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Abstract. This paper presents a novel approach to pedestrian classi-
fication which involves a high-level fusion of depth and intensity cues.
Instead of utilizing depth information only in a pre-processing step, we
propose to extract discriminative spatial features (gradient orientation
histograms and local receptive fields) directly from (dense) depth and
intensity images. Both modalities are represented in terms of individ-
ual feature spaces, in each of which a discriminative model is learned
to distinguish between pedestrians and non-pedestrians. We refrain from
the construction of a joint feature space, but instead employ a high-level
fusion of depth and intensity at classifier-level.
Our experiments on a large real-world dataset demonstrate a significant
performance improvement of the combined intensity-depth representa-
tion over depth-only and intensity-only models (factor four reduction in
false positives at comparable detection rates). Moreover, high-level fusion
outperforms low-level fusion using a joint feature space approach.

1 Introduction

Pedestrian recognition is an important problem in domains such as intelligent
vehicles or surveillance. It is particularly difficult, as pedestrians tend to occupy
only a small part of the image (low resolution), have different poses (shape) and
clothing (appearance), varying background, or might be partially occluded. Most
state-of-the-art systems derive feature sets from intensity images, i.e. gray-scale
(or colour) images, and apply learning-based approaches to detect people [1, 3,
9, 22, 23].

Besides image intensity, depth information can provide additional cues for
pedestrian recognition. Up to now, the use of depth information has been limited
to recovering high-level scene geometry [5, 11] and focus-of-attention mechanisms
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Fig. 1. Framework overview. Individual classifiers are trained offline on intensity and
corresponding depth images. Online, both classifiers are fused to a combined decision.
For depth images, warmer colors represent closer distances from the camera.

[8]. Given the availability of real-time high-resolution dense stereo algorithms [6,
20], we propose to enrich an intensity-based feature space for pedestrian classifi-
cation with features operating on dense depth images (Sect. 3). Depth informa-
tion is computed from a calibrated stereo camera rig using semi-global matching
[6]. Individual classifiers are trained offline on features derived from intensity
and depth images depicting pedestrian and non-pedestrian samples. Online, the
outputs of both classifiers are fused to a combined decision (Sect. 4). See Fig. 1.

2 Related Work

A large amount of literature covers image-based classification of pedestrians.
See [3] for a recent survey and a challenging benchmark dataset. Classification
typically involves a combination of feature extraction and a discriminative model
(classifier), which learns to separate object classes by estimating discriminative
functions within an underlying feature space.

Most proposed feature sets are based on image intensity. Such features can be
categorized into texture-based and gradient-based. Non-adaptive Haar wavelet
features have been popularized by [15] and adapted by many others [14, 22], with
manual [14, 15] and automatic feature selection [22]. Adaptive feature sets were
proposed, e.g. local receptive fields [23], where the spatial structure is able to
adapt to the data. Another class of texture-based features involves codebook
patches which are extracted around salient points in the image [11, 18].

Gradient-based features have focused on discontinuities in image brightness.
Local gradient orientation histograms were applied in both sparse (SIFT) [12]
and dense representations (HOG) [1, 7, 25, 26]. Covariance descriptors involving
a model of spatial variation and correlation of local gradients were also used [19].
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(a) Pedestrian (b) Non-Pedestrian

Fig. 2. Intensity and depth images for pedestrian (a) and non-pedestrian samples (b).
From left to right: intensity image, gradient magnitude of intensity, depth image, gra-
dient magnitude of depth

Yet others proposed local shape filters exploiting characteristic patterns in the
spatial configuration of salient edges [13, 24].

In terms of discriminative models, support vector machines (SVM) [21] are
widely used in both linear [1, 25, 26] and non-linear variants [14, 15]. Other pop-
ular classifiers include neural networks [9, 10, 23] and AdaBoost cascades [13, 19,
22, 24–26]. Some approaches additionally applied a component-based represen-
tation of pedestrians as an ensemble of body parts [13, 14, 24].

Others combined features from different modalities, e.g. intensity, motion,
depth, etc. Multi-cue combination can be performed at different levels: On
module-level, depth [5, 9, 11] or motion [4] can be used in a pre-processing step to
provide knowledge of the scene geometry and focus-of-attention for a subsequent
(intensity-based) classification module. Other approaches have fused information
from different modalities on feature-level by establishing a joint feature space
(low-level fusion): [1, 22] combined gray-level intensity with motion. In [17], in-
tensity and depth features derived from a 3D camera with very low resolution
(pedestrian heights between 4 and 8 pixels) were utilized. Finally, fusion can
occur on classifier-level [1, 2]. Here, individual classifiers are trained within each
feature space and their outputs are combined (high-level fusion).

We consider the main contribution of our paper to be the use of spatial depth
features based on dense stereo images for pedestrian classification at medium res-
olution (pedestrian heights up to 80 pixels). A secondary contribution concerns
fusion techniques of depth and intensity. We follow a high-level fusion strategy
which allows to tune features specifically to each modality and base the final
decision on a combined vote of the individual classifiers. As opposed to low-
level fusion approaches [17, 22], this strategy does not suffer from the increased
dimensionality of a joint feature space.

3 Spatial Depth and Intensity Features

Dense stereo provides information for most image areas, apart from regions which
are visible only by one camera (stereo shadow). See the dark red areas to the left
of the pedestrian torso in Fig. 2(a). Spatial features can be based on either depth
Z (in meters) or disparity d (in pixels). Both are inverse proportional given the
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(a) Intensity features (b) Depth features

Fig. 3. Visualization of gradient magnitude (related to HOG) and LRF features on
(a) intensity and (b) depth images. From left to right: Average gradient magnitude
of pedestrian training samples, two exemplary 5×5-pixel local receptive field features
and their activation maps, highlighting spatial regions of the training samples where
the corresponding LRFs are most discriminative with regard to the pedestrian and
non-pedestrian classes.

camera geometry with focal length f and the distance between the two cameras
B:

Z(x, y) =
fB

d(x, y)
at pixel (x, y) (1)

Objects in the scene have similar foreground/background gradients in depth
space, irrespective of their location relative to the camera. In disparity space
however, such gradients are larger, the closer the object is to the camera. To
remove this variability, we derive spatial features from depth instead of disparity.
We refer to an image with depth values Z(x, y) at each pixel (x, y) as depth image.

A visual inspection of the depth image vs. the intensity image in Fig. 2 re-
veals that pedestrians have a distinct depth contour and texture which is different
from the intensity domain. In intensity images, lower body features (shape and
appearance of legs) are the most significant feature of a pedestrian (see results
of part-based approaches, e.g. [14]). In contrast, the upper body area has dom-
inant foreground/background gradients and is particularly characteristic for a
pedestrian in the depth image. Additionally, the stereo shadow is clearly visible
in this area (to the left of the pedestrian torso) and represents a significant local
depth discontinuity. This might not be a disadvantage but rather a distinctive
feature. The various salient regions in depth and intensity images motivate our
use of fusion approaches between both modalities to benefit from the individual
strengths, see Sect. 4.

To instantiate feature spaces involving depth and intensity, we utilize well-
known state-of-the-art features, which focus on local discontinuities: Non-adaptive
histogram of oriented gradients with a linear SVM (HOG/linSVM) [1] and a neu-
ral network using adaptive local receptive fields (NN/LRF) [23]. For classifier
training, the feature vectors are normalized to [−1; +1] per dimension.

To get an insight into HOG and LRF features, Fig. 3 depicts the average
gradient magnitude of all pedestrian training samples (related to HOG), as well
as exemplary local receptive field features and their activation maps (LRF), for
both intensity and depth. We observe that gradient magnitude is particularly
high around the upper body contour for the depth image, while being more
evenly distributed for the intensity image. Further, almost no depth gradients
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are present on areas corresponding to the pedestrian body. During training, the
local receptive field features have developed to detect very fine grained structures
in the image intensity domain. The two features depicted in Fig. 3(a) can be
regarded as specialized “head-shoulder” and “leg” detectors and are especially
activated in the corresponding areas. For depth images, LRF features respond to
larger structures in the image, see Fig. 3(b). Here, characteristic features focus on
the coarse depth contrast between the upper-body head/torso area. The mostly
uniform depth texture on the pedestrian body is a prominent feature as well.

4 Fusion on Classifier-Level

A popular strategy to improve classification is to split-up a classification problem
into more manageable sub-parts on data-level, e.g. using mixture-of-experts or
component-based approaches [3]. A similar strategy can be pursued on classifier-
level. Here, multiple classifiers are learned on the full dataset and their outputs
combined to a single decision. Particularly, when the classifiers involve uncor-
related features, benefits can be expected. We follow a Parallel Combination
strategy [2], where multiple feature sets (i.e. based on depth and intensity, see
Sect. 3) are extracted from the same underlying data. Each feature set is then
used as input to a single classifier and their outputs combined (high-level fusion).

For classifier fusion, we utilize a set of fusion rules which are explained below.
An important prerequisite is that the individual classifier outputs are normalized,
so that they can be combined homogeneously. The outputs of many state-of-the-
art classifiers can be converted to an estimate of posterior probabilities [10, 16].
We use this sigmoidal mapping in our experiments.

Let xk, k = 1, . . . , n, denote a (vectorized) sample. The posterior for the k-th
sample with respect to the j-th object class (e.g. pedestrian, non-pedestrian),
estimated by the i-th classifier, i = 1, . . . ,m, is given by: pij(xk). Posterior
probabilities are normalized across object classes for each sample, so that:∑

j

(pij (xk)) = 1 (2)

Classifier-level fusion involves the derivation of a new set of class-specific con-
fidence values for each data point, qj(xk), out of the posteriors of the individual
classifiers, pij(xk). The final classification decision ω(xk) results from selecting
the object class with the highest confidence:

ω(xk) = arg max
j

(qj (xk)) (3)

We consider the following fusion rules to determine the confidence qj (xk) of
the k-th sample with respect to the j-th object class:

Maximum Rule The maximum rule bases the final confidence value on the clas-
sifier with the highest estimated posterior probability:

qj (xk) = max
i

(pij (xk)) (4)
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(a) Pedestrian samples (b) Non-Pedestrian samples

Fig. 4. Overview of (a) pedestrian and (b) non-pedestrian samples (intensity and cor-
responding depth images).

Product Rule Individual posterior probabilities are multiplied to derive the com-
bined confidence:

qj (xk) =
∏

i

(pij (xk)) (5)

Sum Rule The combined confidence is computed as the average of individual
posteriors, with m denoting the number of individual classifiers:

qj (xk) =
1
m

∑
i

(pij (xk)) (6)

SVM Rule A support vector machine is trained as a fusion classifier to dis-
criminate between object classes in the space of posterior probabilities of the
individual classifiers:

Let pjk = (p1j (xk) , . . . , pmj (xk)) denote the m-dimensional vector of in-
dividual posteriors for sample xk with respect to the j-th object class. The
corresponding hyperplane is defined by:

fj (pjk) =
∑

l

ylαl ·K (pjk,pjl) + b (7)

Here, pjl denotes the set of support vectors with labels yl and Lagrange multi-
pliers αl. K(·, ·) represents the SVM Kernel function. We use a non-linear RBF
kernel in our experiments. The SVM decision value fj (pjk) (distance to the
hyperplane) is used as confidence value:

qj (xk) = fj (pjk) (8)

5 Experiments

5.1 Experimental Setup

The presented feature/classifier combinations and fusion strategies, see Sects.
3 and 4, were evaluated in experiments on pedestrian classification. Training
and test samples comprise non-occluded pedestrian and non-pedestrian cut-outs
from intensity and corresponding depth images, captured from a moving vehicle
in an urban environment. See Table 1 and Fig. 4 for an overview of the dataset.
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Pedestrians (labelled) Pedestrians (jittered) Non-Pedestrians

Training Set (2 parts) 10998 43992 43046
Test Set (1 part) 5499 21996 21523

Total 16497 65988 64569

Table 1. Dataset statistics. The same numbers apply to samples from depth and
intensity images.

All samples are scaled to 48 × 96 pixels (HOG/linSVM) and 18 × 36 pixels
(NN/LRF) with an eight-pixel (HOG/linSVM) and two-pixel border (NN/LRF)
to retain contour information. For each manually labelled pedestrian bounding
box we randomly created four samples by mirroring and geometric jittering.
Non-pedestrian samples resulted from a pedestrian shape detection step with
relaxed threshold setting, i.e. containing a bias towards more difficult patterns.

HOG features were extracted from those samples using 8 × 8 pixel cells,
accumulated to 16×16 pixel blocks, with 8 gradient orientation bins, see [1]. LRF
features (in 24 branches, see [23]) were extracted at a 5× 5 pixel scale. Identical
feature/classifier parameters are used for intensity and depth. The dimension of
the resulting feature spaces is 1760 for HOG/linSVM and 3312 for NN/LRF.

We apply a three-fold cross-validation to our dataset: The dataset is split-
up into three parts of the same size, see Table 1. In each cross-validation run,
two parts are used for training and the remaining part for testing. Results are
visualized in terms of mean ROC curves across the three cross-validation runs.

5.2 Experimental Results

In our first experiment, we evaluate the performance of classifiers for depth and
intensity separately, as well as using different fusion strategies. Results are given
in Fig. 5(a-b) for the HOG/linSVM and NN/LRF classifier, respectively.

The performance of features derived from intensity images (black ◦) is better
than for depth features (red +), irrespective of the actual feature/classifier ap-
proach. Furthermore, all fusion strategies between depth and intensity clearly im-
prove performance (Fig. 5(a-b), solid lines). For both HOG/linSVM and NN/LRF,
the sum rule performs better than product rule, which in turn outperforms the
maximum rule. However, performance differences among fusion rules are rather
small. Only for NN/LRF, the maximum rule performs significantly worse. By
design, maximum selection is more susceptive to noise and outliers. Using a
non-linear RBF SVM as a fusion classifier does not improve performance over
fusion by the sum rule, but is far more computationally expensive. Hence, we
only employ the sum rule for fusion in our further experiments.

Comparing absolute performances, our experiments show that fusion of depth
and intensity can reduce false positives over intensity-only features at a constant
detection rate by approx. a factor of two for HOG/linSVM and a factor of four for
NN/LRF: At a detection rate of 90%, the false positive rates for HOG/linSVM
(NN/LRF) amount to 1.44% (2.01%) for intensity, 8.92% (5.60%) for depth and
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(a) HOG/linSVM classifier
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(b) NN/LRF classifier
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(c) Best performing classifiers and joint feature space with 1-σ error bars.

Fig. 5. Pedestrian classification performance using spatial depth and intensity features.
(a) HOG/linSVM, (b) NN/LRF, (c) best performing classifiers.
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0.77% (0.43%) for sum-based fusion of depth and intensity. This clearly shows
that the different strengths of depth and intensity can indeed be exploited, see
Sect. 3. An analysis of correlation between the classifier outputs for depth and
intensity confirms this: For HOG/linSVM (NN/LRF), the correlation coefficient
between depth and intensity is 0.1068 (0.1072). For comparison, the correlation
coefficient beween HOG/linSVM and NN/LRF on intensity images is 0.3096.

In our third experiment, we fuse the best performing feature/classifier for
each modality, i.e. HOG/linSVM for intensity images (black ◦) and NN/LRF
for depth images (red +). See Fig. 5(c). The results of fusion using the sum-
rule (blue *) outperforms all previously considered variants. More specifically,
we achieve a false positive rate of 0.35% (at 90% detection rate) which is a
reduction by a factor of four, compared to the state-of-the-art HOG/linSVM
classifier on intensity images (black ◦; 1.44% false positive rate). We additionally
visualize 1-σ error bars computed from the different cross-validation runs. The
non-overlapping error bars of the various system variants underline the statistical
significance of our results.

We further compare the proposed high-level fusion (Fig. 5(c), blue *) with
low-level fusion (Fig. 5(c), magenta ∆). For this, we construct a joint feature
space combining HOG features for intensity and LRF features for depth (nor-
malized to [−1; +1] per dimension). A linear SVM is trained in the joint space to
discriminate between pedestrians and non-pedestrians. A non-linear SVM was
computationally not feasible, given the increased dimension of the joint feature
space (5072) and our large datasets. Results show, that low-level fusion using a
joint feature space is outperformed by the proposed high-level classifier fusion,
presumable because of the higher dimensionality of the joint space.

6 Conclusion

This paper presented a novel framework for pedestrian classification which in-
volves a high-level fusion of spatial features derived from dense stereo and in-
tensity images. Our combined depth/intensity approach outperforms the state-
of-the-art intensity-only HOG/linSVM classifier by a factor of four in reduction
of false positives. The proposed classifier-level fusion of depth and intensity also
outperforms a low-level fusion approach using a joint feature space.
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