Skip to main content

Towards a Theory of Patches

  • Conference paper
String Processing and Information Retrieval (SPIRE 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5721))

Included in the following conference series:

Abstract

Many applications have a need for indexing unstructured data. It turns out that a similar ad-hoc method is being used in many of them - that of considering small particles of the data.

In this paper we formalize this concept as a tiling problem and consider the efficiency of dealing with this model. We present an efficient algorithm for the one dimension tiling problem, and prove the two dimension problem is hard. We then develop an approximation algorithm with an approximation ratio converging to 2. We show that the “one-and-a-half” dimensional version of the problem is also hard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amir, A., Apostolico, A., Landau, G.M., Satta, G.: Efficient text fingerprinting via parikh mapping. J. of Discrete Algorithms 1(5-6), 409–421 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cohen, F.E.: Folding the sheets: Using computational methods to predict the structure of proteins. In: Lander, E.S., Waterman, M.S. (eds.) Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology, pp. 236–271. National Academy Press (1995)

    Google Scholar 

  3. de Bruijn, N.G.: Algebraic theory of penrose’s nonperiodic tiling of the plane. Indagationes mathematicae (1981)

    Google Scholar 

  4. Epshtein, B., Ullman, S.: Identifying semantically equivalent object fragments. In: Proc. IEEE Conference on Computer vision and Pattern Recognition (CVPR), vol. 1, pp. 2–9 (2005)

    Google Scholar 

  5. Collins, et al.: nternational human genome sequencing consortium. initial sequencing and analysis of the human genome. Nature 409(6822), 860–921 (2001)

    Article  Google Scholar 

  6. Vender, J.C., et al.: The sequence of the human genome. Science 291(5507), 1304–1351 (2001)

    Article  Google Scholar 

  7. Euler, L.: Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Petropolitanae 8, 128–140 (1741)

    Google Scholar 

  8. Frakes, W.B., Baeza-Yates, R.: Information Retrieval Data Structure and Algorithms. Prentice-Hall, Englewood Cliffs (1992)

    Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  10. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  11. Hierholzer, C.: Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechnung zu umfahren. Mathematische Annalen 6, 30–32 (1873)

    Article  MathSciNet  Google Scholar 

  12. Karlsson, F., Voutilainen, A., Heikkilä, J., Anttila, A.: Constraint Grammar. A Language Independent System for Parsing Unrestricted Text. Walter de Gruyter, Berlin (1995)

    Book  Google Scholar 

  13. Kolodny, R., Koehl, P., Guibas, L., Levitt, M.: Small libraries of protein fragments model native protein structures accurately. Journal of Molecular Biology 323(2), 297–307 (2002)

    Article  Google Scholar 

  14. Levin, L.A.: Universal sorting problems. Problemy Peredachi Informatsii 9(3), 265–266 (1973) (in Russian)

    Google Scholar 

  15. Lu, G.: Indexing and retrieval of audio: A survey. Multimedia Tools and Applications 15(3), 269–290 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Makovicky, E.: 800-year-old pentagonal tiling from maragha, iran, and the new varieties of aperiodic tiling it inspired. In: Hargittai, I. (ed.) Fivefold Symmetry. World Scientific, Singapore (1992)

    Google Scholar 

  17. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  18. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  19. Parikh, R.J.: On context-free languages. Journal of the ACM 14(4), 570–581 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vidal-Naquet, M., Ullman, S., Sali, E.: A fragment-based approach to object representation and classification. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 85–102. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. Computer Series. McGraw-Hill, New York (1983)

    MATH  Google Scholar 

  22. Shilane, P., Funkhouser, T.A.: Distinctive regions of 3d surfaces. ACM Transactions on Graphics 26(2) (2007)

    Google Scholar 

  23. Stricker, M., Swain, M.: The capacity of color histogram indexing. In: Proc. IEEE Conference on Computer vision and Pattern Recognition (CVPR), pp. 704–708 (1994)

    Google Scholar 

  24. Wang, H.: Proving theorems by pattern recognition. Bell systems Technical journal, 1–42 (1961)

    Google Scholar 

  25. Zhu, L., Zhou, Z., Hu, D.: Globally consistent reconstruction of ripped-up documents. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(1), 1–13 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amir, A., Parienty, H. (2009). Towards a Theory of Patches. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds) String Processing and Information Retrieval. SPIRE 2009. Lecture Notes in Computer Science, vol 5721. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03784-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03784-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03783-2

  • Online ISBN: 978-3-642-03784-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics