
An Automata-Theoretic Approach to Regular XPath?

Diego Calvanese1, Giuseppe De Giacomo2, Maurizio Lenzerini2, and Moshe Y. Vardi3

1 KRDB Research Centre, Free University of Bozen-Bolzano, Italy
calvanese@inf.unibz.it

2 Dipartimento di Informatica e Sistemistica, SAPIENZA Università di Roma, Italy
degiacomo,lenzerini@dis.uniroma1.it

3 Department of Computer Science
Rice University, P.O. Box 1892, Houston, TX 77251-1892, U.S.A.

vardi@cs.rice.edu

In this paper we present Regular XPath (RXPath), which is a natural extension of
XPath with regular expressions over paths that has the same computational properties as
XPath: linear-time query evaluation and exponential-time reasoning. To establish these
results, we devise a unifying automata-theoretic framework based on two-way weak al-
ternating tree automata. Specifically, we consider automata that have infinite runs on fi-
nite trees. This enables us to leverage and simplify existing automata-theoretic machin-
ery and develop algorithms both for query evaluation and for reasoning over queries.
With respect to the latter problem, we consider RXPath as a constraint language, and
study constraint satisfiability, and query satisfiability and containment under constraints
in the setting of RXPath.

1 Introduction

XML4 has become the standard language for semistructured data, and the last few years
have witnessed a strong interest in reasoning about XML queries and integrity con-
straints. From a conceptual point of view, an XML document can be seen as a finite
node-labeled tree, and several formalisms have been proposed as query languages over
XML documents. A common feature of many of these language is the use of regular
path expressions to navigate through XML documents, and XPath is a popular language
for such navigation [9].

This paper introduces a powerful extension of CoreXPath, called RXPath, for ex-
pressing XML queries. Our language is inspired by the work carried out in the last
few years on extensions of CoreXPath [29, 21]. In particular, we extend CoreXPath
with nominals, as well as with regular path expressions over XML trees, expressed
as two-way regular expressions over XPath axes. Our language is essentially Regular
XPath [29], extended with nominals. A nominal is a formalism for denoting a single
node in a document, similarly to XML global identifiers built through the construct ID.
The power of our language in expressing paths is the one of Propositional Dynamic
Logic (PDL) [15] extended with converse, nominals, and deterministic programs. This

? A preliminary version of this paper, dealing with RXPath satisfiability only, has been presented
at the 2008 Workshop on Logic in Databases (LID 2008).

4 http://www.w3.org/TR/REC-xml/

combination of path-forming constructs results in one of the most expressive languages
ever considered for specifying structural queries over XML documents.

We describe in this paper a comprehensive automata-theoretic framework for eval-
uating and reasoning about RXPath. Our framework is based on two-way weak alter-
nating tree automata, denoted 2WATA. The use of automata-theoretic techniques in
the context of XPath is not new. For example, tree walking automata are used in [29]
to characterize the expressive power of Regular XPath, while bottom-up tree automata
are used there to derive an algorithm for testing containment of Regular XPath queries.
In contrast, here we show that 2WATA provide a unifying formalism, as they enable
us to both derive a linear-time algorithm for the evaluation of RXPath queries and an
exponential-time algorithm for testing containment of RXPath queries.

Our automata-theoretic approach is based on techniques developed in the context of
program logics [19, 30]. Here, however, we leverage the fact that we are dealing with
finite trees, rather than the infinite trees used in the program-logics context. Indeed,
the automata-theoretic techniques used in reasoning about infinite trees are notoriously
difficult [25, 28] and have resisted efficient implementation. The restiction to finite trees
here enables us to obtain much more feasible algorithmic approach. (A similar idea,
focusing on query reasoning rather than query evaluation, has been pursued in [20, 16].
For the latter proposal, also an implementation is provided.) In particular, one can make
use of symbolic techniques, at the base of modern model checking tools, for effectively
querying and verifying XML documents. It is worth noting that while our automata
run over finite trees they are allowed to have infinite runs. This separates 2WATA from
the alternating tree automata used, e.g., in [11]. The key technical results here are that
acceptance of trees by 2WATA can be decided in linear time, while nonemptiness of
2WATA can be decided in exponential time.

The first application of the automata-theoretic results is that RXPath queries can
be evaluated in linear time; more precisely, the running time for query evaluation is a
product of the size of the input tree and the size of the query. This extends the results
in [17] of polynomial-time algorithms for the evaluation of CoreXPath queries. Note
that [17] provide also results for full XPath that handles also data, hence goes beyond the
core fragment considered here. Our result complements the one in [3], which considers
an extension of RXPath with tests for equality between attributes at the end of two paths,
and provides a query evaluation algorithm that is linear time in the size of the input tree
but exponential in the size of the query.

The second application is to RXPath reasoning. There has been a lot of focus on
testing containment of XPath queries, cf. [26]. Instead, we focus here on the more gen-
eral problem of satisfying constraints over XML documents. Specifically, we consider
here structural constraints [13]. Structural constraints are those imposing a certain form
on the trees corresponding to the documents, with no explicit reference to values asso-
ciated with nodes. Notable examples of formalisms allowing for expressing such con-
straints are DTDs (see footnote 4 and [6]), and XML Schema5 [2]. We show how we
can use RXPath to express such constraints. and then show that satisfiability of RXPath
constraints can be checked in exponential time using our automata-theoretic results.
The exponential decidability result for RXPath constraint satisfiability is not surpris-

5 http://www.w3.org/TR/xmlschema-0/ and http://.../xmlschema-1/

ing as this problem can be reduced to the satisfiability problem for Repeat-Converse-
Deterministic PDL (repeat-CDPDL) a well-known variant of PDL, which can be solved
using the automata-theoretic techniques of [30]. As noted above, however, those tech-
niques are quite heavy and so far resisted implementation.

We also show that query satisfiability and query containment for RXPath can be
reduced to checking satisfiability of RXPath constraints, thus enabling us to take advan-
tage of the techniques developed for constraint satisfiability. Note that most previous
results on this topic (see, e.g., [8]) refer to query languages that are either less expressive
than RXPath, or are intended for semi-structured data modeled as graph-like structures,
rather than XML trees.

2 Regular XPath

Following [21, 22], we formalize XML documents as finite sibling trees, which are
tree like structures, whose nodes are linked to each other by two relations: the child
relation, connecting each node with its children in the tree; and the immediate-right-
sibling relation, connecting each node with its sibling immediately to the right in the
tree, such a relation models the order between the children of the node in an XML
documents. Each node of the sibling tree is labeled by (possibly many) elements of
a set of atomic propositions Σ. We consider the set Σ to be partitioned into Σa and
Σid . The set Σa is a set of atomic propositions that represent either XML tags or XML
attribute-value pairs. On the other hand,Σid is a set of special propositions representing
(node) identifiers, i.e., that are true in (i.e., that label) exactly a single node of the XML
document. Such identifiers are essentially an abstraction of the XML identifiers built
through the construct ID (see footnote 4), though a node can have multiple identifiers
in our case. Observe that sibling trees are more general than XML documents since they
would allow the same node to be labeled by several tags. It is easy to impose RXPath
constraints (see later) that force propositions representing tags to be disjoint if needed.

A sibling tree is a pair Ts = (∆Ts , ·Ts), where ∆Ts is a tree6 and ·Ts is an interpre-
tation function that assigns to each atomic symbol A ∈ Σa a set ATs of nodes of ∆Ts ,
to each identifier Id a singleton IdTs containing one node of ∆Ts , and that interprets
the axis relations in the obvious way, namely:

childTs = {(z, z·i) | z, z·i ∈ ∆Ts}
rightTs = {(z·i, z·(i+1)) | z·i, z·(i+1) ∈ ∆Ts}

As in [21, 22], we focus on a variant of XPath that allows for full regular expressions
over the XPath axes. In fact, we make it explicit that such a variant of XPath is tightly
related to Propositional Dynamic Logic (PDL) [1, 15], and adopt the PDL syntax to
express node and path expressions.

6 A (finite) tree is a non-empty (finite) set ∆ of words over N, such that if x·i ∈ ∆, where
x ∈ N∗ and i ∈ N, then also x ∈ ∆, and if i > 1, then also x·(i−1) ∈ ∆. By convention
we take x·0 = x, and x·i·−1 = x. A (finite) labeled tree over an alphabet L of labels is a
pair T = (∆T , `T), where ∆T is a (finite) tree and the labeling `T : ∆T → L is a mapping
assigning to each node x ∈ ∆T a label `T (x) in L.

(〈P 〉ϕ)Ts = {z | ∃z′.(z, z′) ∈ PTs ∧ z′ ∈ ϕTs}
([P]ϕ)Ts = {z | ∀z′.(z, z′) ∈ PTs → z′ ∈ ϕTs}
(¬ϕ)Ts = ∆T \ ϕTs

(ϕ1 ∧ ϕ2)
Ts = ϕTs

1 ∩ ϕ
Ts
2

(ϕ1 ∨ ϕ2)
Ts = ϕTs

1 ∪ ϕ
Ts
2

(ϕ?)Ts = {(z, z) | z ∈ ϕTs}
(P1;P2)

Ts = PTs
1 ◦ P

Ts
2

(P1 ∪ P2)
Ts = PTs

1 ∪ P
Ts
2

(P ∗)Ts = (PTs)∗

(P−)Ts = {(z′, z) | (z, z′) ∈ PTs}

Fig. 1. Semantics of node and path expressions

RXPath expressions are of two sorts: node expressions, denoted by ϕ, and path
expressions, denoted by P , defined by the following syntax (we omit parentheses):

ϕ −→ A | Id | 〈P 〉ϕ | [P]ϕ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

P −→ child | right | ϕ? | P1;P2 | P1 ∪ P2 | P ∗ | P−

where A ∈ Σa, Id ∈ Σid , and child and right denote the two main XPath axis
relations. We consider the other XPath axis relations parent and left as abbreviations
for child− and right−, respectively. Also, we use the usual abbreviations, including
true, false, and ϕ1 → ϕ2.

Given a sibling tree Ts = (∆Ts , ·Ts), we extend the interpretation function ·Ts to
arbitrary node and path expressions as shown in Figure 1, where we have used the stan-
dard notions of chaining (· ◦ ·) and reflexive-transitive closure (·∗) over binary relations.
Note that, [P]ϕ is equivalent to ¬〈P 〉¬ϕ.

To develop our techniques for inference on RXPath, it is convenient to consider an
additional axis fchild, connecting each node to its first child only, interpreted as

fchildTs = {(z, z·1) | z, z·1 ∈ ∆Ts}

Using fchild, we can thus re-express the child axis as fchild; right∗. In this way,
we can view sibling trees, which are unranked, as binary trees (see Section 4).

We say that a path expression is normalized if it is expressed by making use of
fchild and right only, if ·− is pushed inside as much as possible, in such a way that
it appears only in front of fchild and right only, and if all node expressions occurring
in it are normalized. A node expression is normalized if all path expressions occurring
in it are normalized, and if it is in negation normal form, i.e., negation is pushed inside
as much as possible, in such a way that it appears only in front of atomic symbols.

RXPath expressions can be used to express queries on XML documents. An RXPath
(unary) query is an RXPath node expression ϕ that, when evaluated over a sibling tree
Ts, returns the set of nodes ϕTs . We also consider RXPath binary queries, where such
a query is an RXPath path expression P that, when evaluated over a sibling tree Ts,
returns the set of pairs of nodes PTs . We will address the problems of query evaluation
and of query satisfiability by means of automata-theoretic techniques, presented in the
next section. A further use of RXPath expressions is to specify constraints, which will
be dealt with in Section 5, resorting again to automata.

3 Two-way Weak Alternating Tree Automata

We consider a variant of two-way alternating automata [27] that run, possibly infinitely,
on finite labeled trees Specifically, alternating tree automata generalize nondetermin-

istic tree automata, while two-way tree automata generalize ordinary tree automata by
being allowed to traverse the tree both upwards and downwards. Formally, let B+(I)
be the set of positive Boolean formulae over a set I , built inductively by applying ∧
and ∨ starting from true, false, and elements of I . For a set J ⊆ I and a formula
ϕ ∈ B+(I), we say that J satisfies ϕ if assigning true to the elements in J and false
to those in I \ J , makes ϕ true. For a positive integer k, let [1..k] = {1, . . . , k} and
[−1..k] = {−1, 0, 1, . . . , k}. For integers i, j, with i ≤ j, let [i..j] = {i, . . . , j}.
A two-way weak alternating tree automaton (2WATA) running over labeled trees all
of whose nodes have at most k successors, is a tuple A = (L, S, s0, δ, α), where L
is the alphabet of tree labels, S is a finite set of states, s0 ∈ S is the initial state,
δ : S × L → B+([−1..k]× S) is the transition function, and α is the accepting condi-
tion discussed below.

The transition function maps a state s ∈ S and an input label a ∈ L to a positive
Boolean formula over [−1..k] × S. Intuitively, if δ(s, a) = ϕ, then each pair (c′, s′)
appearing in ϕ corresponds to a new copy of the automaton going to the direction
suggested by c′ and starting in state s′. For example, if k = 2 and δ(s1, a) = ((1, s2) ∧
(1, s3))∨ ((−1, s1)∧ (0, s3)), when the automaton is in the state s1 and reads the node
x labeled by a, it proceeds either by sending off two copies, in the states s2 and s3
respectively, to the first successor of x (i.e., x·1), or by sending off one copy in the state
s1 to the predecessor of x (i.e., x·−1) and one copy in the state s3 to x itself (i.e., x·0).

A run of a 2WATA is obtained by resolving all existential choices. The universal
choices are left, which gives us a tree. Because we are considering two-way automata,
runs can start at arbitrary tree nodes, and need not start at the root. Formally, a run
of a 2WATA A over a labeled tree T = (∆T , `T) from a node x0 ∈ ∆T is a finite
∆T × S-labeled tree R = (∆R, `R) satisfying:

1. ε ∈ ∆R and `R(ε) = (x0, s0).
2. Let `R(r) = (x, s) and δ(s, `T (x)) = ϕ. Then there is a (possibly empty) set
S = {(c1, s1), . . . , (cn, sn)} ⊆ [−1..k] × S such that S satisfies ϕ, and for each
i ∈ [1..n], we have that r·i ∈ ∆R, x·ci ∈ ∆T , and `R(r·i) = (x·ci, si).

Intuitively, a run R keeps track of all transitions that the 2WATA A performs on a
labeled input tree T : a node r of R labeled by (x, s) describes a copy of A that is in
the state s and is reading the node x of T . The successors of r in the run represent the
transitions made by the multiple copies of A that are being sent off either upwards to
the predecessor of x, downwards to one of the successors of x, or to x itself.

A 2WATA is called “weak” due to the specific form of the acceptance condition α.
Specifically, α ⊆ S, and there exists a partition of S into disjoint sets, Si, such that for
each set Si, either Si ⊆ α, in which case Si is an accepting set, or Si∩α = ∅, in which
case Si is a rejecting set. In addition, there exists a partial order ≤ on the collection of
the Si’s such that, for each s ∈ Si and s′ ∈ Sj for which s′ occurs in δ(s, a), for some
a ∈ L, we have Sj ≤ Si. Thus, transitions from a state in Si lead to states in either
the same Si or a lower one. It follows that every infinite path of a run of a 2WATA
ultimately gets “trapped” within some Si. The path is accepting if and only if Si is an
accepting set. A run (Tr, r) is accepting if all its infinite paths are accepting. A 2WATA
A accepts a labeled tree T from a node x0 ∈ ∆T if there exists an accepting run of A

over T from x0. The language L (A) accepted by A is the set of trees that A accepts
from the root ε.

3.1 The Acceptance Problem

Given a 2WATA A = (L, S, s0, δ, α), a labeled tree T = (∆T , `T), and a node x0 ∈
∆T , we’d like to know whether A accepts T from x0. This is called the acceptance
problem. We follow here the approach of [19], and solve the acceptance problem by
first taking a product A × Tx0 of A and T from x0. This product is an alternating
automaton over a one letter alphabetL0, consisting of a single letter, say a. This product
automaton simulates a run of A on T from x0. The product automaton is A × Tx0 =
(L0, S ×∆T , (s0, x0), δ′, α×∆T), where δ′ is defined as follows:

– δ′((s, x), a) = Θx(δ(s, `T (x))), where Θx is the substitution that replaces a pair
(c, t), by the pair (t, x·c) if x·c ∈ ∆T , and by false otherwise.

Note that the size of A × Tx0 is simply the product of the size of A and the size
of T . Note also that A × Tx0 can be viewed an a weak alternating word automaton
running over the infinite word aω , as by taking the product with T we have eliminated
all directions.

We can now state the relationship between A × Tx0 and A, which is essentially a
restatement of Proposition 3.2 in [19].

Proposition 1. A accepts T from x0 iff A× Tx0 accepts aω .

The advantage of Proposition 1 is that it reduces the acceptance problem to the ques-
tion of whether A× T accepts aω . This problem is referred to in [19] as the “one-letter
nonemptiness problem”. It is shown there that this problem can be solved in time that is
linear in the size of A× Tx0 by an algorithm that imposes an evaluation of and-or trees
over a decomposition of the automaton state space into maximal strongly connected
components. The result in [19] is actually stronger; the algorithm there computes in
linear time the set of initial states from which the automaton accepts aω . We therefore
obtain the following result about the acceptance problem.

Proposition 2. Given a 2WATA A and a labeled tree T , we can compute in time that is
linear in the product of the sizes of A and T the set of nodes x0 such that A accepts T
from x0.

3.2 The Nonemptiness Problem

The nonemptiness problem for 2WATAs consists in determining, for a given 2WATA
A whether it accepts some tree T from ε. This problem is solved in [30] for 2WATAs
(actually, for a more powerful automata model) over infinite trees, using rather sophisti-
cated automata-theoretic techniques. Here we solve this problem over finite trees, which
requires less sophisticated techniques, which are much easier to implement.

In order to decide non-emptiness of 2WATAs, we resort to a conversion to standard
one-way nondeterministic tree automata [10]. A one-way nondeterministic tree automa-
ton (NTA) is a tuple A = (L, S, s0, δ), analogous to a 2WATA, except that (i) the ac-
ceptance condition α is empty and has been dropped from the tuple, (ii) the directions

−1 and 0 are not used in δ and, (iii) for each state s ∈ S and letter a ∈ L, the pos-
itive Boolean formula δ(s, a), when written in DNF, does not contain a disjunct with
two distinct atoms (c, s1) and (c, s2) with the same direction c. In other words, each
disjunct corresponds to sending at most one “subprocess” in each direction. While for
2WATAs we have separate input tree and run tree, for NTAs we can assume that the run
of the automaton over an input tree T = (∆T , `T) is an S-labeled tree R = (∆T , `R),
which has the same underlying tree as T , and thus is finite, but is labeled by states in S.
Nonemptiness of NTAs is known to be decidable in linear time [12].

It remains to describe the translation of 2WATAs to NTAs. Given a 2WATA A and
an input tree T as above, a strategy for A on T is a mapping τ : ∆T → 2S×[−1..k]×S .
Thus, each label in a strategy is an edge-[−1..k]-labeled directed graph on S. Intu-
itively, each label is a set of transitions. For each label ζ ⊆ S × [−1..k]× S, we define
state(ζ) = {u : (u, i, v) ∈ ζ}, i.e., state(ζ) is the set of sources in the graph ζ. In addi-
tion, we require the following: (1) s0 ∈ state(τ(ε)), (2) for each node x ∈ ∆T and each
state s ∈ state(τ(x)), the set {(c, s′) : (s, c, s′) ∈ τ(x)} satisfies δ(s, `T (x)) (thus,
each label can be viewed as a strategy of satisfying the transition function), and (3) for
each node x ∈ ∆T , and each edge (s, i, s′) ∈ τ(x), we have that s′ ∈ state(τ(x·i)).

A path β in the strategy τ is a maximal sequence (u0, s0), (u1, s1), . . . of pairs
from ∆T × S such that u0 = ε and, for all i ≥ 0, there is some ci ∈ [−1..k] such that
(si, ci, si+1) ∈ τ(ui) and ui+1 = ui·ci. Thus, β is obtained by following transitions in
the strategy. The path β is accepting if the path s0, s1, . . . is accepting. The strategy τ
is accepting if all its paths are accepting.

Proposition 3 ([30]). A 2WATA A accepts an input tree T from ε iff A has an accepting
strategy tree for T .

We have thus succeeded in defining a notion of run for alternating automata that will
have the same tree structure as the input tree. We are still facing the problem that paths
in a strategy tree can go both up and down. We need to find a way to restrict attention
to uni-directional paths. For this we need an additional concept.

An annotation for A on T with respect to a strategy τ is a mapping η : ∆T →
2S×{0,1}×S . Thus, each label in an annotation is an edge-{0, 1}-labeled directed graph
on S. We assume that edge labels are unique; that is, a graph cannot contain both triples
(s, 0, s′) and (s, 1, s′). We require η to satisfy some closure conditions for each node
x ∈ ∆T . Intuitively, these conditions say that η contains all relevant information about
finite paths in τ . Thus, an edge (s, c, s′) describes a path from s to s′, where c = 1 if this
path goes through α. The conditions are: (a) if (s, c, s′) ∈ η(x) and (s′, c′, s′′) ∈ η(x),
then (s, c′′, s′′) ∈ η(x) where c′′ = max{c, c′}, (b) if (s, 0, s′) ∈ τ(x) then (s, c, s′) ∈
η(x), where c = 1 if s′ ∈ α and c = 0 otherwise, (c) if x = y·i, (s,−1, s′) ∈ τ(x),
(s′, c, s′′) ∈ η(y), and (s′′, i, s′′′) ∈ τ(x), then (s, c′, s′′′) ∈ η(x), where c′ = 1 if either
s′ ∈ α, c = 1, or s′′′ ∈ α, and c′ = 0 otherwise, and (d) if y = x·i, (s, i, s′) ∈ τ(x),
(s′, c, s′′) ∈ η(y), and (s′′,−1, s′′′) ∈ τ(y), then (s, c′, s′′′) ∈ η(x), where c′ = 1 if
s ∈ α, c = 1, or s′′′ ∈ α, and c′ = 0 otherwise. The annotation η is accepting if for
every node x ∈ ∆T and state s ∈ S, if (s, c, s) ∈ η(x), then c = 1. In other words, η is
accepting if all cycles visit accepting states.

Proposition 4 ([30]). A 2WATA A accepts an input tree T from ε iff A has a strategy
tree τ on T and an accepting annotation η of τ .

Consider now annotated trees (∆T , `T , τ, η), where τ is a strategy tree for A on
(∆T , `T) and η is an annotation of τ . We say that (∆T , `T , τ, η) is accepting if η is
accepting.

Theorem 5. Let A be a 2WATA. Then there is an NTA An such that L (A) = L (An).
The number of states of An is exponential in the number of states of A.

The key feature of the state space of An is the fact that states are pairs consisting
of subsets of S and S × {0, 1} × S. Thus, a set of states of An can be described by a
Boolean function on the domain S3. Similarly, the transition function of An can also
be described as a Boolean function. Such functions can be represented by BDDs [4],
enabling a symbolic approach to nonemptiness testing of 2WATAs, as shown below. We
note that the framework of [30] also converts a two-way alternating tree automaton (on
infinite trees) to a nondeterministic tree automaton (on infinite trees). The state space
of the latter, however, is considerably more complex than the one obtained here due to
Safra’s determinization construction. This makes it practically infeasible to apply the
symbolic approach in the infinite-tree setting.

Theorem 6. Given a 2WATA A with n states and an input alphabet with m elements,
deciding nonemptiness of A can be done in time exponential in n and linear in m.

As shown in [21] (see also Section 5 for dealing with identifiers), reasoning over RX-
Path formulas can be reduced to checking satisfiability in Propositional Dynamic Log-
ics (PDLs). Specifically, one can resort to Repeat-Converse-Deterministic PDL (repeat-
CDPDL), a variant of PDL that allows for expressing the finiteness of trees and for
which satisfiability is EXPTIME-complete [30]. This upper bound, however, is estab-
lished using sophisticated infinite-tree automata-theoretic techniques (cf., e.g., [24]),
which so far have resisted attempts at practically efficient implementation [25, 28], due
to the use of Safra’s determinization construction [23] and parity games [18]. The
main advantage of our approach here is that we use only automata on finite trees,
which require a much “lighter” automata-theoretic machinery. As noted in Theorem 6,
nonemptiness for 2WATA can be tested in time that is exponential in the number of
states and linear in the size of the alphabet. One can show that our 2WATA-based deci-
sion procedure can be implemented using a symbolic approach, which has the potential
to be capable of handling automata with large states spaces [5].

4 2WATAs for RXPath Query Evaluation

We address now the problem of evaluating RXPath queries by means of 2WATAs. To
do so, we first represent sibling trees as binary trees, and then encode the problem of
evaluating an RXPath query ϕ into the acceptance problem for a 2WATA Awf

ϕ whose
number of states is linear in ϕ. This allows us to establish a tight complexity bound for
RXPath query evaluation.

We work on binary trees. In order for such trees to represent sibling trees, we make
use of special labels ifc, irs , hfc, hrs , where ifc (resp., irs) are used to keep track of
whether a node is the first child (resp., is the right sibling) of its predecessor, and hfc
(resp., hrs) are used to keep track of whether a node has a first child (resp., has a right
sibling). Formally, we consider binary trees whose nodes are labeled with subsets of
Σ∪{ifc, irs, hfc, hrs}. We call such a tree T = (∆T , `T) well-formed if it satisfies the
following conditions:

– For each node x of T , if `T (x) contains hfc, then x·1 is meant to represent the
fchild successor of x and hence `T (x·1) contains ifc but not irs . Similarly, if
`T (x) contains hrs , then x·2 is meant to represent the right successor of x and
hence `T (x·2) contains irs but not ifc.

– The label `T (ε) of the root of T contains neither ifc, nor irs , nor hrs . In this way,
we restrict the root of T so as to represent the root of a sibling tree.

– For each Id ∈ Σid , there is at most one node x of T with Id ∈ `T (x).

A sibling tree Ts = (∆Ts , ·Ts), induces a well-formed binary tree πb(Ts). To define
πb(Ts) = (∆T , `T), we define, by induction on ∆Ts , both a mapping πb from ∆Ts to
nodes of a binary tree, and the labeling of such nodes with ifc, irs , hfc, and hrs as
follows:

– πb(ε) = ε;
– πb(x·1) = πb(x)·1, for each node x·1 ∈ ∆Ts ; moreover, hfc ∈ `T (πb(x)) and

ifc ∈ `T (πb(x)·1);
– πb(x·(n+1)) = πb(x·n)·2, for each node x·(n+1) ∈ ∆Ts , with n ≥ 1; moreover,

hrs ∈ `T (πb(x·n)) and irs ∈ `T (πb(x·n)·2).

Then, we take ∆T to be the range of πb, and we complete the definition of the labeling
`T (πb(x)), for each node x ∈ ∆Ts , as follows: A ∈ `T (πb(x)) iff x ∈ ATs , for each
A ∈ Σa, and Id ∈ `T (πb(x)) iff x ∈ IdTs , for each Id ∈ Σid . Notice that, since in Ts
Id is interpreted as a singleton, T is well-formed.

To simplify the use of automata-theoretic techniques, we assume in the following
that (normalized) path expressions are represented by means of finite automata rather
than regular expressions. More precisely, a normalized path expression is represented as
a finite automaton on finite words (NFA) P = (Θ,Q, q0, %, F), in which the alphabetΘ
is constituted by fchild, fchild−, right, right− and by node expressions followed
by ?. The semantics of a path expression represented in such a way is the adaptation of
the semantics for path expressions as given in Section 2, when we view them as regular
expressions, with ;, ∪, and ∗ representing respectively the concatenation, union, and
Kleene star operators: a path expression PN represented as an NFA denotes the same
set of pairs of nodes as a path expression PR represented as a regular expression and
defining the same language as PN , where the correspondence is applied inductively to
the path expressions appearing in the node expressions of PN (respectively PR).

We need to make use of a notion of syntactic closure, similar to that of Fisher-Ladner
closure of a formula of PDL [15]. We need first to define the closure of path expressions:
given a path expression P = (Θ,Q, q0, %, F), we denote with Pq the path expression
Pq = (Θ,Q, q, %, F) obtained from P by making q ∈ Q the initial state. The closure

if ψ ∈ CL(ϕ) then nnf (¬ψ) ∈ CL(ϕ) (if ψ is not of the form ¬ψ′)
if ¬ψ ∈ CL(ϕ) then ψ ∈ CL(ϕ)
if ψ1 ∧ ψ2 ∈ CL(ϕ) then ψ1, ψ2 ∈ CL(ϕ)
if ψ1 ∨ ψ2 ∈ CL(ϕ) then ψ1, ψ2 ∈ CL(ϕ)
if 〈P 〉ψ ∈ CL(ϕ) then ψ ∈ CL(ϕ), and 〈Pq〉ψ ∈ CL(ϕ) for each Pq ∈ CL(P)
if 〈P 〉ψ ∈ CL(ϕ), where P = (Θ,Q, q0, %, F), then ψ′ ∈ CL(ϕ), for each ψ′? ∈ Θ
if [P]ψ ∈ CL(ϕ) then ψ ∈ CL(ϕ), and [Pq]ψ ∈ CL(ϕ) for each Pq ∈ CL(P)
if [P]ψ ∈ CL(ϕ), where P = (Θ,Q, q0, %, F), then ψ′ ∈ CL(ϕ), for each ψ′? ∈ Θ

Fig. 2. Closure of RXPath expressions

CL(P) of P is the set CL(P) = {Pq | q ∈ Q}. The syntactic closure CL(ϕ) of a node
expression ϕ is defined inductively by asserting that {ϕ, ifc, irs, hfc, hrs} ⊆ CL(ϕ),
and by the rules in Figure 2, where nnf (¬ψ) denotes the negation normal form of ¬ψ.

Proposition 7. Given a node expression ϕ, the cardinality of CL(ϕ) is linear in the
length of ϕ.

Let ϕ be a normalized node expression. We first show how to construct a 2WATA
Aϕ that, when run over the binary tree corresponding to a sibling tree Ts, ac-
cepts exactly from the nodes corresponding to those in ϕTs . The 2WATA Aϕ =
(L, Sϕ, sϕ, δϕ, αϕ) is defined as follows.

– The alphabet is L = 2Σ
′
, i.e., all sets consisting of atomic symbols and the special

symbols ifc, irs , hfc, hrs . This corresponds to labeling each node of the tree with
a truth assignment to the atomic symbols, with information about the predecessor
node, and with information about whether the children are significant.

– The set of states is Sϕ = CL(ϕ). Intuitively, when the automaton is in a state
ψ ∈ CL(ϕ) and visits a node x of the tree, this means that the automaton has to
check that node expression ψ holds in x. When ψ is an atomic symbol α, i.e., an
atomic proposition, an identifier, or one of the special symbols ifc, irs , hfc, hrs ,
this amounts to checking that the node label contains α.

– The initial state is sϕ = ϕ.
– The transition function δϕ is defined as follows:

1. For each λ ∈ L, and each symbol α ∈ Σ ∪ {ifc, irs, hfc, hrs}, there are
transitions

δϕ(α, λ) =
{

true, if α ∈ λ
false, if α 6∈ λ

δϕ(¬α, λ) =
{

true, if α 6∈ λ
false, if α ∈ λ

Such transitions check the truth value of atomic and special symbols and their
negations in the current node of the tree.

2. For each λ ∈ L and each ψ1, ψ2 ∈ CL(ϕ), there are transitions

δϕ(ψ1 ∧ ψ2, λ) = (0, ψ1) ∧ (0, ψ2)
δϕ(ψ1 ∨ ψ2, λ) = (0, ψ1) ∨ (0, ψ2)

Such transitions inductively decompose node expressions and move to appro-
priate states of the automaton to check the subexpressions.

3. For each λ ∈ L and each 〈P 〉ψ ∈ CL(ϕ), where P = (Θ,Q, q0, %, F), there is
a transition δϕ(〈P 〉ψ, λ) constituted by the disjunction of the following parts:

if q0 ∈ F then (0, ψ)
if q ∈ %(q0, fchild) then (0, hfc) ∧ (1, 〈Pq〉ψ)
if q ∈ %(q0, right) then (0, hrs) ∧ (2, 〈Pq〉ψ)
if q ∈ %(q0, fchild−) then (0, ifc) ∧ (−1, 〈Pq〉ψ)
if q ∈ %(q0, right−) then (0, irs) ∧ (−1, 〈Pq〉ψ)
if q ∈ %(q0, ψ′?) then (0, ψ′) ∧ (0, 〈Pq〉ψ)

Such transitions check step-by-step the existence of a path on the tree that
conforms to the path expressions P and such that ψ holds at the ending node.

4. For each λ ∈ L and each [P]ψ ∈ CL(ϕ), where P = (Θ,Q, q0, %, F), there is
a transition δϕ([P]ψ, λ) constituted by the conjunction of the following parts:

if q0 ∈ F then (0, ψ)
if q ∈ %(q0, fchild) then (0,¬hfc) ∨ (1, [Pq]ψ)
if q ∈ %(q0, right) then (0,¬hrs) ∨ (2, [Pq]ψ)
if q ∈ %(q0, fchild−) then (0,¬ifc) ∨ (−1, [Pq]ψ)
if q ∈ %(q0, right−) then (0,¬irs) ∨ (−1, [Pq]ψ)
if q ∈ %(q0, ψ′?) then (0,nnf (¬ψ′)) ∨ (0, [Pq]ψ)

Such transitions check step-by-step that for all paths on the tree that conform
to the path expressions P we get that ψ holds at the ending node.

– The acceptance conditions αϕ is the set of all node expressions [P]ψ ∈ CL(ϕ).
Observe that a simple partition Sϕ = ∪iSi of the set of states resulting from the
above transition function is the one that reflects the syntactic structure of ϕ, and that
puts all literals, including the ones corresponding to the special labels, in a single
element of the partition ordered below all other elements. Specifically, for each
pair P , ψ for which [P]ψ or 〈P 〉ψ appears explicitly in nnf (ϕ), the set of node
expressions {[Pq]ψ | Pq ∈ CL(P)} form an element Si of the partition; similarly,
the set of node expressions {〈Pq〉ψ | Pq ∈ CL(P)} form another element Sj of
the partition. All other states in Sϕ form a singleton element of the partition, and
sub-expressions are ordered below their containing expression. Note that all node
expressions 〈P 〉ψ are in a rejecting set, which ensures that their satisfaction cannot
be postponed indefinitely in an accepting run.

As for the size of Aϕ, by Proposition 7, from the above construction we get:

Proposition 8. The number of states of Aϕ is linear in the size of ϕ.

Theorem 9. Letϕ be a normalized node expression, Aϕ the 2WATA constructed above,
Ts a sibling tree, and πb(Ts) the corresponding (well-formed) binary tree. Then a node
x of Ts is in ϕTs iff Aϕ accepts πb(Ts) from πb(x).

From Proposition 2 and Theorem 9, we immediately get our first main result.

Theorem 10. Given a sibling tree Ts and an RXPath query ϕ, we can compute ϕTs in
time that is linear in the number of nodes of Ts (data complexity) and in the size of ϕ
(query complexity).

This technique can be used also to evaluate binary queries. Indeed, we can adorn (in
linear time in the size of Ts) each node y of Ts with a unique identifier Idy , obtaining
a tree T ′s. Then, to evaluate the RXPath binary query P , we consider the unary queries
ϕP,y = 〈P 〉Idy . The answer to P over Ts is simply PTs =

⋃
y∈Ts
{(x, y) | x ∈ ϕT

′
s

P,y},
which, by Theorem 10, can be computed in quadratic time in the number of nodes of
Ts and in linear time in the size of P .

5 Reasoning on RXPath

We start by introducing RXPath root constraints, which are node expressions intended
to be true on the root of the document, and study the problem of satisfiability and im-
plication of such constraints. Formally, the root constraint ϕ is satisfied in a sibling tree
Ts if ε ∈ ϕTs . A (finite) set Γ of RXPath root constraints is satisfiable if there exists
a sibling tree Ts that satisfies all constraints in Γ . A set Γ of RXPath root constraints
implies an RXPath root constraint ϕ, written Γ |= ϕ, if ϕ is satisfied in every sibling
tree that satisfies all constraints in Γ . Note that unsatisfiability and implication of RX-
Path root constraints are mutually reducible to each other. Indeed Γ is unsatisfiable if
and only if Γ |= false. Also, Γ |= ϕ if and only if Γ ∪ {¬ϕ} is unsatisfiable. Hence,
in the following, we deal with satisfiability only.

In [21] it was shown that for RXPath root constraints without identifiers satisfiabil-
ity is EXPTIME-complete7. Here, as mentioned, we include special propositions Σid

representing identifiers. However, the condition that a proposition is an identifier, i.e.,
denotes a singleton, can be expressed in RXPath. Indeed we can force a proposition A
to be a singleton by using the root constraint NA defined as follows, where the abbrevi-
ation u denotes the path expression (fchild ∪ right)∗:

NA = 〈u〉A ∧ (1)
[u]((〈fchild;u〉A→ [right;u]¬A) ∧

(〈right;u〉A→ [fchild;u]¬A) ∧
(A→ [(fchild ∪ right);u]¬A))

(2)
(3)
(4)

Hence, using one such constraint for each identifier in A ∈ Σid , the EXPTIME-
completeness result in [21] gives us also a complexity characterization for our variant
of RXPath root constraints that involve identifiers.

Theorem 11 ([21]). Satisfiability of RXPath root constraints is EXPTIME-complete.

As mentioned, the technique for checking satisfiability of RXPath root constraints
in [21] is based on a reduction to satisfiability in repeat-CDPDL, which so far has
resisted implementation. Instead, by resorting to 2WATAs on finite trees as presented in
Section 3, we offer a more promising path towards a viable implementation.

To make use of such a technique for checking satisfiability of RXPath root con-
straints, we need to modify the 2WATA Aϕ in such a way that it accepts only bi-
nary trees that are well-formed (cf. Section 4). Indeed, a well-formed binary tree

7 The hardness result holds also if all propositions are disjoint, and in the case where they rep-
resent standard XML document tags.

T = (∆T , `T) induces a sibling tree πs(T). To define πs(T) = (∆Ts , ·Ts), we de-
fine, by induction on ∆T , a mapping πs from ∆T to words over N as follows:

– πs(ε) = ε; if hfc ∈ `T (ε), then πs(1) = 1;
– if hfc ∈ `T (x) and πs(x) = z·n, with z ∈ N∗ and n ∈ N, then πs(x·1) = z·n·1;
– if hrs ∈ `T (x) and πs(x) = z·n, with z ∈ N∗ and n ∈ N, then πs(x·2) = z·(n+1).

Then, we take ∆Ts to be the range of πs, and we define the interpretation function ·Ts

as follows: for each A ∈ Σa, we define ATs = {πs(x) ∈ ∆Ts | A ∈ `T (x)}; similarly,
for each Id ∈ Σid , we define IdTs = {πs(x) ∈ ∆Ts | Id ∈ `T (x)}. Notice that, since
T is well-formed, IdTs contains at most one element. Note that the mapping πs ignores
irrelevant parts of the binary tree, e.g., if the label of a node x does not contain hfc,
even if x has a 1-successor, such a node is not included in the sibling tree. Also, πs can
be considered the inverse of the mapping πb defined in Section 4.

The 2WATA Awf
ϕ = (L, S, sini , δ, α), obtained by modifying Aϕ so that it accepts

(from ε) only trees that are well-formed, is defined as follows:

– The set of states is S = Sϕ ∪ {sini , sstruc} ∪ {sId , nId | Id ∈ Σid}, where
sini is the initial state, and the other additional states are used to check structural
properties of well-formed trees.

– The transition function is constituted by all transitions in δϕ, plus the following
transitions ensuring that Awf

ϕ accepts only well-formed trees.
1. For each λ ∈ L, there is a transition

δ(sini , λ) = (0, ϕ) ∧ (0,¬ifc) ∧ (0,¬irs) ∧ (0,¬hrs) ∧ (0, sstruc) ∧
V

Id∈Σid
(0, sId)

Such transitions (i) move to the initial state of Aϕ to verify that ϕ holds at the
root of the tree, (ii) check that the root of the tree is not labeled with ifc, irs
or hrs , (iii) move to state sstruc , from which structural properties of the tree
are verified, and (iv) move to states sId (for each Id ∈ Σid), from which the
automaton verifies that a single occurrence of Id is present on the tree.

2. For each λ ∈ L, there is a transition

δ(sstruc , λ) = ((0,¬hfc) ∨ ((1, ifc) ∧ (1,¬irs) ∧ (1, sstruc))) ∧
((0,¬hrs) ∨ ((2, irs) ∧ (2,¬ifc) ∧ (2, sstruc)))

Such transitions check that, (i) for each node labeled with hfc, its left child is
labeled with ifc but not with irs , and (ii) for each node labeled with hrs , its
right child is labeled with irs but not with ifc.

3. For each λ ∈ L and each Id ∈ Σid there are transitions

δ(sId , λ) = ((0, Id) ∧ ((0,¬hfc) ∨ (1, nId)) ∧ ((0,¬hrs) ∨ (2, nId))) ∨
((0,¬Id) ∧ (0, hfc) ∧ (1, sId) ∧ ((0,¬hrs) ∨ (2, nId))) ∨
((0,¬Id) ∧ (0, hrs) ∧ (2, sId) ∧ ((0,¬hfc) ∨ (1, nId))

δ(nId , λ) = (0,¬Id) ∧ ((0,¬hfc) ∨ (1, nId)) ∧ ((0,¬hrs) ∨ (2, nId))

Such transitions ensure that exactly one node of the tree is labeled with Id .
– The set of accepting states is α = αϕ. The states sini and sstruc form each a

single element of the partition of states, where {sini} precedes all other elements,
and {sstruc} follows them. The states sId and nId are added to the element of the
partition containing all literals.

As for the size of Awf
ϕ , by Proposition 8, and considering that the additional states

and transitions in Awf
ϕ are constant in the size of ϕ, we get:

Proposition 12. The number of states of Awf
ϕ is linear in the size of ϕ.

Theorem 13. Let Γ be a (finite) set of RXPath root constraints, ϕ the conjunction of
the constraints in Γ , and Awf

ϕ the 2WATA constructed above. Then Awf
ϕ is nonempty if

and only if Γ is satisfiable.

Theorem 14. Checking the satisfiability of a (finite) set Γ of RXPath root constraints
by checking nonemptiness of the 2WATA constructed above can be done in EXPTIME.

6 Query Satisfiability and Query Containment

We deal now with query satisfiability and query containment under constraints, and we
show that these problems can be reduced in linear time to satisfiability of RXPath root
constraints. As a consequence, we get that these problems are EXPTIME-complete and
that we can exploit for them the automata-based techniques developed in this paper.

In the following, we deal only with RXPath binary queries (i.e., path expressions),
since RXPath unary queries (i.e., node expressions) can be rephrased as binary queries:
indeed ϕTs = {z | (z, z) ∈ (ϕ?)Ts}.

We start our investigation with the query satisfiability problem. An RXPath query
Q is satisfiable under a (finite) set of root constraints Γ if there exists a sibling tree Ts
satisfying Γ such that QTs is non-empty. Considering the semantics of RXPath queries
and root constraints, it is immediate to verify that Q is satisfiable under Γ if and only if

Γ ∪ {〈u;Q〉true}

is satisfiable. Hence, query satisfiability under root constraints in RXPath can be linearly
reduced to satisfiability of RXPath root constraints, and we get the following result

Theorem 15. Query satisfiability under root constraints in RXPath is EXPTIME-
complete.

We now turn our attention to query containment under constraints, i.e., verify-
ing whether for all databases satisfying a certain set of integrity constraints, the an-
swer to a query is a subset of the answer to a second query. Checking containment of
queries is crucial in several contexts, such as query optimization, query reformulation,
knowledge-base verification, information integration, integrity checking, and coopera-
tive answering. Obviously, query containment is also useful for checking equivalence of
queries, i.e., verifying whether for all databases the answer to a query is the same as the
answer to another query. For a summary of results on query containment in semistruc-
tured, see, e.g., [7].

Query containment under constraints in our setting is defined as follows: An RXPath
query Q1 is contained in an RXPath query Q2 under a set of RXPath constraints Γ ,
written Γ |= Q1 ⊆ Q2, if for every sibling tree Ts that satisfies all constraints in Γ ,

we have that QTs
1 ⊆ Q

Ts
2 . Again we can resort to root constraints satisfiability to verify

containment. Namely: Γ |= Q1 ⊆ Q2 if and only if

Γ ∪ {〈u; Id st?;Q1; Idend?〉true, [u; Id st?;Q2; Idend?]false}

is unsatisfiable, where Id st and Idend are newly introduced identifiers.
We get that also query containment under root constraints in RXPath can be linearly

reduced to unsatisfiability of RXPath root constraints.

Theorem 16. Query containment under root constraints in RXPath is EXPTIME-
complete.

It follows that for the above problems of reasoning about queries under RXPath root
constraints, we can exploit the automata-based techniques developed in this paper.

We conclude the section by observing that also view-based query answering has at-
tracted the interest of the XPath community, e.g., [14]. It can be shown that we can adapt
the above techniques based on a reduction to satisfiability of RXPath root constraints
also to solve view-based query answering.

7 Conclusions

In this paper we have studied RXPath, a powerful mechanism for expressing structural
queries and constraints in XML. We have presented symbolic automata-based tech-
niques for evaluation of RXPath queries over XML trees, and for checking satisfiability
of RXPath constraints, and we have illustrated how to apply the latter technique for both
query containment and view-based query answering. Notably, the automata-theoretic
techniques that we have introduced check for infinite computations on finite trees.

Acknowledgements This research has been partially supported by NSF grants CCR-
0124077, CCR-0311326, CCF-0613889, ANI-0216467, and CCF-0728882.

References

1. L. Afanasiev, P. Blackburn, I. Dimitriou, B. Gaiffe, E. Goris, M. Marx, and M. de Rijke. PDL
for ordered trees. J. of Applied Non-Classical Logics, 15(2):115–135, 2005.

2. G. J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML Schema: A practical study.
In Proc. of WebDB 2004, pages 79–84, 2004.

3. M. Bojanczyk and P. Parys. XPath evaluation in linear time. In Proc. of PODS 2008, pages
241–250, 2008.

4. R. E. Bryant. Graph-based algorithms for Boolean-function manipulation. IEEE Trans. on
Computers, C-35(8), 1986.

5. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98(2):142–170, 1992.

6. D. Calvanese, G. De Giacomo, and M. Lenzerini. Representing and reasoning on XML
documents: A description logic approach. J. of Log. and Comp., 9(3):295–318, 1999.

7. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. View-based query answer-
ing and query containment over semistructured data. In G. Ghelli and G. Grahne, editors,
Revised Papers of the 8th International Workshop on Database Programming Languages
(DBPL 2001), volume 2397 of LNCS, pages 40–61. Springer, 2002.

8. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Reasoning on regular path
queries. SIGMOD Record, 32(4):83–92, 2003.

9. J. Clark and S. DeRose. XML Path Language (XPath) version 1.0. W3C Recommendation,
Nov. 1999. Available at http://www.w3.org/TR/1999/REC-xpath-19991116.

10. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tom-
masi. Tree automata techniques and applications. Available at http://www.grappa.
univ-lille3.fr/tata/, 2002.

11. S. S. Cosmadakis, H. Gaifman, P. C. Kanellakis, and M. Y. Vardi. Decidable optimization
problems for database logic programs. In Proc. of STOC’88, pages 477–490, 1988.

12. J. E. Doner. Decidability of the weak second-order theory of two successors. Notices Amer.
Math. Soc., 12:819, 1965.

13. W. Fan. XML constraints: Specification, analysis, and applications. In Proc. of DEXA 2005,
2005.

14. W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Rewriting regular XPath queries on XML
views. In Proc. of ICDE 2007, pages 666–675, 2007.

15. M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. J. of
Computer and System Sciences, 18:194–211, 1979.

16. P. Genevès, N. Layaı̈da, and A. Schmitt. Efficient static analysis of XML paths and types. In
Proc. of the ACM SIGPLAN 2007 Conf. on Programming Language Design and Implemen-
tation (PLDI 2007), pages 342–351, 2007.

17. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath queries. ACM
Trans. on Database Systems, 30(2):444–491, 2005.

18. M. Jurdzinski. Small progress measures for solving parity games. In Proc. of STACS 2000,
volume 1770 of LNCS, pages 290–301. Springer, 2000.

19. O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-
time model checking. J. of the ACM, 47(2):312–360, 2000.

20. L. Libkin and C. Sirangelo. Reasoning about XML with temporal logics and automata. In
Proc. of LPAR 2008, pages 97–112, 2008.

21. M. Marx. XPath with conditional axis relations. In Proc. of EDBT 2004, volume 2992 of
LNCS, pages 477–494. Springer, 2004.

22. M. Marx. First order paths in ordered trees. In Proc. of ICDT 2005, volume 3363 of LNCS,
pages 114–128. Springer, 2005.

23. S. Safra. On the complexity of ω-automata. In Proc. of FOCS’88, pages 319–327, 1988.
24. U. Sattler and M. Y. Vardi. The hybrid µ-calculus. In Proc. of IJCAR 2001, pages 76–91,

2001.
25. C. Schulte Althoff, W. Thomas, and N. Wallmeier. Observations on determinization of Büchi

automata. In Proc. of the 10th Int. Conf. on the Implementation and Application of Automata,
2005.

26. T. Schwentick. XPath query containment. SIGMOD Record, 33(1):101–109, 2004.
27. G. Slutzki. Alternating tree automata. Theor. Comp. Sci., 41:305–318, 1985.
28. S. Tasiran, R. Hojati, and R. K. Brayton. Language containment using non-deterministic

Omega-automata. In Proc. of CHARME’95, volume 987 of LNCS, pages 261–277. Springer,
1995.

29. B. ten Cate and L. Segoufin. XPath, transitive closure logic, and nested tree walking au-
tomata. In Proc. of PODS 2008, pages 251–260, 2008.

30. M. Y. Vardi. Reasoning about the past with two-way automata. In Proc. of ICALP’98,
volume 1443 of LNCS, pages 628–641. Springer, 1998.

