Skip to main content

Rapid Inference of Object Rigidity and Reflectance Using Optic Flow

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

Abstract

Rigidity and reflectance are key object properties, important in their own rights, and they are key properties that stratify motion reconstruction algorithms. However, the inference of rigidity and reflectance are both difficult without additional information about the object’s shape, the environment, or lighting. For humans, relative motions of object and observer provides rich information about object shape, rigidity, and reflectivity. We show that it is possible to detect rigid object motion for both specular and diffuse reflective surfaces using only optic flow, and that flow can distinguish specular and diffuse motion for rigid objects. Unlike nonrigid objects, optic flow fields for rigid moving surfaces are constrained by a global transformation, which can be detected using an optic flow matching procedure across time. In addition, using a Procrustes analysis of structure from motion reconstructed 3D points, we show how to classify specular from diffuse surfaces.

This work has been supported in part by the European Commission Seventh Framework Programme Marie Curie International Reintegration Grant IRG-239494.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Zisserman, A., Giblin, P., Blake, A.: The information available to a moving observer from specularities. IVC 7(1), 38–42

    Google Scholar 

  3. Roth, S., Black, M.J.: Specular flow and the recovery of surface structure. In: CVPR 2006: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1869–1876 (2006)

    Google Scholar 

  4. Adato, Y., Vasilyev, Y., Ben Shahar, O., Zickler, T.: Toward a theory of shape from specular flow. In: ICCV 2007, pp. 1–8 (2007)

    Google Scholar 

  5. Vasilyev, Y., Adato, Y., Zickler, T., Ben Shahar, O.: Dense specular shape from multiple specular flows. In: CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  6. Healey, G., Binford, T.: Local shape from specularity. CVGIP 42(1), 62–86 (1988)

    Google Scholar 

  7. Bhat, D., Nayar, S.: Binocular stereo in the presence of specular reflection. In: ARPA 1994, pp. 1305–1315 (1994)

    Google Scholar 

  8. Saito, M., Kashiwagi, H., Sato, Y., Ikeuchi, K.: Measurement of surface orientations of transparent objects using polarization in highlight. In: Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p. 1381 (1999)

    Google Scholar 

  9. Lin, S., Li, Y., Kang, S.B., Tong, X., Shum, H.-Y.: Diffuse-specular separation and depth recovery from image sequences. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 210–224. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Lellmann, J., Balzer, J., Rieder, A., Beyerer, J.: Shape from specular reflection and optical flow. International Journal of Computer Vision 80(2), 226–241 (2008)

    Article  Google Scholar 

  11. Chow, S.K., Chan, K.L.: Removal of specular reflection component using multi-view images and 3d object model. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT 2009. LNCS, vol. 5414, pp. 999–1009. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Oren, M., Nayar, S.: A theory of specular surface geometry. International Journal of Computer Vision 24(2), 105–124 (1997)

    Article  Google Scholar 

  13. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  14. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. International Journal of Computer Vision 9(2), 137–154 (1992)

    Article  Google Scholar 

  15. Gower, J., Dijksterhuis, G.: Procrustes Problems. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  16. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading (1992)

    Google Scholar 

  17. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. International Journal of Computer Vision 61(3), 211–231 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zang, D., Doerschner, K., Schrater, P.R. (2009). Rapid Inference of Object Rigidity and Reflectance Using Optic Flow. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_107

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_107

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics