Skip to main content

Approximating the Behaviours of Physarum polycephalum for the Construction and Minimisation of Synthetic Transport Networks

  • Conference paper
Book cover Unconventional Computation (UC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5715))

Included in the following conference series:

Abstract

The single celled organism Physarum polycephalum efficiently constructs and minimises dynamical nutrient transport networks resembling proximity graphs. We present a model multi-agent population which collectively approximates the network behaviours of Physarum. We demonstrate spontaneous transport network formation and evolution and show that the collective population also exhibits quasi-physical emergent properties, allowing the collective population to be considered as a virtual computing material - a synthetic plasmodium. This material is used as an unconventional method to approximate spatially represented geometry problems. We demonstrate three different methods for the construction, evolution and minimisation of Physarum-like transport networks which approximate Steiner trees, relative neighbourhood graphs, convex hulls and concave hulls. The results span the Toussaint hierarchy of proximity graphs, suggesting that the foraging and minimising behaviours of Physarum reflect interplay between maximising foraging area and minimising transport distance. The properties and behaviours of the synthetic virtual plasmodium may be useful in future physical instances of unconventional computing devices, and may also provide clues to the generation of emergent computation behaviours by Physarum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Takagi, S., Ueda, T.: Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold physarum polycephalum. Physica D: Nonlinear Phenomena 237, 180–188 (2007)

    Google Scholar 

  2. Takamatsu, A.: Spontaneous switching among multiple spatio-temporal patterns in three-oscillator systems constructed with oscillatory cells of true slime mold. Physica D: Nonlinear Phenomena 223, 180–188 (2006)

    Article  Google Scholar 

  3. Adamatzky, A., De Lacy Costello, B., Shirakawa, T.: Universal computation with limited resources: Belousov-zhabotinsky and physarum computers. International Journal of Bifurcation and Chaos 18, 2373–2389 (2008)

    Article  MathSciNet  Google Scholar 

  4. Takamatsu, A., Takaba, E., Takizawa, G.: Environment-dependent morphology in plasmodium of true slime mold physarum polycephalum and a network growth model. Journal of Theoretical Biology 256, 29–44 (2009)

    Article  MathSciNet  Google Scholar 

  5. Nakagaki, T., Kobayashi, R., Nishiura, Y., Ueda, T.: Obtaining multiple separate food sources: behavioural intelligence in the physarum plasmodium. Proceedings of the Royal Society B: Biological Sciences 271, 2305–2310 (2004)

    Article  Google Scholar 

  6. Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Nature 407, 470 (2000)

    Article  Google Scholar 

  7. Nakagaki, T., Yamada, H., Hara, M.: Smart network solutions in an amoeboid organism. Biophysical Chemistry 107, 1–5 (2004)

    Article  Google Scholar 

  8. Shirakawa, T., Adamatzky, A., Gunji, Y., Miyake, Y.: On simultaneous construction of voronoi diagram and delaunay triangulation by physarum polycephalum. International Journal of Bifurcation and Chaos (2008) (in press)

    Google Scholar 

  9. Adamatzky, A.: Growing spanning trees in plasmodium machines. Kybernetes 37, 258–264 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aono, M., Hara, M.: Amoeba-based nonequilibrium neurocomputer utilizing fluctuations and instability. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618, pp. 41–54. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Tsuda, S., Aono, M., Gunji, Y.: Robust and emergent physarum logical-computing. BioSystems 73, 45–55 (2004)

    Article  Google Scholar 

  12. Adamatzky, A.: Physarum machine: Implementation of a kolmogorov-uspensky machine on a biological substrate. Parallel Processing Letters 17, 455–467 (2007)

    Article  MathSciNet  Google Scholar 

  13. Tsuda, S., Zauner, K., Gunji, Y.: Robot control with biological cells. BioSystems 87, 215–223 (2007)

    Article  Google Scholar 

  14. Ishiguro, A., Shimizu, M., Kawakatsu, T.: A modular robot that exhibits amoebic locomotion. Robotics and Autonomous Systems 54, 641–650 (2006)

    Article  Google Scholar 

  15. Shirakawa, T., Gunji, Y.: Computation of voronoi diagram and collision-free path using the plasmodium of physarum polycephalum. International journal of Unconventional Computing (2008) (in press)

    Google Scholar 

  16. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern Recognition 12, 261–268 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proceedings of the IEEE 80:99 80, 1502–1517 (1992)

    Article  Google Scholar 

  18. Adamatzky, A.: Developing proximity graphs by physarum polycephalum: Does the plasmodium follow toussaint hierarchy? Parallel Processing Letters (2008) (in press)

    Google Scholar 

  19. Tero, A., Kobayashi, R., Nakagaki, T.: A mathematical model for adaptive transport network in path finding by true slime mold. Journal of Theoretical Biology 244, 553–564 (2007)

    Article  MathSciNet  Google Scholar 

  20. Gunji, Y.P., Shirakawa, T., Niizato, T., Haruna, T.: Minimal model of a cell connecting amoebic motion and adaptive transport networks. Journal of Theoretical Biology 253, 659–667 (2008)

    Article  Google Scholar 

  21. Hickey, D.S., Noriega, L.A.: Relationship between structure and information processing in physarum polycephalum. International Journal of Modelling, Identification and Control 4, 348–356 (2008)

    Article  Google Scholar 

  22. Adamatzky, A.: Neural algorithm for constructing minimum spanning tree of a finite planar set. Neural Networks World 6, 335–339 (1991)

    Google Scholar 

  23. Kobayashi, R., Tero, A., Nakagaki, T.: Mathematical model for rhythmic protoplasmic movement in the true slime mold. Journal of Mathematical Biology 53, 273–286 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nakagaki, T., Yamada, H., Ito, M.: Reaction diffusion advection model for pattern formation of rhythmic contraction in a giant amoeboid cell of the physarum plasmodium. Journal of Theoretical Biology 197, 497–506 (1999)

    Article  Google Scholar 

  25. Jones, J.: The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. International journal of Unconventional Computing (2008) (in press)

    Google Scholar 

  26. Jones, J.: An emergent pattern formation approach to dynamic spatial problems via quantitative front propagation and particle chemotaxis. International Journal of Unconventional Computing 4, 1–34 (2008)

    Google Scholar 

  27. Jones, J.: Passive vs active approaches in particle approximations of reaction-diffusion computing. Int. Journal of Nanotechnology and Molecular Computation 1, 37–63 (2009)

    Article  Google Scholar 

  28. Hales, T.: The honeycomb conjecture. Discrete and Computational Geometry 25, 1–22 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lobovkina, T., Dommersnes, P.G., Tiourine, S., Joanny, J.F., Orwar, O.: Shape optimization in lipid nanotube networks. The European Physical Journal E-Soft Matter 26, 295–300 (2008)

    Article  Google Scholar 

  30. Galton, A., Duckham, M.: What is the region occupied by a set of points? In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2006. LNCS, vol. 4197, pp. 81–98. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  31. Duckham, M., Kulik, L., Worboys, M., Galton, A.: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recognition 41, 3224–3236 (2008)

    Article  MATH  Google Scholar 

  32. Adamatzky, A., Jones, J.: Towards physarum robots: computing and manipulating on water surface. Journal of Bionic Engineering 5, 348–357 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jones, J. (2009). Approximating the Behaviours of Physarum polycephalum for the Construction and Minimisation of Synthetic Transport Networks. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds) Unconventional Computation. UC 2009. Lecture Notes in Computer Science, vol 5715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03745-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03745-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03744-3

  • Online ISBN: 978-3-642-03745-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics