zip(not(tl(morse)),zip(tl(morse),not(tl(morse))))),

zip(zip(tl(morse),not(tl(morse))),not(zip(tl(morse),not(tl(morse)))))))

reduced to

1 = 1

Goal 1 = 1 proved by reduction.

Stopped: the number of prover steps was exceeded.

Maude>

23

