
A Two-Level Structure for Compressing Aligned

Bitexts⋆

Joaquı́n Adiego,† Nieves R. Brisaboa,‡ Miguel A. Martı́nez-Prieto,†

and Felipe Sánchez-Martı́nez♮

†Dept. de Informática, Universidad de Valladolid, Spain.

{jadiego|migumar2}@infor.uva.es
‡Database Lab, Universidade da Coruña, Spain.

brisaboa@udc.es
♮Dept. de Llenguatges i Sistemes Informàtics, Universitat d’Alacant, Spain.

fsanchez@dlsi.ua.es

Abstract. A bitext, or bilingual parallel corpus, consists of two texts, each one

in a different language, that are mutual translations. Bitexts are very useful in

linguistic engineering because they are used as source of knowledge for different

purposes. In this paper we propose a strategy to efficiently compress and use

bitexts, saving, not only space, but also processing time when exploiting them.

Our strategy is based on a two-level structure for the vocabularies, and on the use

of biwords, a pair of associated words, one from each language, as basic symbols

to be encoded with an ETDC [2] compressor. The resulting compressed bitext

needs around 20% of the space and allows more efficient implementations of

the different types of searches and operations that linguistic engineerings need to

perform on them. In this paper we discuss and provide results for compression,

decompression, different types of searches, and bilingual snippets extraction.

1 Introduction

The amount of multilingual texts is growing very fast due to multilingual digital li-

braries and legal requirements in countries and supra-national entities with more than

one official language. Two texts that are mutual translations are usually referred to as

a bilingual parallel corpus or, in short, as a bitext. The growing availability of bitexts

has enabled the development on many natural language processing applications that use

bitexts as source of knowledge.

Usually, bitexts get aligned before exploiting them; a standard text alignment pro-

cess allows to establish word correspondences between the two texts of the bitext.

Aligned bitexts can be used in applications involving both languages (machine trans-

lation, cross-language information retrieval, extraction of bilingual lexicons, etc) or in

monolingual applications (syntactic parsing, word sense induction, word sense disam-

biguation, etc.) that use the bitexts as a bridge to project the linguistic knowledge avail-

able in one language to another one [11].

⋆ Funded by Spanish projects TIN2006-15071-C03-01, TIN2006-15071-C03-02 and TIN2006-

15071-C03-03. The work of Miguel A. Martı́nez-Prieto is supported by a fellowship granted

by the Regional Government of Castilla y León and the European Social Fund.

Fig. 1. Spanish–English word-aligned sentence.

We present a strategy to compress bitexts that we called Two-level Compressor for

Aligned Bitexts (2LCAB). Our strategy is designed to facilitate the use of the most in-

teresting features of bitexts, because, in our compressed representation, obtaining the

words in one language aligned with a word in the other language is simply done by

using a vocabulary, instead of processing the whole aligned bitext. In addition, 2LCAB

obtains compression ratios around 20% and allows a more efficient processing of the

aligned bitexts that the uncompressed form.

2 Word-Aligned Bitexts

A bitext is a text written in two languages. In words of Melamed, “bitexts are one of

the richest sources of linguistic knowledge because the translation of a text into another

language can be viewed as a detailed annotation of what that text means” [10].

A bitext in which the translation relationship among the words in one text (left) and

the words in the other text (right) has been established is usually referred to as a word-

aligned bitext; the task of establishing such relationships is known as word alignment.

The word alignment task [15] connects words in the left sentence L with words in

the right sentenceR. The result is a bigraph for the words in L and the words in R with

an arc between word l ∈ L and word r ∈ R if and only if they are mutual translations.

Figure 1 shows an example of a Spanish–English word-aligned sentence.

For this research the bigraph representing a word-aligned bitext is stored as a se-

quence of pairs of two words, each one from a different language, that are mutual trans-

lations in the bitext. Therefore, for this research the word-aligned bitext of the example

in Figure 1 is represented as the following sequence of pairs:

(la,the) (,green) (casa,house) (verde,) (donde,where) (te,) (,I)

(vı́,saw) (,you) (se,) (ha,has) (derrumbado,collapsed)

Notice that some words are associated to an “empty word”, e.g. (te,). This is

either because that word is not aligned with another word in the other text, or be-

cause its alignment has been discarded due to a crossing, e.g. (,green). In this work

we have used one-to-one word alignments obtained with the help of the open-source

GIZA++ [15] toolkit.1

3 Compression of Natural-Language Texts

The key to the success of natural language text compression is the use of a word-based

model, so that the text is regarded as a sequence of words. This poses the overhead

1 http://code.google.com/p/giza-pp/

of managing a large source alphabet, but in large text collections the vocabulary size

is relatively insignificant because of Heaps Law [5]. In order to be searchable, semi-

static models have been used in compressed text databases, to ensure that the codeword

assigned to a word does not change across the text. Thus, a pattern can be compressed

and directly searched for in the compressed text without decompressing it. This is also

essential to allow local decompression of text passages in order to present them to the

final users.

End-TaggedDense Code (ETDC) [2] is aword-based compression techniquewhere

the first bit of each byte is reserved to flag whether the byte is the last one of its code-

word (stopper) or not (continuer); this flag is enough to ensure that the code is a prefix

code regardless of the content of the other 7. The flag bit in ETDC permits Boyer-

Moore-type searching [1] and random access. Simple encode and decode procedures

can be used to obtain the codeword Ci corresponding to a position i in the sorted vo-

cabulary (Ci = encode(i)) and, symmetrically, to obtain the position i corresponding
to a specific codeword Ci (i = decode(Ci)).

3.1 Compression of Bitexts

Compression of bitexts is a subfield of natural language text compression. In spite of its

relevance, only few previous works have been found in the literature. In [14] text com-

pression methods are considered for its extension to bitext compression considering

exact correspondences between two words, and synonymy relationships between the

words in both texts (as given by a thesaurus). These parallel predictions are then com-

bined with PPM [3] ones. The weighting of both models are carefully tuned improving

PPM compression ratios on separate texts.

Text alignment is proposed in [4] as a way to enable multilingual text compression.

The algorithm stores one of the texts (L) as it is, and the other one (R) as a collection

of pointers to the translation of the substring in the L text. These relationships are

determined by means of an alignment algorithm that uses some additional linguistic

resources, such as a lemmata dictionary in L and a bilingual glossary, among others.

4 Two-Level Compressor for Aligned Bitexts (2LCAB)

Our strategy, called Two-Level Compressor for Aligned Bitexts (2LCAB), is based on

two main ideas: (i) the use of biwords [9], pairs of aligned words, as the basis of the

model, that is, as the symbols to compress, and (ii) the use of a two level structure for

the representation of the vocabularies, where the vocabulary of biwords, at the second

level, is represented in compressed form using the vocabularies of the first level.

Figure 2 shows a conceptual description of this scheme. At the first level two vo-

cabularies are stored, one for each language. Each of them stores the words of the

corresponding language sorted by the number of biwords they take part in. The “empty

word” is also represented in both dictionaries. On the second level, each pair of words

(biword) is represented as the concatenation of the codewords assigned to each word

in the pair using ETDC. That is, each biword is used as a single symbol in the bi-

word vocabulary. In this second-level vocabulary the ranking of biwords is performed

in accordance with their frequencies in the bitext.

1
st

 le
ve

l v
o

ca
b

u
la

ri
e

s

Rank Word Codeword

 0
 ·

 ·

 ·

 i la ci
 ·

 ·

 ·

 j casa cj
 ·

 ·

 ·

 n1

Left Vocabulary

Rank Word Codeword

 0
 ·

 ·

 ·

 k the ck
 ·

 ·

 ·

 l house cl
 ·

 ·

 ·

 n2

Right Vocabulary

2
n

d
 le

ve
l d

ic
ti

o
n

a
ry

Rank Biword Final

 0
 ·

 ·

 ·

 p cick cp
 ·

 ·

 ·

 q cjcl cq

 ·

 ·

 ·

 m

Biword Vocabulary

Codewords to

Represent

Biwords

Extracting Words

of each Language

Aligned Bitext

...

(la, the)

(casa, house)

...

Extracting and Sorting Biwords

Bitext

Encoding

Compressed

Bitext

... cp cq ...

In all cases ci f encode (i), where encode is the function de!ned by ETDC to encode a word in a speci!c rank of the vocabulary.

Codeword

Fig. 2. Conceptual description of the 2LCAB strategy.

Four strings are the output of the compression process. Lv and Rv contain sorted

left and right vocabularies. BWv stores the biword vocabulary where biwords are repre-

sented in compressed form as explained above. These three strings constitute the header

of the compressed bitext. The fourth string contains the compressed bitext, where each

pair of words is represented by the codeword corresponding to the ETDC codeword

assigned to its biword from its position in the second level vocabulary.

4.1 Compression and Decompression

Our strategy is based on a semi-static approach; therefore, it is necessary to make two

passes over the (aligned) bitext. In the first one, the aligned bitext is pair-to-pair parsed

and, in addition to the three vocabularies aforementioned, a hash table of pairs (biword,

codeword) is built. In the second pass, the compression process looks for each biword

in the hash table and outputs its corresponding codeword. The compression process is

completed in O(n) time overall, where n is the number of biwords in the bitext.

The decompression process begins by loading the strings Lv and Rv to get the left

and right vocabularies. These strings are stored in vectors Vl and Vr, respectively. Then,

the string BWv is read and Vl and Vr are used to rebuilt the biword vocabulary, which is

stored in vector Vb, where each biword is explicitly represented by its pair of words so

as to improve the efficiency of the decompression process. Building Vb takesO(b) time,

where b is the number of entries in the BWv vocabulary. Then, the compressed bitext

is processed by decoding each codeword. Given a codeword Ci, the simple decoding

function of the ETDC is used to obtain the corresponding position i = decode(Ci) in
the biword vocabulary (Vb[i]). The decompression process is completed in O(T) time,

where T is the number of biwords in the bitext.

4.2 Processing the Compressed Bitext

Our representation allows to process the bitext without decompressing it. In fact, only

decompressing small snippets is necessary for most applications, and only when they

need to show the snippet to the user. Semantic relationships between languages in the

bitext suggest specific search possibilities such as: (i) to find all the occurrences of a

word in the bitext, that is, all the occurrences of biwords that include it; and (ii) to find

all the possible translations of a word, that is, all the biwords for a specific word.

To process the compressed bitext we start loading and storing the strings Lv and

Rv into Vl and Vr vectors, respectively. Also, two hash tables are built from Lv and

Rv. Then, the string BWv is read and stored in main memory. To facilitate the searches,

a bitmap with a bit for each byte in BWv is built. In this bitmap 0-bits correspond to

continuer bytes in BWv whereas 1-bits correspond to stopper bytes.

Searching the Occurrences of a Word in the Bitext. This operation is useful to re-

trieve all the contexts (snippets) in which each biword appears, that is, to find all the oc-

currences of a specific biword and decode its snippets. Given a word, and the language

in which it is represented, we first find it in the corresponding first-level vocabulary (left

or right hash table depending of the language supplied); this process takes O(1) time.

Once the codeword is retrieved it is searched in BWv to find those biwords in which the

word appears. This is carried out using any well-known exact pattern matching algo-

rithm (such as KMP [7] or BM [1]) slightly modified to avoid possible false matchings

due to the fact that ETDC codes are not suffix codes, and, therefore, a codeword can

be a suffix of another one. This overhead in searches is negligible because checking the

previous byte is only necessary when a matching occurs, which is infrequent [2].

To determine the language of a codeword found in the biwords vocabulary at posi-

tion p a rank1(p) operation on the bitmap is done. If an even value is obtained, the word

belongs to the left vocabulary, whereas an odd value means that the word belongs to the

right vocabulary. If the foundmatching corresponds to the adequate language, the code-

word of the biword is computed as C = encode(rank1(p)/2). Then, that codeword is

added to the trie of searched codewords that will be used by the multiple-pattern match-

ing algorithm over the compressed bitext. The search of all the required biwords takes

O(b) time, where b is the size of BWv because the rank operation, to check the lan-

guage correspondence, only takes O(1) [12]. At the end of this process the codewords

in the trie will encode all the biwords where the searched word appears. We choose Set

Horspool [6,13], as search algorithm because it is an efficient choice for very small sets

of searched patterns on large alphabets. Set Horspool outputs all the occurrences of the

required biwords in the compressed text. This search takes O(m) time, where m is the

size in bytes of the compressed text.

To find the context where each specific translation (biword) of a word is found,

it is only necessary to decompress a snippet around each occurrence. Doing this is

straightforward by using the ETDC decode procedure.

Searching All the Possible Translations of a Word. This operation allows to find

all the correspondences of a word in a language with words in the other language.

One of the main advantages of our approach is that to find all the possible translations

of a word in the bitext it is not necessary to read the bitext, because all the biwords

(possible translations) are represented in the vocabulary of biwords. Therefore, it is

only necessary to search for the codeword of that specific word in the BWv string using

the strategy already explained.

5 Experimental Evaluation

All the experiments were performed on a Debian 4 Etch operating system, running on

an AMD Athlon Dual Core processor at 2 GHz and with 2 GB of RAM. We used g++

4.1.2 compiler with full optimization. We used heterogeneous corpora with different

languages pairs to evaluate the influence of the similarity between the two languages

of the bitext in the compression ratio. Furthermore, we used bitexts of different size for

each language pair. More precisely, we used bitexts of around 1, 10, and 100 MB where

larger bitexts contained the smaller ones (for Spanish–Galician we only used bitexts of

1, and 10 MB). The following corpora were used:

– a Spanish–Catalan (es-ca) bitext from El Periódico de Catalunya,2 a daily news-

paper published both in Catalan and Spanish;

– a Spanish–Galician (es-gl) bitext from Diario Oficial de Galicia,3 the bulletin of

the Government of Galicia, published both in Galician and Spanish; and

– bitexts for German–English (de-en), Spanish–English (es-en) and French–En-

glish (fr-en) from the European Parliament Proceedings Parallel Corpus [8].

To evaluate the success of 2LCAB in obtaining a competitive compression ratio, we

compare it with some well-known state-of-the-art compressors such as GZIP, BZIP2

and PPMDI [16], this last one as a representative PPM [3]. Moreover, to evaluate the

effect of our strategy of using a biword-oriented model, we also implemented ETDC

compression over the bitext using two different word-oriented models. In one case (1V)

we just used one vocabulary to store the words of both languages. In the other case (2V)

we used two different vocabularies, one for each language.

Table 1 summarizes some data about the bitexts and the compression ratios obtained

by the different compressors. Notice that 2LCAB achieves very good compression ratios

(some times the best one) when the size of the bitext is medium or large. However,

GZIP, BZIP2, and PPM, not being semi-static, provide better results for small files.

2LCAB outperforms GZIP for 10 MB bitexts (except for es-gl which is a special case

because Spanish and Galician are closely-related languages) and only PPM, as would

be expected, can compete with 2LCAB for large bitexts. Nevertheless, GZIP, BZIP2, and

PPM, as dynamic compressors, do not permit random access, nor direct searching.

We do not compare our compressor against those described in Section 3.1 because

we have not found any available implementation. However, Conley and Klein [4] com-

pare their TRANS approach with GZIP and BZIP2 and they conclude that TRANS is

slightly better than BZIP2 (an improvement of 1% is reported). In any case, the authors

do not consider the size of the auxiliary files that TRANS requires to decompress the

bitext; thus, TRANS compression ratio would be worse than that of BZIP2.

Table 2 shows compression and decompression times (in seconds) for two bitext

collections: es-ca and es-en. Similar times were obtained for the remaining bitexts.

The times reported correspond to the average time obtained for 5 different executions.

2LCAB is always the fastest in compression, around 3-6 times faster than BZIP2 and

2 http://www.elperiodico.com
3 http://www.xunta.es/diario-oficial

BITEXT
SIZE Words

Biwords GZIP BZIP2 PPM 1V 2V 2LCAB
(MB) Left Right

es-gl
1.09 6488 6543 7219 17.09% 11.21% 8.72% 32.09% 35.30% 25.35%

10.55 24983 25284 29855 16.91% 10.58% 8.68% 28.67% 29.82% 18.53%

es-ca

1.18 15594 14939 19336 31.48% 23.09% 20.75% 47.89% 50.02% 42.78%

11.53 54115 52256 78825 31.13% 22.18% 20.33% 36.68% 37.21% 26.72%

105.36 161132 159216 292994 30.79% 21.95% 20.17% 32.75% 32.51% 19.97%

es-en

1.08 9169 6696 21301 31.83% 22.33% 20.07% 43.47% 42.85% 37.30%

10.91 30486 19465 93544 31.67% 21.73% 19.98% 35.61% 34.54% 25.99%

110.60 81868 51353 347866 31.26% 21.22% 19.48% 32.36% 31.19% 20.86%

fr-en

1.08 8211 6493 20491 31.64% 21.99% 19.78% 42.30% 41.97% 36.33%

10.74 25536 19045 86353 31.43% 21.42% 19.74% 35.10% 34.11% 25.55%

109.45 65877 50418 322618 31.26% 21.22% 19.52% 32.40% 31.21% 21.04%

de-en

1.08 9957 6514 21159 32.46% 22.76% 20.66% 44.69% 44.09% 39.16%

10.94 39287 19305 90815 32.27% 22.13% 20.47% 36.38% 35.31% 27.44%

110.86 139012 51018 357753 32.22% 22.05% 20.37% 32.75% 31.57% 22.01%

Table 1. Compression ratios.

es-ca es-en

SIZE Compression time (secs.) Decompression time (secs.) Compression time (secs.) Decompression time (secs.)

(MB) GZIP BZIP2 PPM 2LCAB GZIP BZIP2 PPM 2LCAB GZIP BZIP2 PPM 2LCAB GZIP BZIP2 PPM 2LCAB

1 0.24 0.41 0.51 0.35 0.04 0.14 0.55 0.05 0.23 0.38 0.47 0.25 0.03 0.13 0.52 0.04

10 1.32 4.16 4.61 1.10 0.16 1.40 5.15 0.33 1.36 4.10 4.70 1.01 0.14 1.35 5.16 0.29

100 10.19 38.32 41.86 6.88 1.38 12.47 45.34 1.29 11.56 41.21 45.95 7.81 1.46 13.56 50.27 1.46

Table 2. Compression and decompression times.

Biwords Occurrences
1V 2V 2LCAB

time σ time σ time σ

[A] 41.20 754.07 0.635 0.034 0.617 0.036 0.119 (0.006) 0.030 (0.002)

[B] 14.30 226.77 0.636 0.009 0.613 0.014 0.099 (0.008) 0.044 (0.003)

[C] 4.77 69.87 0.641 0.063 0.614 0.045 0.066 (0.007) 0.012 (0.002)

[D] 1.47 10.87 0.631 0.017 0.615 0.018 0.061 (0.007) 0.011 (0.002)

Table 3. Searching times. The values between brackets show the average time and standard devi-

ation needed to locate all the biwords in which a given word occurs.

PPM for medium-large file sizes. Only for small files GZIP shows a slightly better per-

formance. When decompressing, only GZIP is slightly faster than our approach, which

is much faster than BZIP2 (up to 9 times) and PPM (up to 35 times).

Table 3 shows the time required to retrieve all the occurrences of a specific word

when searching the es-en bitext of 100 MB. Considering the number of biwords a

words is associated to, we defined four categories: [A]: xA ≥ 25; [B]: 7 ≤ xB ≤ 24;
[C]: 3 ≤ xC ≤ 6; and [D]: xD ≤ 2, where xcategory indicates the number of biwords

a word must be associated to, in order to belong to that category. Then, we built four

groups of 30 words randomly chosen among those in each category.

We used 1V and 2V to compare the efficiency of 2LCAB in searching processes.

Notice that, 1V performs a simple pattern-matching process to find the codeword of

the desired word. However, 2V needs to check if the found codeword belongs to the

appropriate side of the bitexts, that is, if it is in the desired language; this is achieved by

calculating if the found codeword is in a even or an odd position.

2LCAB is the fastest choice in all the cases, improving 5-10 times both 1V and 2V

compressed bitexts. Notice that the number of occurrences has a stronger influence in

2LCAB than in 1V and 2V. This is because when there are many biwords associated to

a word the Set Horspool algorithm handles a more complex trie composed by all the

codewords of those biwords. Finally, notice that 2V is always slightly better than 1V.

This is mainly due to the fact that 2V gets better compression ratios than 1V.

6 Conclusions

2LCAB has been proposed as strategy to compress word-aligned bitexts. It provides very

good compression ratios and it is the fastest option for compressing and decompressing

large bitext. Its main property is that bitexts can be efficiently exploited because dif-

ferent kind of searches and local decompression can be effectively performed over the

compressed bitext without needing to decompress it. Another interesting result of this

research is how the similarity between the languages in the bitext affects the number of

different biwords, the number of total biwords and, therefore, the compression ratio.

References

1. R.S. Boyer and J. S. Moore. A fast string searching algorithm. Comm. of ACM, 20(10):762–

772, 1977.

2. N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá. Lightweight natural language text

compression. Information Retrieval, 10(1):1–33, 2007.

3. J. G. Cleary and I. H. Witten. Data Compression Using Adaptive Coding and Partial String

Matching. IEEE Trans. on Communications, COM-32(4):396–402, April 1984.

4. E. S. Conley and S. T. Klein. Using alignment for multilingual text compression. Intl. J. of

Foundations of Computer Science, 19(1):89–101, 2008.

5. H.S. Heaps. Inf. Retrieval - Computational and Theoretical Aspects. Academic Press, 1978.

6. R.N. Horspool. Practical fast searching in strings. Softw. Pract. & Exper., 10:501–506, 1980.

7. D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM J. of Com-

puting, 6(2):323–350, 1977.

8. P. Koehn. Europarl: A parallel corpus for statistical machine translation. In Proc. of the 10th

Machine Translation Summit, pages 79–86, 2005. http://www.statmt.org/europarl/.

9. M. A. Martı́nez-Prieto, J. Adiego, F. Sánchez-Martı́nez, P. de la Fuente, and R. C. Carrasco.

On the use of word alignments to enhance bitext compression. InData Compres. Conf., page

459, 2009.

10. I. D. Melamed. Emplirical methods for exploting parallel texts. MIT Press, 2001.

11. R. Mihalcea and M. Simard. Parallel texts. Natural Language Eng., 11(3):239–246, 2005.

12. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Comp. Surv., 39(1), 2007.

13. G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings – Practical on-line search

algorithms for texts and biological sequences. Cambridge University Press, 2002.

14. C. G. Nevill-Manning and T. C. Bell. Compression of parallel texts. Information Processing

& Management, 28(6):781–794, 1992.

15. F. J. Och and H. Ney. A systematic comparison of various statistical alignment models.

Comp. Linguistics, 29(1):19–51, 2003.

16. D. Shkarin. PPM: One Step to Practicality. In Data Compres. Conf., pages 202–211, 2002.

