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Abstract. An important problem in many computer vision tasks is the
separation of an object from its background. One common strategy is to
estimate appearance models of the object and background region. How-
ever, if the appearance is spatially varying, simple homogeneous models
are often inaccurate. Gaussian mixture models can take multimodal dis-
tributions into account, yet they still neglect the positional information.
In this paper, we propose localised mixture models (LMMs) and evaluate
this idea in the scope of model-based tracking by automatically parti-
tioning the fore- and background into several subregions. In contrast
to background subtraction methods, this approach also allows for mov-
ing backgrounds. Experiments with a rigid object and the HumanEva-II
benchmark show that tracking is remarkably stabilised by the new model.

1 Introduction

In many image processing tasks such as object segmentation or tracking, it is
necessary to distinguish between the region of interest (foreground) and its back-
ground. Common approaches, such as MRFs or active contours build appearance
models of both regions with their parameters being learnt either from a-priori
data or from the images [1–3]. Various types of features can be used to build
the appearance model. Most common are brightness and colour, but any dense
feature set such as texture descriptors [4] or motion [5] can be part of the model.

Apart from the considered features, the statistical model of the region is of
large interest. In simple cases, one assumes a Gaussian distribution in each re-
gion. However, since usually object regions change their appearance locally, such
a Gaussian model is too inaccurate. A typical example is the black and white
stripes of a zebra, which leads to a Gaussian distribution with a grayish mean
that does neither describe the black nor the white part very well. In order to deal
with such cases, Gaussian mixture models or kernel density models have been
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Fig. 1. Left: Illustrative examples of situations where object (to be further specified by
a shape prior) and background tregion are not well modelled by identically distributed
pixels. In (a), red points are more likely in the background. Thus, the hooves of the
giraffe will not be classified correctly. In (b), the dark hair and parts of the body are
more likely to belong to the background. Localised distributions can model these cases
more accurately. Right: Object model used by the tracker in one of our experiments
(c) and decomposition of the object model into three different components (d), as
proposed by the automatic splitting algorithm from [6]. There are 22 joint angles in
the model, resulting in a total of 28 parameters that must be estimated.

proposed. These models are much more general, yet still impose the assump-
tion of identically distributed pixels in each region, i.e., they ignore positional
information. The left part of Fig. 1 shows two examples where this is insufficient.

In contrast, a model which is sensitive for the location in the image was pro-
posed in [7]. The region statistics are estimated for each point separately, thereby
considering only information from the local neighbourhood. Consequently, the
distribution varies smoothly within a region. A similar local statistical model was
used in [8]. A drawback of this model is that it blurs across discontinuities inside
the region. As the support of the neighbourhood needs to be sufficiently large
to reliably estimate the parameters of local distributions, this blurring can be
quite significant. This is especially true when using local kernel density models,
which require more data than a local Gaussian model.

The basic idea in the present paper is to segment the regions into subregions
inside which a statistical model can be estimated. Similar to the above local
region statistics, the distribution model integrates positional information. The
support for estimating the distribution parameters is usually much larger as it
considers all pixels from the subregion, though. Splitting the background into
subregions and employing a kernel density estimator in each of those allows for
a very precise region model relying on enough data for parameter estimation.

Related to this concept are Gaussian mixture models in the context of back-
ground subtraction. Here, the mixture parameters are not estimated in a spatial
neighbourhood but from data along the temporal axis. This leads to models
which include very accurate positional information [9]. In [10], an overview of
several possible background models ranging from very simple to complex models
is given. The learned statistics from such models can also be combined with a
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conventional spatially global model as proposed in [11]. For background subtrac-
tion, however, the parameters are learned in advance, i.e., a background image
or images with little motion and without the object must be available. Such
limitations are not present in our approach. In fact, our experiments show that
background subtraction and the proposed localised mixture model (LMM) are
in some sense complementary and can be combined to improve results in track-
ing. Also note that, in contrast to image labeling approaches that also split the
background into different regions such as [12], no learning step is necessary.

A general problem that arises when making statistical models more and more
precise is the increasing amount of local optima in corresponding cost functions.
In Fig. 1 there is actually no reason to put the red hooves to the giraffe region
or the black hair to the person. A shape prior and/or a close initialisation of the
contour is required to properly define the object segmentation problem. For this
reason we focus in this paper on the field of model based tracking, where both
a shape model and a good initial separation into foreground and background
can be derived from the previous frame. In particular, we evaluated the model
in silhouette-based 3-D pose tracking, where pose and deformation parameters
of a 3-D object model are estimated such that the image is optimally split into
object and background [13, 6]. The model is generally applicable to any other
contour-based tracking method as well. Another possible field of application is
semi-supervised segmentation, where the user can incrementally improve the
segmentation by manually specifying some parts of the image as foreground or
background [1]. This can resolve above ambiguities as well.

Our paper is organised as follows: We first review the pose tracking approach
used for evaluation. We then explain the localised mixture model (LMM) in
Section 3. While the basic approach only works with static background images,
we remove this restriction later in a more general approach. After presentation
of our experimental data in Section 4, the paper is concluded in Section 5.

2 Foreground-Background Separation in Region-Based

Pose Tracking

In this paper, we focus on tracking an articulated free-form surface consisting of
rigid parts interconnected by predefined joints. The state vector χ consists of the
global pose parameters (3-D shift and rotation) as well as n joint angles, similar
to [14]. The surface model is divided into l different (not necessarily connected)
components Mi, i = 1, . . . , l, as illustrated in Fig. 1. The components are chosen
such that each component has a uniform appearance but its appearance differs
from other components. Such a model has been proposed in [6]. There are many
more tracking approaches than the one presented here. We refer to the surveys
[15, 16] for an overview.

Given an initial pose, the primary goal is to adapt the state vector such that
the projections of the object parts lead to maximally homogeneous regions in
the image. This is stated by the following cost function which is sought to be
minimised in each frame:
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Fig. 2. Example of a background segmentation. From left to right: (a) Background
image. (b,c) K-means clustering with three and six clusters. (d,e) Level set segmentation
with two different parameter settings.

E(χ) = −
l

∑

i=0

∫

Ω

(

vi(χ, x)Pi,χ(x) log pi,χ(x)
)

dx, (1)

where Ω denotes the image domain. The appearance of each component i and
of the background (i = 0) is modelled by a probability density function (PDF)
pi, i ∈ 0, . . . , l. The PDFs of the object parts are modelled as kernel densities,
whereas we will use the LMM for modelling the background as explained in later
sections.

Pi,χ is the indicator function for the projection of the i-th component Mi, i.e.
Pi,χ(x) is 1 if and only if a part of the object with pose χ is projected to the image
point x. In order to take occlusion into account, vi(χ, x) : R

6+n × Ω 7→ {0, 1} is
a visibility function that is 1 if and only if the i-th object part is not occluded
by another part of the object in the given pose. Visibility can be computed
efficiently using openGL.

The cost function can be minimised locally by a modified gradient descent.
The PDFs are evaluated at silhouette points xi of each projected model compo-
nents. These points xi are then moved along the normal direction of the projected
object, either towards or away from the components, depending on which of the
regions’ PDF fits better at that particular point. The point motion is trans-
ferred to the corresponding change of the state vector by using a point-based
pose estimation algorithm as described, e.g., in [7].

3 Localised Mixture Models

In the above approach, the object region is very accurately described by the ob-
ject model, which is split into various parts that are similar in their appearance.
Hence, the local change of appearance within the object region is taken well into
account. The background region, however, consists of a single appearance model
and positional changes of this appearance are so far neglected.

Consider a red-haired person standing on a red carpet which is facing the
camera. Then, only a very small part of the person is red, compared to a large
part of the background. As a larger percentage of pixels lying outside the person
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are red, red pixels will be classified to belong to the outside regions. Thus,
the hair will be considered as not being part of the object, which deteriorates
tracking. This happens despite the fact that the carpet is far away from the hair.

The idea to circumvent this problem is to separate the background into mul-
tiple subregions each of which is modelled by its own PDF. This can be regarded
as a mixture of PDFs, yet the mixture components exploit the positional infor-
mation telling where the separate mixture components are to be applied.

3.1 Case I: Static Background Image Available

If a static background image is available, segmenting the background is quite
simple. In contrast to the top-level task of object-background separation, the
regions need not necessarily correspond to objects in the scene. Hence, virtually
any multi-region segmentation technique can be applied for this. We tested a very
simple one, the K-means algorithm [17, 18], and a more sophisticated level set
based segmentation, which considers multiple scales and includes a smoothness
prior on the contour [19]. In the K-means algorithm the number of clusters
is fixed, whereas the level set approach optimises the number of regions by a
homogeneity criterion, which is steered by a tuning parameter. Thus, the number
of subregions can vary.

Fig. 2 compares the segmentation output of these two methods for two differ-
ent parameter settings. The results with the level set method are much smoother
due to the boundary length constraint. In contrast, the regions computed with
K-means have more fuzzy boundaries. This can be disadvantageous, particularly
when the localisation of the model is not precise due to a moving background as
considered in the next section.

After splitting the background image into subregions, a localised PDF can
be assembled from PDFs estimated in each subregion j. Let L(x, y) denote the
labelling obtained by the segmentation, we obtain the density

p(x, y, s) = pL(x,y)(s), (2)

where s is any feature used for tracking. It makes most sense to use the same
density model for the subregions as used in the segmentation method. In case of
K-means this means that we have a Gaussian distribution with fixed variance:

pkmeans
j (s) ∝ exp

(

− (s − µj)
2

2

)

, (3)

where µj is the cluster centre of cluster j. The level set based segmentation
method is build upon a kernel density estimator

plevelset
j (s) = Kσ ∗

∑

(x,y)∈Ωj
δ(s, I(x, y))

|Ωj |
(4)

where δ is the Dirac delta distribution and Kσ is a Gaussian kernel with standard
deviation σ. Here, we use σ =

√
30. The PDF in (2) can simply be plugged into

the energy in (1). Note that this PDF needs to be estimated only once for the
background image and then stays fixed, whereas the PDFs of the object parts
are reestimated in each frame to account for the changing appearance.
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3.2 Case II: Potentially Varying Background

For some scenarios, generating a static background image is not possible. In
outdoor scenarios, for example, the background usually changes due to moving
plants or people passing by. Even inside buildings, the lighting conditions –
and thus the background – typically vary. Furthermore, the background could
vary due to camera motion. In fact, varying backgrounds can appear in many
applications and render background subtraction methods impossible.

In general, the background changes only slowly between two consecutive
frames. This can be exploited to extend the described approach to non-static
images or to images where the object is already present. Excluding the current
object region from the image domain the remainder of the image can be seg-
mented as before. This is shown in Fig. 5. To further deal with slow changes in
the background, the segmentation can also be recomputed in each new frame.
This takes changes in the localisation or in the statistics into account.

A subtle difficulty appearing in this case is that there may be parts of the
background not available in the density model because these areas were occluded
by the object in the previous frame. When reestimating the pose parameters
of the object model, the previously occluded part can appear and needs some
treatment. In such a case we choose the nearest available neighbour and use
the probability density of the corresponding subregion. That is, if Ωj is the jth
subregion as computed by the segmentation step, the local mixture density is:

p(x, y, s) = pj∗(x, y) with j∗ = argmin
j

(dist((x, y), Ωj)) . (5)

4 Experiments

We evaluated the described region statistics on sequence S4 of the HumanEva-
II benchmark [20]. For this sequence, a total of four views as well as static
background images are available. Thus, this sequence allows us to compare the
variant that uses a static background image to the version without the need for
such an image. The sequence shows a man walking in a circle for approximately
370 frames, followed by a jogging part from frame 370 to 780, and finally a
“balancing” part until frame 1200. Ground truth marker data is available for this
sequence and tracking errors can be evaluated via an online interface provided
by Brown University. Note that the ground truth data between frame 299 and
334 is not available, thus this part is ignored in the evaluation. In the figures,
we plotted a linear interpolation between frame 298 and 335.

Table 1 shows some statistics over tracking results with different models. The
first line in the table shows an experiment in which background subtraction was
used to find approximate silhouettes of the person to be tracked. These silhouette
images are used as additional features, i.e. in addition to the three channels of
the CIELAB colour space, for computing the PDFs of the different regions. This
approach corresponds to the one in [6]. Results are improved when using the
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Fig. 3. PDFs estimated for the CIELAB colour channels of the subregions shown in
Fig. 5. Each colour corresponds to one region. From left to right: Lightness chan-
nel, A channel and B channel. Top: Estimated PDFs when using the level-set-based
segmentation. Bottom: Estimated PDFs when computing the subregions using K-
means. Due to the smoothness term, the region boundaries are smoother resulting in
PDFs that are separated less clearly when using the level-set-based method than with
the K-means algorithm. Nevertheless, the level set approach performed better in the
quantitative evaluation.

LMM based on level set segmentation. This can be seen by comparing the first
and third line of the table. The best results are achieved when using both the
silhouette images as well as the LMM (fifth line). The level set based LMM yields
slightly better results than K-means clustering. See Fig. 4 for a tracking curve
illustrating the error per frame for the best of these experiments

Fig. 5 shows segmentation results without using the background image, hence
dropping the assumption of a static background. Fig. 3 visualises the estimated
PDFs for each channel in each subregion. Aside from some misclassified pixels
close to the occluded area (due to tracking inaccuracies, and due to the fact that
a human cannot be perfectly modelled by a kinematic chain), the background
is split into reasonable subparts and yields a good LMM. Tracking is almost as
good as the combination with background subtraction, as indicated by the lower
part of Table 1, without requiring a strictly static background any more. The
same setting with a global Parzen model fails completely, as depicted in Fig. 4,
since fore- and background are too similar for tracking at some places.

In order to verify the true applicability of the LMM in the presence of non-
static backgrounds, we tracked a tea box in a monocular sequence with a partially
moving background. Neither ground truth nor background images are available
for this sequence, making background subtraction impossible. As expected, the
LMM can handle the moving background very well. When using only the Parzen
model for the background, a 90◦ rotation of the tea box is missed by the tracker
as shown in the left part of the lower row in Fig. 6.

If we add Gaussian noise with standard deviation 10, the Parzen model com-
pletely fails (right part in lower row of Fig. 6) while tracking still works when
using the LMM.
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Table 1. Comparison of different tracking versions for sequence S4 of the HumanEva-II
benchmark as reported by the automatic evaluation script. Each line shows the model
used for the background region, if images of the backgrounds were used, the average
tracking error in millimetre, its variance and its maximum, as well as the total time
used for tracking all 1200 frames.

Model BG image Avg error Variance Max. Time

Parzen model + BG subtraction yes 46.16 276.81 104.0 4h 31m

LMM (K-means) yes 49.63 473.90 114.2 4h 34m

LMM (level set segmentation) yes 42.18 157.31 93.6 4h 22m

BG subtraction + LMM (K-means) yes 42.96 178.19 92.6 4h 27m

BG subtraction + LMM (LS segm.) yes 41.64 153.94 83.8 4h 29m

Parzen model no 451.11 24059.41 728.4 5h 12m

LMM (K-means) no 52.64 588.66 162.7 9h 19m

LMM (level set segmentation) no 49.94 168.61 111.2 19h 9m

Parzen model

Localised mixture modelJogging

Walking Balancing

Fig. 4. Tracking error per frame of some tracking results of sequence S4 from the
HumanEva-II dataset, automatically evaluated. Left: LMM where background sub-
traction information is supplemented as an additional feature channel. This plot cor-
responds to the fifth line in Table 1. Right: Global kernel density estimator (red) and
LMM (blue). Here, we did not use the background images or any information derived
from them. These plots correspond to the last (blue) and third last (red) line of Table 1.

Fig. 5. Segmentation results for frame 42 as seen from camera 3. Leftmost: Input
image of frame 42 the HumanEva-II sequence S4. Left: Object model projected into
the image. The different colours indicate the different model component. Right: Seg-
mentation with level-set-based segmentation and using K-means with 3 regions. The
white part is the area occluded by the tracked object, i.e. the area removed from the
segmentation process. Every other colour denotes a region. Although no information
from the background image was used, segmentation results still look good.
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Fig. 6. Experiment with varying background. Upper row: Model of the tea box to be
tracked, input image with initialisation in first frame, and tracking results for frame
50, 150 and 180. Lower row: Input image (frame 90), result when using LMM, result
with Parzen model, and results with Gaussian noise with LMM and the Parzen model.

5 Summary

We have presented a localised mixture model that splits the region whose ap-
pearance should be estimated into distinct subregions. The appearance of the
region is then modelled by a mixture of densities, each applied in its local vicin-
ity. For the partitioning step, we tested a fast K-means clustering as well as
a multi-region segmentation algorithm based on level sets. We demonstrated
the relevance of such a localised mixture model by quantitative experiments in
model based tracking using the HumanEva-II benchmark. Results clearly im-
proved when using this new model. Moreover, the approach is also applicable
when a static background image is missing. In such cases tracking is only success-
ful with the localised mixture model. We believe that such localised models can
also be very beneficial in other object segmentation tasks, where low-level cues
are combined with a-priori information, such as semi-supervised segmentation,
or combined object recognition and segmentation.
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