Skip to main content

Real Aperture Axial Stereo: Solving for Correspondences in Blur

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5748))

Abstract

When there is relative motion along the optical axis between a real-aperture camera and a 3D scene, the sequence of images captured will not only be space-variantly defocused but will also exhibit pixel motion due to motion parallax. Existing single viewpoint techniques such as shape-from-focus (SFF)/depth-from-defocus (DFD) and axial stereo operate in mutually exclusive domains. SFF and DFD assume no pixel motion and use the focus and defocus information, respectively, to recover structure. Axial stereo, on the other hand, assumes a pinhole camera and uses the disparity cue to infer depth. We show that in real-aperture axial stereo, both blur and pixel motion are tightly coupled to the underlying shape of the object. We propose an algorithm which fuses the twin cues of defocus and parallax for recovering 3D structure. The effectiveness of the proposed method is validated with many examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvertos, N., Brzakovic, D., Gonzalez, R.C.: Camera geometries for image matching in 3-D machine vision. IEEE Trans. Pattern Anal. Mach. Intell. 11(9), 897–915 (1989)

    Article  Google Scholar 

  2. Jain, R., Bartlett, S.L., O’Brien, N.: Motion stereo using ego-motion complex logarithmic mapping. IEEE Trans. Pattern Anal. Mach. Intell. 9(3), 356–369 (1987)

    Article  Google Scholar 

  3. Willson, R.G., Shafer, S.A.: What is the center of the image? Journal of the Optical Society of America A 11(11), 2946–2955 (1994)

    Article  Google Scholar 

  4. Zhang, Y., Wen, C., Zhang, Y.: Estimation of motion parameters from blurred images. Pattern Recognition Letters 21(5), 425–433 (2000)

    Article  Google Scholar 

  5. Myles, Z., Lobo, N.: Recovering affine motion and defocus blur simultaneously. IEEE Trans. Pattern Anal. Mach. Intell. 20(6), 652–658 (1998)

    Article  Google Scholar 

  6. Deschenes, F., Ziou, D., Fuchs, P.: An unified approach for a simultaneous and cooperative estimation of defocus blur and spatial shifts. Image and Vision Computing 22(1), 35–57 (2004)

    Article  Google Scholar 

  7. Chaudhuri, S., Rajagopalan, A.N.: Depth from defocus: A real aperture imaging approach. Springer, New York (1999)

    Book  Google Scholar 

  8. Ma, J., Olsen, S.I.: Depth from zooming. Journal of the Optical Society of America A 7(10), 1883–1890 (1990)

    Article  Google Scholar 

  9. Lavest, J.M., Rives, G., Dhome, M.: Three-dimensional reconstruction by zooming. IEEE Trans. Robotics and Automation 9(2), 196–207 (1993)

    Article  Google Scholar 

  10. Rajagopalan, A.N., Chaudhuri, S., Mudenagudi, U.: Depth estimation and image restoration using defocused stereo pairs. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1521–1525 (2004)

    Article  Google Scholar 

  11. Hasinoff, S.W., Kutulakos, K.N.: Confocal stereo. International Journal of Computer Vision 81(1), 82–104 (2009)

    Article  Google Scholar 

  12. Jin, H., Favaro, P.: A variational approach to shape from defocus. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 18–30. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Watanabe, M., Nayar, S.K.: Telecentric optics for focus analysis. IEEE Trans. Pattern Anal. Mach. Intell. 19(12), 1360–1365 (1997)

    Article  Google Scholar 

  14. Favaro, P., Soatto, S.: A geometric approach to shape from defocus. IEEE Trans. on Pattern Anal. Mach. Intell. 27(3), 406–416 (2005)

    Article  Google Scholar 

  15. Favaro, P., Soatto, S., Burger, M., Osher, S.J.: Shape from defocus via diffusion. IEEE Trans. on Pattern Anal. Mach. Intell. 30(3), 518–531 (2008)

    Article  Google Scholar 

  16. Zhang, L., Nayar, S.K.: Projection defocus analysis for scene capture and image display. In: Proc. ACM SIGGRAPH, pp. 907–915 (2006)

    Google Scholar 

  17. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. In: Proc. ACM SIGGRAPH (2007)

    Google Scholar 

  18. Favaro, P., Soatto, S.: Seeing beyond occlusions (and other marvels of a finite lens aperture). In: Proc. Computer Vision and Pattern Recognition, pp. 579–586 (2003)

    Google Scholar 

  19. Hasinoff, S.W., Kutulakos, K.N.: A layer-based restoration framework for variable-aperture photography. In: Proc. IEEE Intl. Conf. Computer Vision (2007)

    Google Scholar 

  20. Nayar, S.K., Nakagawa, Y.: Shape from focus. IEEE Trans. Pattern Anal. Mach. Intell. 16(8), 824–831 (1994)

    Article  Google Scholar 

  21. Pentland, A.P.: A new sense for depth of field. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 523–531 (1987)

    Article  Google Scholar 

  22. Li, S.Z.: Markov random field modeling in computer vision. Springer, Heidelberg (1995)

    Book  Google Scholar 

  23. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. and Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  24. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

    Article  MATH  Google Scholar 

  25. Raj, A., Zabih, R.: A graph cut algorithm for generalized image deconvolution. In: Proc. IEEE Intl. Conf. on Computer Vision, pp. 1048–1054 (2005)

    Google Scholar 

  26. Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts- A review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1274–1279 (2007)

    Article  Google Scholar 

  27. Rother, C., Kolmogorov, V., Lempitsky, V., Szummer, M.: Optimizing binary MRFs via extended roof duality. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  28. Brodatz, P.: Textures: A photographic album for artists and designers. Dover, New York (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sahay, R.R., Rajagopalan, A.N. (2009). Real Aperture Axial Stereo: Solving for Correspondences in Blur. In: Denzler, J., Notni, G., Süße, H. (eds) Pattern Recognition. DAGM 2009. Lecture Notes in Computer Science, vol 5748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03798-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03798-6_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03797-9

  • Online ISBN: 978-3-642-03798-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics