arXiv:0804.4859v5 [quant-ph] 7 Jul 2011

The communication complexity of non-signaling distrilouts
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Abstract

We study a model of communication complexity that encomgmssany well-studied problems, including clas-
sical and quantum communication complexity, the compjexdtsimulating distributions arising from bipartite mea-
surements of shared quantum states, and XOR games. In ttil,mdice gets an input, Bob gets an inpuy, and
their goal is to each produce an outpub distributed according to some pre-specified joint distidoup(a, b|z, y).

Our results apply to any non-signaling distribution, tlsathose where Alice’s marginal distribution does not dejpen
on Bob’s input, and vice versa.

By taking a geometric view of the non-signaling distribuo we introduce a simple new technique based on
affine combinations of lower-complexity distributions,dawe give the first general technique to apply to all these
settings, with elementary proofs and very intuitive intetptions. Specifically, we introduce two complexity mea-
sures, one which gives lower bounds on classical commuoicaand one for quantum communication. These
measures can be expressed as convex optimization probMimshow that the dual formulations have a striking
interpretation, since they coincide with maximum violaswf Bell and Tsirelson inequalities. The dual expressions
are closely related to the winning probability of XOR gamBgspite their apparent simplicity, these lower bounds
subsume many known communication complexity lower bounthots, most notably the recent lower bounds of
Linial and Shraibman for the special case of Boolean funstio

We show that as in the case of Boolean functions, the gap betéine quantum and classical lower bounds is at
most linear in the size of the support of the distributiord dones not depend on the size of the inputs. This translates
into a bound on the gap between maximal Bell and Tsirelsanuialéty violations, which was previously known only
for the case of distributions with Boolean outcomes andasmifmarginals. It also allows us to show that for some
distributions, information theoretic methods are neagstsaprove strong lower bounds.

Finally, we give an exponential upper bound on quantum aasisatal communication complexity in the simul-
taneous messages model, for any non-signaling distritbutidne consequence of this is a simple proof that any
guantum distribution can be approximated with a constanthar of bits of communication.

1 Introduction

Communication complexity of Boolean functions has a lond goh past, stemming from the paper of Yao in
1979 [Yao79], whose motivation was to study the area of VLi&uits. In the years that followed, tremendous
progress has been made in developing a rich array of lowandtachniques for various models of communication
complexity (see e.g. [KN97]).

From the physics side, the question of studying how much conication is needed to simulate distributions
arising from physical phenomena, such as measuring bipaytiantum states, was posed in 1992 by Maudlin, a
philosopher of science, who wanted to quantify the nonitycimherent to these systernis [Mau92]. Maudlin, and the
authors who followed [BCT99, SteC0, TB03, CGMPO5, DLROG® independently of his work, and of each other)
progressively improved upper bounds on simulating coticia of the 2 qubit singlet state. In a recent breakthrough,
Regev and Tonel [RT10] proved that two bits of communicasaffice to simulate the correlations arising from
two-outcome measurements of arbitrary-dimension bifgagiantum states. In the more general case of non-binary
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outcomes, Shi and Zhu gave a protocol to approximate quadistmbutions within constant error, using constant
communication[SZQ08]. No non-trivial lower bounds are kmdfar this problem.

In this paper, we consider the more general framework of lsitimg non-signaling distributions. These are distri-
butions of the formp(a, b|x, y), where Alice gets input and produces an outpatand Bob gets inpuf and outputs.

The non-signaling condition is a fundamental property pgliite physical systems, which states that the players gai
no information on the other player’s input. In particulastdbutions arising from quantum measurements on shared
bipartite states are non-signaling, and Boolean functioag be reduced to extremal non-signaling distributions wit
Boolean outcomes and uniform marginals.

Outside of the realm of Boolean functions, a very limited ti@mof tools are available to analyze the commu-
nication complexity of distributed tasks, especially faragtum distributions with non-uniform marginals. In such
cases, the distributions live in a larger-dimensional sgaw cannot be cast as communication matrices, so standard
techniques do not apply. The structure of non-signalingidigions has been the object of much study in the quantum
information community, yet outside the case of distribngiovith Boolean inputs or outcomes [JM05, BP05], or with
uniform marginal distributions, much remains to be unaerdt

We introduce a new method to study all non-signaling digtidms, including the case of non-Boolean outcomes
and non-uniform marginals. Our starting point is the obaton that non-signaling distributions coincide with adfin
(instead of convex) combinations of distributions that a@¢ require any communication, called local distributions.
With this elegant geometric formulation in mind, we show himarelate communication to non-locality, where we
measure non-locality by how far, in terms of its “best” affie@resentation, a distribution is from the convex set of
local distributions. Although they are formulated, andyeno, in quite a different way, our lower bounds turn out to
subsume Linial and Shraibman’s nuclear and factorizatiwmriower bounds [LS(09], in the restricted case of Boolean
functions. Similarly, our upper bounds extend the uppemiswof Shi and Zhu for approximating quantum distribu-
tions [SZ08] to all non-signaling distributions (in patlar distributions obtained by protocols using entangleime
and quantum communication).

Our complexity measures can be expressed as convex opimnipaioblems. We may consider dual expressions,
and these turn out to correspond precisely to maximal Betjurality violations in the case of classical communication
and Tsirelson inequality violations for quantum commutiaa This confirms the long-held physics intuition that
large Bell inequality violations should lead to large lova@unds on communication complexity.

We also show that there cannot be a large gap between thealassd quantum expressions. This was previously
known only in the case of distributions with Boolean outcsraad uniform marginals, and followed by Tsirelson’s
theorem and Grothendieck’s inequality, neither of whicé lamown to extend beyond this special case. This also
shows that our method, as was already the case for Linial Arait$nan’s bounds, cannot hope to prove large gaps
between classical and quantum communication complexitjléfhis is a negative result, it also sheds some light on
the relationship between the Linial and Shraibman familyoefer bound techniques, and the information theoretic
methods, such as the recent subdistribution bound [JKN&8, of the few lower bound techniques not known to
follow from Linial and Shraibman. We give an example of a peob [BCT99] for which rectangle size gives an
exponentially better lower bound than our method.

Summary of results The paper is organized as follows. In Secfibn 2, we give thaired definitions and models of
communication complexity and characterizations of thes#a of distributions we consider.

In Sectior 8, we prove our lower bound on classical and quamommunicationTheorem[3), and show that
it coincides with Linial and Shraibman’s method in the specase of Boolean function3lieorems[4 and®. Our
lower bounds are convex optimization programs (linear o in the classical case), and in Secfibn 4, we show
that the dual programs have a natural interpretation in fguaimformation, as they coincide with Bell (or Tsirelson)
inequality violations Theorem([6). We give a dual expression which also has a natural int&xtioe, as the maximum
winning probability of an associated XOR gantofollary B)). The primal form turns out to be the multiplicative
inverse of the maximum winning probability of the assoaa¥®©R game, where all inputs have the same winning
probability.

In Sectior b, we compare the two methods and show that thewmand classical lower bound expressions can
differ by at most a factor that is linear in the number of outes Theorem[d). When viewed as maximum Bell
inequality violations, our results imply that if Alice andB each havé: possible outcomes, then the largest Bell
inequality violation for quantum distributions is at matk?).



Finally, in Sectiori b, we give upper bounds on simultaneoassages complexity in terms of our lower bound
expression Theorem[§. We use fingerprinting methods [BCWdWQ1, Yab03, SZ08, GHd0 give very simple
proofs that classical communication with shared randosirsquantum communication with shared entanglement,
can be simulated in the simultaneous messages model, witinertial blowup in communication, and in particular
that any quantum distribution can be approximated with riommunication.

Related work The use of affine combinations for non-signaling distribo$ has roots in the quantum logic com-
munity, where quantum non-locality has been studied withansetting of more general probability theories [FR81,
RE81,[KRE87[ Wil92]. Until recently, this line of work wasrtgely unknown in the quantum information theory
community [BarQO¥, BBLWOI7].

The structure of the non-signaling polytope has been thecbloff much study. A complete characterization of
the vertices has been obtained in some, but not all caseswdoplayers, the case of binary inputs [BLNI5], and
the case of binary outputs [BP(05, JMO5] are known, andnf@layers, the case of Boolean inputs and outputs is
known [BPO5].

The work on simulating quantum distributions has focusethiy@n providing upper bounds, and most results
apply to simulating the correlations only. In particulagnér and Bacon show that projective measurements on a
maximally entangled qubit pair may be simulated using otebtommunication[[TB0O3], and Regev and Toner
extend this result by showing that the correlations ari$ingn binary measurements on any entangled state may be
simulated using two bits of communication orily [RT10]. A fessults address the simulation of quantum distributions
with non-uniform marginals. Bacon and Toner give an upperoof 2 bits for non-maximally entangled qubit
pairs [TBO3]. Shiand Zhu[SZ08] show a constant upper boondpproximating any quantum distribution (including
the marginals) to within a constant.

Pironio gives a general lower bound technique based onliRelinequalities[[Pir0B]. There are a few ad hoc lower
bounds on simulating quantum distributions, includingnadir lower bound for a distribution based on Deutsch-Jezsa’
problem [BCT99], and a recent lower bound of Gavinsky [Gdv09

The v2 method was first introduced as a measure of the complexityatfices [LMSSO0/7]. It was shown to be
a lower bound on communication complexity [L$09], and toeyatize many previously known methods. Leteal.
use it to establish direct product theorems and relate taérthrm of+, to the value of XOR game5 [L08]. Lee
and Shraibmari [LS08] use a multidimensional generalinatfca related quantity. (where the norm-1 ball consists
of cylinder intersections) to prove a lower bound in the iipaltty number-on-the-forehead-model, for the disjoiste
function.

Since the first publication of this work, several extensiand improvements have been made to the upper bounds
on Bell inequality violations of Sectidnl 5, and related lovibunds on the possible violations have been proved
[JPPG 10k, JPPG 10a[JP10, BRSAW10].

2 Preliminaries

In this paper, we extend the framework of communication dewity to non-signaling distributions. This framework
encompasses the standard models of communication cornyptéxBoolean functions but also total and partial non-
Boolean functions and relations, as well as distributiaigreg from the measurements of bipartite quantum states.
Most results we present also extend to the multipartiténgpett

2.1 Definitions of the distribution classes

Throughout this article, we consider bipartite conditiadiatributionsp(a, b|x, y) wherex € X,y € ) are the inputs

of the players, and they are required to each produce anmetea A, b € B, distributed according tp(a, b|z, y).

We will focus on so-called non-signaling distributions, exé the marginal distribution of a given player’s outcome
does not depend on the other player’s input. These includesagcial case different classes of distributions, which
we define in the following subsections.



2.1.1 Local distributions

In the quantum information literature, the distributiohattcan be simulated with shared randomness and no commu-
nication (also called a local hidden variable model) aréeddbcal distributions.

Definition 1. Local deterministic distributionare of the fornp(a, bz, y) = da—x, (z) - Ob=rz(y) Wherers : & — A
and\g : Y — B, and/ is the Kronecker delta. A distribution iscal if it can be written as a convex combination of
local deterministic distributions.

We index byA the set of local deterministic distributiofip*} xc 4 and denote by the set of local distributions.

2.1.2 Quantum distributions

Of particular interest in the study of quantum non-locaditg the distributions arising from measuring bipartitergua
tum states. We will use the following definition:

Definition 2. A distributionp is quantunif there exists a bipartite quantum stdtg) in a Hilbert space = HAQ@H 5
and measurement operatof&, (z) : a € A,x € X'} acting on 4 and{E;(y) : b € B,y € Y} acting onH g, such
thatp(a, blz, y) = (Y|E.(z) @ Eyw(y)|e), with the measurement operators satisfying

1. Eu(z)t = E,(z) and By (y)t = Ey(y),
2. Eo(2) - By (2) = 840 Eq(x) and Ey(y) - Ew (y) = dpp Eb(y),

3. Y, Eu(z) =14and)’, Ey(z) = 1p, wherel 4 and1p are the identity operators o 4 and? g, respec-
tively.

We denote byQ the set of all quantum distributions.

2.1.3 Non-signaling distributions

Non-signaling, a fundamental postulate of physics, stifi@sno observation on part of a system can instantaneously
affect a remote part of the system, or similarly, that no aigran travel instantaneously. For a bipartite probability
distributionp(a, b|z, y) describing observations on two distant physical systehis,means that no choice of mea-
surementy on Bob’s side can affect the marginal distribution of theaskied outcome on Alice’s side, and vice
versa. Mathematically, non-signaling (also called cadtygas defined as follows.

Definition 3 (Non-signaling distributions)A bipartite, conditional distributiomp is non-signaling if

Va,z,y,y', >, p(ablz,y) =>, pla,blz,y),
Vb, x, 2y, Yo, pla,blz,y) =3, pla,blz’,y).

For any non-signaling distribution, the marginal disttibn on Alice’s outputp(a|z,y) = >_, p(a,blx,y) does
not depend om, so we writep(a|x), and similarlyp(b|y) for the marginal distribution on Bob'’s output. We denote by
C the set of all non-signaling distributions.

In the case of binary outcomes, thati$,= B = {£1}, it is known that a non-signaling distribution is uniquely
determined by the (expected) correlations, define@'@sy) = E(a - b|z,y), and the (expected) marginals, defined
asM(z) = E(alz), Mg (y) = E(bly).

Proposition 1. For any functionsC' : X x Y — [-1,1], M4 : X — [-1,1], Mp : Y — [-1,1], satisfying
14+a-bCx,y) + aMa(z) + bMp(y) > 0V(z,y) € X x Y anda,b € {£1}, there is a unique non-signaling
distributionp such thatv z,y, E(a - b|z,y) = C(z,y) and E(a|x) = Ma(z) and E(bly) = Mp(y), wherea, b are
distributed according tg.



Proof. Fix x,y. C, M 4, M are obtained fronp by the following full rank system of equations.

11 -1 1 || pL -ty | _ | Ma)
-1 1 -1 p(=L,+1z,y) | | Ms(y)
11 1 1 p(=1,—-1|z,y) 1
Computing the inverse yieldg{a, b|lz,y) = $(1+ a - b C(xz,y) + aMa(z) + bMp(y)). O

We will write p = (C, M4, M) and use both notations interchangeably when considerstghiitions over
binary outcomes. We also denote 8y the set of non-signaling distributions with uniform mamgs that isp =
(C,0,0), and writeC' € Cy, omitting the marginals when there is no ambiguity.

Since local and quantum distributions are non-signalireyuae similar notation for local and quantum distribu-
tions where binary outcomes are concerned. In the case aff distributions, since the vertices of the polytope are
deterministic strategies, correlations and marginalsoeawritten usingt1 vectors. Letconv(A) denote the convex
hull of A.

Proposition 2. £ = conv({(vTv,u,v) : u € {£1}*, v € {£1}V}).

We also denote by, the set of local correlations over binary outcomes with amif marginals and we l&®, be
the set of all quantum correlations.

2.1.4 Boolean functions

There is a natural way to map a Boolean functjon X x ) — {£1} to a non-signaling distributiop;(a, b|z, y)
over binary outcomes, b € {+1}, as follows:

Definition 4. For a functionf : X x ¥ — {—1,1}, denotep; the distribution defined by (a,b|z,y) = % if
f(z,y) = a-band 0 otherwise. Equivalentlp; = (Cy,0,0) whereCy(z,y) = f(z,y).

By stipulating that the product of the players’ outputs dgjtize value of the function, we see that the distribution
has the same communication complexity as the function (@mtadditional bit of communication, for Bob to output
f(z,y)). As we shall see in Sectidn 2.2.1, it so happens that thehilitibns associated to Boolean functions are
extremal points of the non-signaling polytope.

In the case of randomized communication complexity, a paltthat simulates a Boolean function with error prob-
ability e corresponds to simulating correlatiafiSscaled down by a factor at maist 2¢, that is v, y, sgn(C’ (z,y)) =
Cy(z,y) and|C’(z,y)|> 1 — 2e. While we will not consider these cases in full detail, nomeRean functions, partial
functions and some classes of relations may be handled mikasfashion, hence our techniques can be used to show
lower bounds in these settings as well.

2.2 Characterizations and relations among the distributio classes
2.2.1 Non-signaling distributions

The quantum information literature reveals a great deahsight into the structure of the classical, quantum, and
non-signaling distributions. It is well known thatandC are polytopes. While the extremal pointsfare simply
the local deterministic distributions, the non-signalpalytopeC has a more complex structufe [JM05, BP05]. In the
case oy, itis the convex hull of the distributions obtained from Bean functions.

Proposition 3. Cy = conv({(C},0,0) : Cy € {£1}¥*Y}).

We show that is the affine hull of the local polytope (restricted to the ifes orthant since all probabilities
p(a, blz,y) must be positive). We give a simple proof for the case of lyimartcomes but this carries over to the
general case. This was shown independently of us, on a feasmots in different communities [RE&1, FR81, KRF87,
Wil92| [Bar07].



Theorem 1. C = aff 7 (L), whereaff ™ (L) is the restriction to the positive orthant of the affine hdllg anddim C =
dim £ = [X] x Y] + X[ + [V].

Proof. We show thatff(C) = aff(£). The theorem then follows by restricting to the positivéhartt, and using the
fact thatC = aff ™ (C).

[aff(£) C aff(C)] Since any local distribution satisfies the (linear) nogrsiling constraints in Deffl 1, this is also
true for any affine combination of local distributions.

[aff(C) C aff(L£)] For any(o,7) € X x ), we define the distributiop,, = (Coxr, ter, Vor) With correlations
Con(2,y) = 03=c0y=r and marginals, . (z) = 0, v, (y) = 0. Similarly, we define for any € X" the distribution
Po. = (Coy g, vs.) With Cy.(2,y) = 0,us.(2) = dz=0,vs.(y) = 0, and for anyr € Y the distributionp., =
(Cory U, 0.) With Cor(z,y) = 0,u.r(z) = 0,v.2(y) = dy=r. Itis straightforward to check that thep¥| x |V| +
|X'|+ Y| distributions are local, and that they constitute a basith®vector space embeddiaff(C), which consists
of vectors of the forn{C, u, v). O

This implies that while local distributions ammnvexcombinations of local deterministic distributiops € A,
non-signaling distributions ar#finecombinations of these distributions.

Corollary 1 (Affine model) A distributionpeC if and only if 3gx € Rwithp =3, axp.

Note that sincep is a distribution, this implie$ ", ., ¢» = 1. Since weights in an affine combination may be neg-
ative, but still sum up to one, this may be interpreted gsasi-mixtureof local distributions, some distributions being
used with possibly “negative probability”. Surprisinghjg is not a new notion; see for example Groenewold [Gro85]
who gave an affine model for quantum distributions; or a disimn of “negative probability” by Feynman [Fey86].

2.2.2 Quantum distributions

The following fundamental theorem of Tsirelson relates sne@aments on quantum states to the inner product of
vectors.

Theorem 2([Tsi85]). LetS,, be the set of unit vectors iR™, andH¢ be ad-dimensional Hilbert space.

1. If (C,Ma,Mp) € Qis a probability distribution obtained by performing binameasurements on a quantum
state|y) € H? @ H?, then there exists vectoiix), b(y) € Saq2 such thatC(x,y) = a@(x) - b(y).

—

2. If d(z),b(y) are unit vectors inS,,, then there exists a probability distributiof”,0,0) € O obtained by
performing binary measurements on a maximally entangkee gt) 72" @ 12" such thatC'(z,y) =
() - b(y)-

Corollary 2. Qo = {C': C(x,y) = d@(x) - b(y), [d(z)] = [b(y)| = 1Vz,y}.

Clearly, L C Q C C. As first noted by Tsirelson, Grothendieck’s inequallty §&&] implies the following
statement.

Proposition 4 ([Tsi85]). £y C Qo € KgLy, WhereK is Grothendieck’s constant.

2.3 Models of communication complexity

We consider the following model of communication complgxit non-signaling distributionp. Alice gets input,

Bob gets inputy, and after exchanging bits or qubits, Alice has to ougpand Bobb so that the joint distribution

is p(a, blz,y). Ro(p) denotes the communication complexity of simulatingxactly, using private randomness and
classical communicationy(p) denotes the communication complexity of simulatimgexactly, using quantum
communication. We use superscriptaib” and “ent” in the case where the players share random bits or quantum
entanglement. FoR.(p), we are only required to simulate some distributiwnsuch thaté(p,p’) < ¢, where
d(p,p’) = max{|p(&|z,y) — p'(Elz,y)| : z,y € X x V,E C A x B} is the total variation distance (or statistical
distance) between two distributions.



For distributions with binary outcomes, we writ& (C, M4, M) andQ.(C, M4, Mp). In the case of Boolean
functions,R.(C) = R.(C, 0, 0) corresponds to the usual notion of computjingith probability at least —e, whereC
is the+1 communication matrix of . From the point of view of communication, distributions kvitniform marginals
are the easiest to simulate. Suppose we have a protocolitinaleges correlation§’ with arbitrary marginals. By
using just an additional shared random bit, both playersflgatheir outcome whenever the shared random bit is 1.
Since each players’ marginal outcome is now an even coirtlilip protocol simulates the distributi¢a’, 0, 0).

Proposition 5. For any Boolean non-signaling distributidd’, M 4, M), we haveRP?(C,0,0) < RP®(C, M, Mp)
and ant(C’, 0,0) < ng((}, Ma, Mp).

3 Lower bounds for non-signaling distributions

In this section we prove our main theorem, a lower bound omiyuma and classical communication complexity for
non-signaling distributions, based on their affine repntséns.

Let us define the following quantities, which as we will seeyrba considered as extensions of thand v
quantities of[[LS09] (defined in Sectibn B.3) to distribuso

Definition 5. e U(p)=min{}_, [¢;|: Ipi € L,¢s € R, p =", ¢iPi}»
® Jo(p) = min{}", [¢;|: Ip; € Q,¢; € R,p = >, ¢ipi},
e 7*(p) = min{7(p’) : 6(p, p’) < €},
e 95(p) = min{2(p) : 6(p, p’) < €}.

Notice that) ", ¢;p; = p implies in particulary_, ¢; = 1. The quantities(p) and3.(p) show how wellp may be
represented as an affine combination of local or quantumilnisions, agoodaffine combination being one where the
sum of absolute values of coefficientss as low as possible. Figuré 1 represents the decompositmdistribution
into an affine combination of local distributions. For a Ibdatribution, we may take positive coefficienjs and
therefore obtain the minimum possible valug) = 1, and similarly for quantum distributions, so that

Lemmal. p € £L <= i(p)=1,andp € Q < F,(p) = 1.

In other words, the set of local distributiodsform the unit sphere af, and similarly the set of quantum distri-
butionsQ form the unit sphere of,. In the binary case, observe that by Proposition 5, we ha€) < 42(C, u, v)
and(C) < v(C,u,v). By Propositioi 872 (C) < &(C) < Kg¥2(C). Similar properties hold for the approximate
versionsy(C) and¥5(C).

Our main theorem gives a lower bound on communication coxitgla terms of the quantitieg and?s,.

Theorem 3. For any non-signaling distributiop and correlation matrixC,
1. R§" (p) = log(#(p)) — 1, and R¥*"(p) > log(#*(p)) — 1.
2. Qg"(p) = 3log(32(p)) — 1, andQ¢™ (p) > 3 log(75(p)) — 1.
3. Q§™(C) > 1og(72(C)), and Q™ (C) > log(75(C)).

The proof, minus the details, goes as follows. Assume tleaetls at bit protocol forp. We derive a noisy, local
distribution fromp as follows (Lemm&l2). Simulate the protocol, but insteadomfimunicating, guess a transcript. If
both players agree that this was the correct transcript, ey output according tp. This occurs with probability
2~t. Otherwise, output something random. The resulting distion isp’ = 27 'p + (1 — 27%)q whereq is some
random noise. Bup’ andq are local, so this gives an affine representatiop 6f 2‘p’ — 2¢(1 — 27%)q, showing
thato(p) < 2T — 1. The rest of this section is devoted to the details. The oatgmication arises from handling
arbitrary marginal distributions and setting up the disttion they should output from when they disagree with the
random transcript. However, the proof is straightforwaslabove, when the marginals are uniform, which is the case
for Boolean functions.



Figure 1:p is an affine combination gb*™ andp™

3.1 Producing a noisy local distribution from a communicaton protocol

We first show that if a distributiop may be simulated with bits of communication (og qubits of quantum commu-
nication), then there is a noisy version of this distribatibat is local (or quantum).

Lemma 2. Letp be a non-signaling distribution oved x B with input sett’ x ).

1. Assume thaRg“b(p) < t, then there exist two marginal distributions, (a|z) and pp(bly) such that the
distributionp; (a, b|z, y) = 5:p(a, blz,y) + (1 — & )pa(alz)pps(bly) is local.

2. Assume tha@:™(p) < ¢, then there exist two marginal distributions (a|z) and pg(bly) such that the
distributionp; (a, b|z, y) = 53z p(a, bz, y) + (1 — 557)palalz)ps(bly) is quantum.

3. Assume thagd = (C,0,0) and Q™ (C) < ¢, thenC/21 € Q,.

Proof. We assume that the length of the transcript is exactly t biteéch execution of the protocol, adding dummy
bits if necessary. We now fix some notations. In the origimatqxol, the players pick a random stringand ex-
change some communication whose transcript is deriBfedy, \). Alice then outputs some valueaccording to

a probability distributiorpp(a|x, A\, T'). Similarly, Bob outputs some valueaccording to a probability distribution
pP(b|yv A, T)

From Alice’s point of view, on input: and shared randomne&sonly a subset of the set of aHbit transcripts
can be produced: the transcrigtse {0, 1} for which there exists g such thatS = T'(z,y, A). We will call these
transcripts the set of valid transcripts far, \). The set of valid transcripts for Bob is defined similarly. d@&note
these sets respectively, , andV .

We now define a local protocol for the distributipr{a, b|x, y):

e As in the original protocol, Alice and Bob initially sharerae random string.
¢ Using additional shared randomness, Alice and Bob choasmadriptl” uniformly at random in{0, 1}%.

e If T'is a valid transcript fox, A), she outputs according to the distributiopp (a|x, A, T'). If it is not, Alice
outputsa according to a distributiop 4 (a|z) which we will define later.

e Bob does the same. We will also define the distribufigrib|y) later.

Let i be the distribution over the randomness and:tbi strings in the local protocol. By definition, the diswi-
tion produced by this protocol is

pi(a,blz,y) = Zu()\) Z w(T)pp(alz, N, T)pp(bly, \,T) + pr(bly) Z w(T)pp(alz, A, T)
A TeUg ANVy TGU,YAQV%)\

+ palalz) Y wDpebly, A T) +psbly)palalz) Y pu(T)
TeU, ANV, x TeU, ANVy 2



We now analyze each term separately. For fixed inpugsand shared randomnessthere is only one transcript
which is valid for both Alice and Bob, and when they use th@srcript for each\, they output according to the
distributionp. Therefore, we have

1
Suy > wDpe(alz, A T)pp(bly, A, T) = yeP(a bz, y).
A TGU,YAﬂVyYA

~ Let A, be the event that Alice’s transcript is valid fei(over randomi, T'), andA4, its negation (similarlyB, and
B, for Bob). We denote

_ A o T)pp(alz, \, T
pplale, Ay N B,) = 2o i )X:TeUI,mvy,A fL( Jpp(al )’
w(Ay N By)

where, by definition, we have(A, N By) = >, u(N) > reu, AOVyr w(T). We will show that this distribution is

independent o and that the corresponding distributipp (b|y, A, N B,) for Bob is independent of. Using these
distributions, we may write; (a, b|x, y) as

1 _ _
pi(ablz,y) = 5pla,blz,y) + p(As 0 By)ps(bly)pe(ale, Az N By)
+ Az N By)pa(ale)pp(blz, Ax N By) + p(Ax 0 By)pp(bly)palalz)
Summing oveb, and using the fact that; andp are non-signaling, we have

1 _ _
pi(alr) = Ep(akc) + u(Az N By)pP(a|$a AN By)
+ (A 0 By)palalz) + p(Az N By)palalr)

1 _ _ B
gp(alx) + p(Az N By)pp(alz, Az N By) + p(Az)palalz),

Note that by definitionu(A;) = >, u(A) X orey, , #(T) isindependent of, therefore so i (A, NB,) = u(A;)—

(A N By) = u(Ay) — 5. From the expression fgr (az), we can conclude thaip (a|z, A, N By) is independent
of y and can be evaluated by Alice (and similarly for the analagjstibution for Bob). We now set

palalz) = pplalz, Az N Bu)
pe(bly) = pp(bly, Az N By).
Therefore, the final distribution obtained from the localtpcol may be written as

1 _
pi(a,bla,y) = pla,blz,y) + p(As 0 By)palale)ps (bly)
+  u(Az N By)palalz)ps (bly) + p(As 0 By)palalz)ps(bly)
1 1
= opplablzy) + (1= op)palalz)ps (by).
2 2
For quantum protocols, we first simulate quantum commuiticatsing shared entanglement and teleportation,
which uses 2 bits of classical communication for each quBtarting with this protocol usingq bits of classical
communication, we may use the same idea as in the classgm|ttat is choosing a randdiy-bit string interpreted
as the transcript, and replacing the players’ respectiygutsiby independent random outputs chosen accordipg to
andpp if the random transcript does not match the bits they woulels&nt in the original protocol.
In the case of binary outputs with uniform marginals, thapis= (C, 0,0), we may improve the exponent of the
scaling-down coefficien?2? by a factor of2 using a more involved analysis and a variation of a resul{(Kng$5,
Yao093,LS09] (the proof is given in AppendiX A for completesg

Lemma 3 ([Kre95,Yao93[ LS09]) Let (C, M 4, Mp) be a distribution simulated by a quantum protocol with sldare
entanglement usingy qubits of communication from Alice to Bob apsl qubits from Bob to Alice. There exist vectors
a(x),b(y) with |@(z)] < 295 and |b(y)| < 294 such thatlC'(z,y) = d(z) - b(y).

The fact thatC/29 € Q, then follows from Theorer]2 part 2. O



3.2 Deriving an affine model and the lower bound from the noisyistribution

In this section we show that using Lemina 2, an explicit affirmled can be derived from a (classical or quantum)
communication protocol fop, which gives us a lower bound technique for communicatianmexity in terms of
how “good” the affine model is. We now are ready to completgtioef of Theorem 8.

Proof of Theorerhl3We give a proof for the classical case, the quantum caseafslthe same lines. Letbe the
number of bits exchanged. From Lemfa 2, we know that thegseriarginal distributions 4 (a|x) andpg(bly)

such thap; (a, bz, y) = 5:p(a,blz,y) + (1 — 3 )pa(alz)ps(bly) is local. This gives an affine model fpta, b|z, y),

as the following combination of two local distributions:

p(a, b|Iv 1/) = 2tpl(a7 b|:17, 1/) + (1 - 2t)pA(a|x)pB (b|y)

Theni(p) < 20+ — 1.

In the case of binary outputs with uniform margingss,= (C/2%,0,0), and Lemmal2 implies that /2! € L,.
By following the local protocol folC'/2¢ and letting Alice flip her output, we also get a local protofosl—-C'/2¢, so
—(C/2" € L, as well. Notice that we may build an affine model édras a combination of /2! and—C/2":

c 1 C
(28 + 1)5 - 5(2‘5 - 1)?

Then,n(C) < 2% O

C:

N | =

3.3 Factorization norm and related measures

In the special case of distributions over binary variablé$ wniform marginals, the quantities and 4, become
equivalent to the original quantities defined[in [LMSS07088(at least for the interesting case of non-local correla-
tions, that is correlations with non-zero communicatiomptexity). When the marginals are uniform we omit them
and writer(C') and4»(C). The following are reformulations as Minkowski functiosalf the definitions appearing
in [LMSS07,LS09].

Definiton 6. e »(C) =min{A >0: +C € Lo},

e 12(C) =min{A > 0: +C € Qo},

e v*(C) =min{r(C") :1 < C(z,y)C"(z,y) < o, Yo,y € X x Y},

* 15(C) = min{y2(C") : 1 < C(z,y)C" (x,y) < o, Va,y € X x Y}
Theorem 4. For any correlation matrixC' : X x Y — [—1,1],

1. »(C) =1iff v(C) < 1,and¥,(C) = 1iff 12(C) < 1,

2. 7(C) >1=v(C) =v(C),

3. 72(C) > 1 = 12(C) = %2(C).

Proof. The first item follows by definition of and~,. For the next items, we give the proof foy and the proof for
~9 is similar. The key to the proof is thatd € Ly, then—C € L, (it suffices for one of the players to flip his output).
[7(C) < v(O)] I 2(C) > 1, thenA = v(C) > 1. LetCt = £ andC~ = —£. By definition of(C), bothC*
andC~ are inLy. Furthermore, let, = # >0andq_ = % < 0. SinceC = ¢, C* + q_C~, this determines

an affine model fo with |g. | + |¢_| = A.
[7(C) > v(C)] Let A = p(C). By definition of (C'), there exists’; andg; such thatC' = . ¢;C; and
A =3, q] LetC; = sgn(q;)C; andp; = "j\—| Then,§ = 3, p;C; and therefore- C € £, sinceC; € Ly. O

In the special case of sign matrices (corresponding to Bwoofanctions, as shown above), we also have the
following correspondence betwegh 75, andv®, +5'.
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Theorem 5. Let0 < e < 1/2anda = For any sign matrbC : X x Y — {—1,1},

25

1. 75(C) > 1 = v2(C) = 29

2. 5(C) > 1 = 48(C) = 2L

Proof. We give the proof for®, the proof foryg' is similar.

[ve(C) < ”E ) ] By definition of o¢(C), there exists a correlation matr®X’ such that’(C") = v¢(C) a
|C(z,y)—C'(x, 1/)| < 2eforallz,y € AxY. SinceC'is a sign matrix, and" is a correlation matrixsgn(C’(z, y))
%)

C(x,y) andl — 2¢ < |C'(x,y)| < 1. Hencel < C(x, y)c (W) < 25 = a. Thisimplies that*(C) < v(<

% = 1( 5-» Where we used the fact thatC’) = 7(C") smceu(C’) > 1.

[ve(C) > ”lfgé)] By definition of v*(C), there exists a (not necessarily correlation) maftixsuch that/(C’) =
v*(C) andl < C(x y)C'(z,y) < aforall z,y. SinceC is a sign matrix, this impliesgn(C’(z,y)) = C(«,y) and
1—2¢ < | <29 < 1. Therefore|C(z,y) — cr ””'y | < 2¢ for all z, y. This implies that<(C) < ﬂ(%) = u(%) =
(1 —2¢e)v (C”) where we have used the fact thlalc—) = y( )smceu( ) > 54(0) > 1. O

o

n

1—-2e¢

Discussion.Just as the special casé&’'), v(p) may be expressed as a linear program. However, whil€") could
be expressed as a semidefinite program, this may not be tgengral forj»(p) (even though it can still be studied
by SDP relaxation, as shown in [NPA(08, DLTWO08]).

Lemmag ¥ andl5 establish that Corollaty 3 is a generalizafikinial and Shraibman’s factorization norm lower
bound technique. Note that Linial and Shraibman y$éo derive a lower bound not only on the quantum commu-
nication complexityQ°™t, but also on the classical complexiff . In the case of binary outcomes with uniform
marginals (which includes Boolean functions, studied hyidliand Shraibman, as a special case), we obtain a similar
result by combining our bound fape™t(C) with the fact thatQe"*(C) < [1RP'P(C)], which follows from super-
dense coding. This implieBP">(C) > 2log(y5(C)) — 1. In the general case, however, we can only prove that
RP'P(p) > log(75(p)) — 1. This may be due to the fact that the result holds in the muctergeneral setting of
non-signaling distributions with arbitrary outcomes ararginals.

Because of Propositidd 4, we know thdt”) < Kgv-2(C) for correlations. Note also that althoughandv are
matrix norms, this fails to be the case fprandr, even in the case of correlations. Nevertheless, it isggiiisible to
formulate dual quantities, which turn out to have sufficemnaicture, as we show in the next section.

4 Duality, Bell inequalities, and XOR games

In their primal formulation, thé, and> methods are difficult to apply since they are formulated asramization
problem. Transposing to the dual space not only turns thbadenhto a maximization problem; we show it also has a
very natural, well-understood interpretation since inoides with maximal violations of Bell and Tsirelson inefjua
ities. This is particularly relevant to physics, since itrf@lizes in very precise terms the intuition that distribng
with large Bell inequality violations should require mo@nemunication to simulate.

Recall that for any nornji - | on a vector spac¥, the dual norm i B|* = max,cy.|,|<1 B(v), whereB is a
linear functional or/.

4.1 Bell and Tsirelson inequalities

Bell inequalities were first introduced by Bell [Bel64], asumds on the correlations that could be achieved by any
local physical theory. He showed that quantum correlations ceidldte these inequalities and therefore exhibited
non-locality. Tsirelson later proved that quantum cotietes should also respect some bound (known as the Tsirelson
bound), giving a first example of a “Tsirelson-like” ineqafor quantum distributions [Tsi80].

Since the set of non-signaling distributiofidies in an affine spaceff(C), we may consider the isomorphic dual
space of linear functionals over this space. The dual qiyanti (technically not a dual norm singeitself is not a
norm in the general case) is the maximum value of a lineartfomal in the dual space on local distributions, &rd

11



is the maximum value of a linear functional on quantum disttions. These are exactly what is captured by the Bell
and Tsirelson inequalities.

Definition 7 (Bell and Tsirelson inequalities)Let B : aff(C) — R be a linear functional on the (affine hull of
the) set of non-signaling distribution&(p) = >_, , . , Babzyp(a, bz, y). Definer*(B) = maxpe, |B(p)| and
74 (B) = maxpeo | B(p)|. A Bell inequality is a linear inequality satisfied by anyadistribution:

B(p) <v"(B) (Vp € L),
and a Tsirelson inequality is a linear inequality satisfigddny quantum distribution:
B(p) <%:(B) (Vp € Q).

By linearity (Propositioffl) Bell inequalities are oftenpe®ssed as linear functionals over the correlations in the
case of binary outputs and uniform marginals.
Finally, 42 and amount to finding a maximum violation of a (normalized) BellTirelson inequality.

Theorem 6. For any distributionp € C,
1. #(p) = max{B(p) : Vp' € £, | B(p') |< 1}, and
2. ¥2(p) = max{B(p) : Vp’ € Q, [B(p')|< 1},
where the maximization is over linear functionéls aff(C) — R.

Proof. The proof of iteni L follows by LP duality from the definition 6f Nevertheless, we give an alternative proof
that can be easily adapted to prove i{em 2 (it suffices to cepldy 7, and L by Q). The key idea of the proof is to
use the convex conjugate df(written o*) which is closely related to the dual expression (writééh, and apply it
twice.

We first recall basic facts about convex conjugate functi®e [BV04] for full details). For a functiofi : R —
IR, the convex conjugate functiofi : R — R is defined as:

)= sup (y'z— f(2)),
z€dom(f)

wheredom(f) denotes the domain of. It is known thatf** = f provided thatf is convex and closede., its
epigraph is closed.

By grouping negative and positive terms together, it is gasgee that’(p) = min{k*™ + k= : kT, k™ €
RT,3pT,p~ € L,p = kTpT — k~p~}. We consider as a function oveaff(£). Then, it is straightforward to
verify thatw is convex, and since its domaiff (L) is closedy is also a closed function.

We then have by definition

~% ~
rX(B) = pg%)(B(p) 7(p)),

= B(k —k — (k1 + k
p1-,p2€1221?1(7k2:1( (k1p1 op2) — (k1 + k2)),

- Plapzerg,&}c)f—kzzl(kl (B(p1) = 1) = k2(B(p2) + 1))-

Therefore,

D*(B) _ maxpeﬁ |B(p)| _1 If maxpeﬁ |B(p) |§ 17
400 otherwise

Taking the convex conjugate a second time, we obtain

7**(p) = max (B(p) — 7*(B)).

12



From the expression fob* (B) above, it is clear that the maximum is achieved for a lineacfional B such
that maxpe o | B(p) |< 1. Let the maximum be achieved by a linear functiofaland let us consideB,,., =
maxXpe B(p) and B, = minpec B(p). We show that we can assume without loss of general|ty|twm |<
Bpax = 1. Indeed, we must ha\*eBmm |< Bumax, OtherwiseB could not achieve the maximum sinee5 would yield
a larger value. This implies that* (B) = Buax — 1 andi**(p) = B(p) — Buax + 1. Then, the maximum is also
achieved by the linear functional’ (p) = B(p) — Bumax + 1, which satisfies3’ . = 1 and thereforé* (B’) = 0.

max

From the expression far**, we therefore obtaidi** (p) = 7(p) = max{B(p) : Vp' € £, |B(p')| < 1}.

4.2 XOR games and Bell inequalities for correlations

In the special case of XOR games, there is a close conneatibvebn winning probability and Bell inequalities,
which we make explicit in this section.

In an XOR game, Alice is given some inputand Bob is given an inpug, and they should output = +1
andb = +1. They win if a - b equals somet1 function G(z,y). Since they are not allowed to communicate,
their strategy may be represented as a local correlationxngite £,. We consider the distributional version of
this game, whereg: is a distribution on the inputs. The winning bias given sormatsgy S with respect tou is
eu(GlIS) = X2, , m(x,y)G(2,y)S (2, y), andeb"™™(G) = maxger, €,(G||S) is the maximum winning bias of any
local (classical) strategy (for convenience, we considertias instead of game valuﬁ“b(G) =(1+ eE“b(G))/Q).
We defineslj“‘(G) similarly for quantum strategies. When the input distribais not fixed, we define the game biases

ase?™*(G) = min, f'"(G) ande”™(G) = min,, ¢ (G).

Lemma 4. There is a bijection between XOR gan(és ;1) and normalized correlation Bell inequalities.

Proof. For a given XOR gamé&r, and a local strateg¢’, its winning probability, or more simply its bias, can be
written as a linear equation, which we writ&u (C) = ¢,(G||C) whereo is the Hadamard (entrywise) product.
This can be seen as a linear functional over the space oégieat By Definitioril7 p* (Gop) = eE“b(G), and
eu(GC) < eg“b(G) is a Bell inequality satisfied by any local correlation maifi. Similarly, when the players
are allowed to use entanglement, we get a Tsirelson inggueali quantum correlations,, (G||C) < «™(G) (the
guantum bias is also equivalent to a dual n@fﬁﬁ = 5 (Gop)).

Conversely, consider a general linear functlma&l?) > 2y BzyC(z,y) onaff(Co), defining a correlation Bell
inequality B(C) < v*(B) V C € Ly. Dividing this Bell |nequal|ty byN = >, , |Bzyl, we see that it determines an

XOR game specified by a sign mati(z, y) = sgn(B,,) and an input d|str|butionwy = % and having a game

. u _ v*(B
biasel "™ (G) = VB, O

By Theoreni® and the previous bijection (see also éfes. [LSS08)):

Corollary3. 1. v(C) = max, g fi(mcjllc),
R (G)

1
The second part follows by letting = C. Even though playing correlatiords for a gameG = C' allows us to
win with probability one, there are cases where some othega # C yields a larger ratio. In these cases, we have
v(C) > ﬁ(c) so thatv gives a stronger lower bound for communication complexigntthe game value (which

has been shown to be equivalent to the discrepancy meth&D&]S Similar properties hold for the quantum values,
in particular, we have, (C) > €+(C)

We can characterize when the inequality is tight. £8®(C) = maxgses, {8 : Vz,y, C(z,y)S(x,y)=04}, that
is, we only consider strategies that win the game with eqisa ith respect to all distributions. For the sake of

comparison, the game bias may also be expresséd asl[vN28]:

PP () = gé&ﬁx{ﬂ :Va,y,C(x,y)S(z,y)>F} = max min C(z,y)S(z,y).

SeLo x,y
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_ 1
Lemmab5. v(C) = EITaR

We can also relate the game value/foC), as it was shown i [LS08] that fora: — oo, v>°(C) is exactly the
inverse of the game bi%. We show that this holds as soonas- ﬁ is large enough fo€ to be local up to

€

an errore, completing the picture given in Lemrh 5.
Lemma 6. Let0 < e < 1/2anda = 5. For any sign matridxC' : X x Y — {—1,1},
LF0O)=1+=e>1—-wP?(0) <= a > 6p+(c) = v*(0) =v>®(C) = @Tl(c)
1

2.35(C) =12 e21-w™(0) & a 2 mmg <= 15(0) =15°(C) = mmiey-

Proof. By von Neumann’s minmax principle [vN28],

(C) = maxminC(,y)S(x,y)
= maxminl —[C(z,y) - 5(z, )|
where we used the fact th@tis a sign matrix. This implies that*(C) = 1 < € > %ﬂb(c) Sa> @Tl(c)
By Lemma[®, this in turn implies that*(C) = ”17(56) for all e < %ﬂb(c) By continuity, taking the limit
€ — % yieldsv(C) = @Tl(c) fora = @Tl(c) From [LSS08],0°(C) = @Tl(c) and the lemma follows
by the monotonicity of*(C) as a function ofv. O

5 Bounding the violation of Bell inequalities

In this section, we give bounds on the maximal violations efl Bhequalities. By Theorerl 6, this is equivalent
to bounding the ratio betweep andz. In the case of distributions over binary outcomes with ammif marginals
(correlations), the theorems of Tsirelson (Theokém 2) arathi@ndieck (Propositidd 4) imply that andv differ by

at most a constant. This is bad news for anyone trying to findadzn function with high randomized communication
complexity and considerably smaller quantum communicatmmplexity, since it means that any randomized lower
bound obtained by usingwill yield a similar quantum lower bound. Although neithéttlbese theorems are known to
hold beyond the Boolean setting with uniform marginals, ivevsin this section that this surprisingly also extends to
non-signaling distributions. This is also bad news for argylmoking for large Bell inequality violations by quantum
distributions, since in this cas&; (p) = 1, and the maximum Bell inequality we can hope for will be boeshdbove

by the expressions below.

Theorem 7. For any distributionp € C, with inputs inX’ x ) and outcomes itd x B with A = |A|, B = |B|,
1. o(p) < (2K¢ + 1)%2(p) whenA = B = 2,
2. (p) < [2AB(K¢g + 1) — 1]32(p) forany A, B.

Therefore, one cannot hope to prove separations betwessicdhand quantum communication using this method,
except in the case where the number of outcomes is large. ikaryboutcomes at least, this says that arguments
based on analyzing the distance to the quantum set onlyputitiaking into account the particular structure of the
distribution, will not suffice to prove large separationsgdather techniques, such as information theoretic argtenen
may be necessary.

For example, Brassamt al.[BCT99] give a (promise) distribution based on the Deutdchsa problem, which can
be obtained exactly with entanglement and no communicabiethwhich requires linear communication to simulate
exactly. The lower bound is proven using a corruption bolB@W98E], which is closely related to the information
theoretic subdistribution bound [JKNO8]. For this probleth= )Y = {0, 1}" and.A = B = [n], therefore our method
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can only prove a lower bound logarithmicsin This is the first example of a problem for which the corruptimund
gives an exponentially better lower bound than the Linial Shraibman family of methods.

On the positive side, this is very interesting for quantuforimation, since (by Theoref 6), it tells us that the set
of quantum distributions cannot be much larger than the lpalytope, for any number of inputs and outcomes. For
binary correlations, this follows from the theorems of €spon (Theorem]2) and Grothendieck (Proposition 4), but no
extensions are known for these results in the more gendtizigse

The proof of Theorerh]7 proceeds by showing that an arbitragntum distribution may be written as an affine
combination of quantum distributions over binary outcomé uniform marginals. We can then conclude using
Grothendieck’s inequality. For the details of the proof, wi#t need two rather straightforward lemmas. The first is
a subadditivity-type property far, and the second allows us to extend the support of a disibutithout affecting
the value ofp.

Lemma 7. If p =}, (; ¢:pi, Wherep; € Candg; € Rforall i € [I], theni(p) < 3~ la:l7(pi)-

Proof. By definition, for eachp;, there existp;,p; € £ andg,q; > 0 such thatp, = ¢;'p;” — ¢; p; , and
g +q; = v(p;). Thereforep = 37, ai(e/ P — ¢ p;) andX, iy (laiq | + laig; ) = X lail(a +a;7) =
> lailo(pi). O

Lemma 8. Let p,p’ € C be non-signaling distributions with inputs it x ) for both distributions, outcomes
in A x B for p, and outcomes id’ x B’ for p’, such thatd C A’ andB C B'. If, for any (a,b) € A x B

P'(a,blz,y) = p(a,blz,y), thenv(p') = v(p).

Proof. Let& = (A" x B') \ (A x B). First, note that sincg’(a, b|z,y) = p(a,blz,y) for any(a,b) € A x B, we
have, by normalization ab, p’(a, b|x,y) = 0 for any(a, ) € £.

[0(p’) < p(p)] Letp = q+p™ — ¢_p~ be an affine model fop. Obviously, this implies an affine model fof
by extending the local distributions®, p~ from A x Bto A’ x B', by settingp™ (a, b|z,y) = p~(a, blz,y) = 0 for
any(a,b) € &, sov(p’) < v(p).

[2(p’) > v(p)] Let p’ = ¢ p’" — q_p’~ be an affine model fop’. We may not immediately derive an affine
model forp since it could be the case thdt (a, b|z,y) or p’~(a, bz, y) is non zero for soméa, b) € £. However,
we haveg,p'*(a,blz,y) — g—p' (a,blx,y) = p'(a, b|z,y) = 0 for any(a, b) € £, so we may define an affine model
P =q:p" —q_p~,wherep™ andp™ are distributions otd x B such that

1 1 1
p+(a,b|x,y) :p'+(a,b|x,y)+ Z Z p'+(a’,b|x,y)+ E Zp“‘(a,b'kv,y)—i— E Z pH—(a/?bI'xay)a
a’'¢gA vé¢nB a’'¢Ab ¢B

and similarly forp~. These are local since it suffices for Alice and Bob to usedkallprotocol forp’* or p’~ and
for Alice to replace any output ¢ .4 by a uniformly random output’ € A (similarly for Bob). Therefore, we also
haver(p’) > v(p). O

Before proving Theoreiil 7, we first consider the special casgantum distributions, for whichs(p) = 1. As
we shall see in Sectidd 6, this special case implies the annapper bound of Shi and Zhu on approximating any
guantum distributior [SZ08], which they prove using diamoorms. This also immediately gives an upper bound on
maximum Bell inequality violations for quantum distribaris, by Theoreml6, which may be of independent interest
in quantum information theory.

Proposition 6. For any quantum distributiop € Q, with inputs inX x ) and outcomes it x Bwith A = |A|, B =
18],

1. o(p) <2Kg+1whenAd =B =2,
2. v(p) <2AB(K¢g+1)—1foranyA, B.
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Proof. 1. SinceA = B = 2, we may write the distribution as correlations and margingl= (C, M4, Mp).
Since(C, M4, Mp) € Q, we also havéC, 0,0) € Q, and by Tsirelson’s theoren(/ K¢, 0,0) € £. More-
over, itis immediate thagtM s Mg, M4, Mp), (MaMg,0,0) and(0, 0, 0) are local distributions as well, so that
we have the following affine model fq”, M 4, M)

(C,Ma,Mp) = Kg(C/Kg,0,0) + (MaMp,Ms,Mp) — (MaMp,0,0) — (Kg — 1)(0,0,0).
This implies that (C, Ma, Mp) < 2K + 1.

2. For the general case, we will reduce to the binary case.uteahtroduce an additional outpat, and set
A= AU {@}andB’ = BuU{o}. We first extend the distributiop to a distributionp’ on A’ x B’ by setting
p'(a,b|lz,y) = p(a,b|z,y) for any (a,b) € A x B, andp’(a,b|x,y) = 0 otherwise. By Lemmil8, we have
v(p) = v(p').

For each(a, 8) € A x B, we also define a probability distributign,s on A" x B’:

pla, Blz,y) if (a,0) = (a, B),
p(elz) — p(a, Blz,y) if (a,b) = (o, 9),

pap(a,blz,y) = ¢ p(Bly) — p(e, Blz,y) if (a,0) = (2, B),
1 —p(alz) — p(Bly) + p(a, Blz,y) if (a,0) = (2,9),
0 otherwise

Notice thatp.s € Q, since a protocol fop,g can be obtained from a protocol fpr Alice outputsa whenever
her outcome is not, similarly for Bob. LetA, = {«, @} andBs = {3, @}. Sincep,s(a,blz,y) = 0 when
(a,b) & Ao x B, we may define distributions;, ; on.A, x B such thap;,;(a, b|z, y) = pas(a, bz, y) for all
(a,b) € Ay x Bg. By Lemmd 8, these are such thdp/, ;) = 7(pags), and since these are binary distributions,
7(pLp) < 2K +1. Letus define three distributiops , ps, po 0n.A’ x B as follows. We lepa (a, 9|z, y) =
p(alz), pB(2, blz,y) = p(bly), and O everywhere else; ang;(a,b|z,y) = 1if (a,b) = (&,9), and0
otherwise. These are product distributionspsg ps, pz € £ andy = 1 for all three distributions.

We may now build the following affine model f@r'

p'= Y pPhs—(B-1)pa—(A-1)ps — (AB—A-B+1)ps.
(a,B)EAXB

From LemmaT, we conclude thafp’) < AB(2K¢ + 2) — 1.

The proof of Theoreri]7 immediately follows.

Proof of Theoreril7 By definition ofy2(p), there existp™,p~ € Q andqy,q_ > Osuchthap = ¢.p™ — ¢_p~
andg, + q_ = 42(p). From Lemmal’y(p) < ¢ . v(p™) + ¢_v(p~), and Propositiohl6 immediately concludes the
proof. 0

6 Upper bounds for non-signaling distributions

We have seen that if a distribution can be simulated usibijs of communication, then it may be represented by
an affine model with coefficients exponentialtifLemmal2). In this section, we consider the converse: howhmuc
communication is sufficient to simulate a distribution,agivan affine model? This approach allows us to show that any
(shared randomness or entanglement-assisted) comnianipadtocol can be simulated with simultaneous messages,
with an exponential cost to the simulation, which was prasig known only in the case of Boolean functions [Yao03,
SZ08] GKdO06]. Our results imply for example that for any quamdistributionp € Q, Q! (p) = O(log(n)), wheren

is the input size. This in effect replaces arbitrary entangint in the state being measured, with logarithmic quantum
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communication (using no additional resources such as dhrarelomness). We use the supersclipb indicate
the simultaneous messages model, where Alice and Bob eadrasmessage to the referee, who without knowing
the inputs, outputs the value of the function, or more gdhlyerautputsa, b with the correct probability distribution
conditioned on the inputs, y.

Theorem 8. For any distributionp € C with inputs inX’ x Y with |X x Y| < 2™, and outcomes itd x B with
A=|A|,B=|B|,and anye, ¢ < 1/2,

1. RIP™(p) < 16 [“%“P)rln [445] 1og(AB),

2. Q!+5(p) <O ((AB)5 [ﬁégp)rln (48] log(n)).

The general idea of the proof is to build a communicationgrol for p based on an affine combinatign=
g+ptT — q_p~, wherep™ andp~ are local (or quantum) distributions. By sending suffidigntany samples op™
andp~ to the referee (which does not require any communicatiowéent Alice and Bob), the referee can estimate
these distributions and therefore simulate their affine moationp. To quantify the number of samples that are
necessary to achieve some precision, we use Hoeffdingisialgy [McD91].

Proposition 7 (Hoeffding’s inequality) Let X be a random variable with values in, b]. Let X; be thet-th of T
independent trials ok, andS = L S| X,.
2 2182

_ 2mp? _ 27p%
ThenPr[S — E(X) > ] <e @ andPr[E(X)—S > f] <e -7 foranys > 0.
We will also use the following lemma.

Lemma 9. Letp be a probability distribution or with V' = |V|, ande : Rt — R*. For eachv € V, letQ, be a
random variable such thats > 0, Pr[Q, > p(v) + 5] < e(8) andPr[Q, < p(v) — 8] < e(B).

Then, given sample?,, : v € V}, and without knowing, we may simulate a probability distributigsi such
thatd(p’, p) < 2V[B + e(B)].

Proof. In order to use the variabl€g, as estimations fas(v), we must first make them positive, and then renormalize
them so that they sum up to Let R, = max{0, @, }. Then we may easily verify that

Pr[R, > p(v) + f]
Pr[R, < p(v) — f]

For any subsef C V of size E = [£], we also define the estimat&s = > _. R, for p(£). For anyv, we have
R,—p(v) > g with probability at least —e(3). Therefore, with probability at least- Fe(3), we haveR, —p(v) >
simultaneously for alb € £, and therefore by summation al& — p(£) > ES. Similarly, with probability at least
1 — Ee(f5), we havep(v) — R, > 8 simultaneously for alb € £, and therefore alsp(§) — R > Ef5. Hence, we
have the following bounds faRs For any subsef C V of sizeE = |£|, we also define the estimat®s = > . R,
for p(€). By summing,

<
<

Pr[Re > p(€) + EB]
Pr[Rs < p(€) — Ef]

EG(B),
Ee(B).

In order to renormalize the estimated probabilities,Rgt = > |, R,. If Ry > 1, we use as final estimates
Sy = R, /Ry. On the other hand, iRy, < 1, we keepS,, = R, and introduce a dummy outpat ¢ ) with estimated
probability S = 1 — Ry (we extend the original distribution 8 U {@}, settingp(&) = 0). By outputtingv with
probability S,,, we then simulate some distributigi(v) = E(S,), and it suffices to show thaE'(Sg) — p(€)| <
2V[B + e(B)] foranyE C VU {o}.

We first upper bound?(S¢) for £ € V. SinceSs < Rg, we obtain from the bounds oR¢ that Pr[Ss >
p(€) + EB] < Ee(B). Therefore, we havSs < p(€) + ES with probability at least — Ee(8), andSg < 1 with
probability at moste(3). This implies thatZ'(Sg) < p(€) + E |8 + e(B)]-

<
<
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To lower boundE(S¢), we note that with probability at least— Ee(3), we haveRs > p(€) — ES, and with
probability at least — Ve(3), we haveRy < 1+V 3. Therefore, with probability at least- (E+V)e(3), both these
events happen at the same time, so fiat= Rg/Ry > (p(€) — EB)(1 — V) > p(€) — (E + V)A. This implies
thatE(Sg) > p(€) — (E+ V) [B + e(B)]. SinceSy =1 — Sy, this also implies thak(Sg) <2V [ +e(B8)]. O

Proof of Theoreril8.1. LetA = o(p),p = ¢2 T — ¢_p~, Withgq,,q_ > 0,q. +q_ = Aandpt,p~ € L. Let
P, P~ be protocols fop™* andp~, respectively. These protocols use shared randomness loohmmunication.
To simulatep, Alice and Bob makel’ independent runs oP*, where we label the outcome of theh run
(a;,b;"). Similarly, let(a; ,b; ) be the outcome of theth run of P~. They send the list of outcomes to the referee.
The idea is for the referee to estimai@, b|x, y) based on theT samples, and output according to the estimated
distribution. LetP,", , be an indicator variable which equals Ljf = a andb;” = b, and 0 otherwise. Defing, _ ,

similarly. Furthermore, leP; , , = Q+Pt ab — 4-Pia ThenE (P, .) = p(a,blz,y) andP; 4 € [—q—, q+].
Let Py = = Zthl P, o be the referee s estimate fpfa, b|x, y). By Hoeffding’s inequality,

_27p?
e A2

IN

3

Pr[Pa,b Z p(a, b|ZC, y) + ﬂ]
2
Pr[Poy < pla,blz,y) —B] < e AT

Lemmd® withY = AxB, Qb = Puyp ande(ﬂ) e_% then implies that the referee may simulate a probability

2
distributionp’ such that (p’, p) < 2AB(f+ ¢~ i ). Itthen suffices to set = 2, andT = 8 [ABA] In [448]
to conclude the proof, since Alice serlE log A and Bob send87 log B bits to the referee.

For o<, apply this proof to the distributiop” with statistical distancé(p, p”) < e andu(p”) = v¢(p).

Note that the same proof gives an upper bounoR{&ﬁ(S in terms of9s.

2. If shared randomness s not available but quantum messagghen we can use quantum fingerprinfing [BCWdWO01,
Yao03] to send the results of the repeated protocol to trexeef Leta™(r),b"(r)) be the outcomes aP* usingr

as shared randomness. We use the random vacigp(e) as an indicator variable far (r) = a; similarly B;", and

P¢ _Z(ab ce ATBy .

We can eaS|Iy adapt the proof of Newman’s Theorem [New91§htuw that there exists a set bfrandom strings
R = {r1,...r.} suchthavz,y, | B,..cr(Pg (r:)) — E(PF)|< a provided > 4%, wheren is the input length, and
153“ is the random variable where randomness is taken fRorin other words, by taking the randomness fr@nwe
may simulate a probability distributigh™ such thati(p™,p™) < «

For eacha,b € A x B, Alice and Bob send’ copies of the statel) = ﬁ Yi<icr AT (ri)|1)]i) and

o) = % Y 1<i<r [DIB (ri))|i) to the referee. The inner product is

W6 = 7 3 (AL B (r)) = 5™ (0, bl, ),

1<i<L

where the expectation is taken over the random choices. ry,.
The referee then uses inner product estimafion [BCWdW®@teéch copy, he performs a measurementign @

ot
¢ ) to obtain a random variablg;, , € {0,1} such thatPr[Z , = 1] = M, then he setsZ,, =
LS 2, LetQ), = (/1 —2Z}, if Z, < 1/2andQ;, = 0 otherwise. This serves as an approximation for
pt(a,blz,y) =[ (6] o) |, and Hoeffding’s inequality then yields

Pr(Ql, > pt(ablo,y)+ 8] < e 7,
Pr(Qf, <p(ablr,y)—B] < e 2.

Let@,, be an estimate fqi (a, b|x, y) obtained using the same method. The referee then obtairstiarate for
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pla,blz,y) = g4 5" (a,blz,y) — ¢ p~ (a, blz, y), by settingQa » = ¢+ Q7 , + ¢-Q, ,, such that

4
Pr[Qup > pla,blz,y) + 8] < 2e7 T,
4
Pr(Qus < Bla,ble,y) — B < 277
4
Lemmad® withe(3) = 2¢~3AT then implies that the referee may simulate a probabilityrithstion p® such that

(p*,p) < 2AB(B + 26’%). Sinced(p,p) < Aw, we need to pickl, L = %2 large enough so thato +

2AB {5—1-26*”4/2/‘4} < 6. Settinga = &, f = gip, T = 24; In(1648) = 213 [ABA)"1(164B) ganq [, =
dn _ 16nA* the total complexity of the protocol is4 BT (log(L) + 2) = O((AB)® [4 ] In [48] log(n)), (we may
assume tha% < n'/*, otherwise this protocol performs worse than the triviaitpcol). O

In the case of Boolean functions, corresponding to coimelatC;(x,y) € {+1} (see Def[ ), the referee’s job is
made easier by the fact that he only needs to determine th@sibe correlation with probability — §. This allows
us to get some improvements in the upper bounds. Similarawgonents can be obtained for other types of promises
on the distribution.

Theorem 9. Let f : {0,1}" x {0,1}" — {0, 1}, with associated sigh matri&;, ande, § < 1/2.

1 Ry (f) <4 " <Cf>} In(),

2. Q)1) =0 (toa(m [552) mch)).

From LemmaEI5 arld 6, these bounds may also be expressed snaeysh) and the best upper bounds are obtained
from~5°(Cy) = emle) The first item then coincides with the upper bound_of [L'S09].

Together with the bound betweénandy, from Sectiori b, and the lower bounds on communication coxitgle
from Sectiod B, Theorem$ 8 ahl 9 immediately imply the foltaycorollaries.

Corollary 4. Letf: {0,1}" x {0,1}" — {0,1}. For anye,§ < 1/2,if Q™(f) < ¢, then

1 RLP() < K2 ()

2. QU(f) < 0 (tog(m)2' In(}) ;=57 ).
Letp € C be a distribution with inputs itk x Y with |’ x Y| < 2", and outcomes it x B with A = | A|, B = |B].
For anye, § < 1/2, if Q"*(p) < ¢, then

3. BRI (p) < 0 (210 AB 2 [48]),

4. Q!H(P) <0 (2&; (A(;—E)g In [4B] log(n)).

The first two items can be compared to results of Yao, Shi ang Zhd Gavinsket al. [Yao03,[SZ08, GKd06],
who show how to simulate any (logarithmic) communicationtpcol for Boolean functions in the simultaneous
messages model, with an exponential blowup in communicaiibe last two items extend these results to arbitrary
non-signaling distributions.

In particular, Iltem 3 gives in the special cage= 0, that is,p € Q, a much simpler proof of the constant upper
bound on approximating quantum distributions, which Skl @Zhu prove using sophisticated techniques based on
diamond norms[[SZ08]. Moreover, Item 3 is much more genesat also allows to simulate protocols requiring
guantum communication in addition to entanglement. As feml4, it also has new interesting consequences. For
example, it implies that quantum distributios=€ 0) can be approximated with logarithmic quantum communicati
in the simultaneous messages model, using no additioralmess such as shared randomness, and regardless of the
amount of entanglement in the bipartite state measuredeith parties.
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7 Conclusion and open problems

By studying communication complexity in the framework po®d by the study of quantum non-locality (and beyond),
we have given very natural and intuitive interpretationghef otherwise very abstract lower bounds of Linial and
Shraibman. Conversely, bridging this gap has allowed ustbthese very strong and mathematically elegant lower
bound methods to the much more general problem of simulatingsignaling distributions.

Since many communication problems may be reduced to theofesknulating a non-signaling distribution, we
hope to see applications of this lower bound method to ceapmblems for which standard techniques do not apply,
in particular for cases that are not Boolean functions, sisalon-Boolean functions, partial functions or relatidres.
us also note that our method can be generalized to multipatin-signaling distributions, and will hopefully lead to
applications in the number-on-the-forehead model, forcliguantum lower bounds seem hard to prove.

In the case of binary distributions with uniform margina¥ghi{ch includes in particular Boolean functions),
Tsirelson’s theorem (Theorel 2) and the existence of Gnalieek’s constant (Propositidd 4) imply that there is
at most a constant gap betweerand~,. For this reason, it was known that Linial and Shraibmanisdezation
norm lower bound technique give lower bounds of the sameads#rdior classical and quantum communication (note
that this is also true for the related discrepancy methodgpide the fact that Tsirelson’s theorem and Grothendseck’
inequality are not known to extend beyond the case of Boade#romes with uniform marginals, we have shown that
in the general case of distributions, there is also a congembetweerr andy.. While this may be seen as a negative
result, this also reveals interesting information aboetgtructure of the sets of local and quantum distributions. |
particular, this could have interesting consequencesfostudy of non-local games.
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A Proof of Lemmal(3

We give the proof of Lemmia 3, which relates the outcome of camination protocols to vectors of bounded norm.

Lemma 3 ([Kre95,Yao93[ LS09]) Let (C, M 4, Mp) be a distribution simulated by a quantum protocol with sldare
entanglement usingy qubits of communication from Alice to Bob apsl qubits from Bob to Alice. There exist vectors
a(x),b(y) with |@(z)| < 295 and |b(y)| < 294 such thatlC(z,y) = d(z) - b(y).

The proof relies on the following observation:

Claim 1. Let|y;) be the entangled state shared by Alice and Bob after thetfirst ¢4 + ¢t qubits of com-
munication (4 bits from Alice to Bob, andp bits from Bob to Alice). This state may be written |[gg) =
Sier i Yopeqoy: Arla?)Br|0), where, ui|* = 1, {|a?) : Vi € I} and{|3") : Vi € I)} are orthonormal
bases for Alice and Bob's initial registers respectivelglahy, By are linear operators such that:

e Ay,Bg are the identity operators on Alice and Bob's initial regist, respectively,
e Ar are linear operators acting on Alice’s initial register am&pending on her input only, satisfying

> Arpa)|? =2t

Te{0,1}

for all (unit) state| 4) of Alice’s register.
e Br are linear operators depending on Bob's input only, sabi&fyp ;. (1} | Brlwg)|? = 284 for all (unit)
state|y)z) of Bob's register.

Proof of Clainil. We prove this by induction over This is true fort = 0, since using Schmidt decomposition, we
may write the initial entangled state shared by Alice and,Balfore the quantum communication protocol is initiated,
as|vo) = Y icr malaD)|BD), where}”, |p;|?> = 1 and{|a®) : Vi € I} and{|3() : Vi € I)} are orthonormal bases
for Alice and Bob's registers respectively (as is, theseaataally just orthonormal, but we can always obtain a basis
by settingu; = 0 for the missing basis vectors).

If this is true for ¢ — 1, then we havely,1) = 3. m D reqoay Arla?)Br|3®), where
D oTef0,1}t-1 |Az|a®)|2 = 2ts and} 7o 1301 |Bz|B™)|? = 2ta~1 for all i € I (we assume without loss of
generality that the's qubit is sent by Alice to Bob). Alice’s operation at turwill be to apply some unitary operation
U, on her register, then send one of the qubits in her registBoto By isolating this qubit, we define the linear op-
eratorsArg and Ar; to be such thall; A |a)) = Arg|a?)]0) + Apq|a®)|1) for all i € I. Unitarity then implies
that| Azola®)|? + [Ari|a)[* = |Ar|a(?)|?, and as a consequeng®;. 1y« [Ar|a?)[* = 2'. We then have

lve) = Zﬂi Z [ATO|a(i)>|O>BT|B(i)> + Ar1]a')|1) Br|89) (1)
i€l Te{o,1}t
= > oy, Arla®)Br|gY), )

i€l Tef{o,1}t

where, for allT € {0,1}*~!, we have defined linear operataBso, Br; such thatBro|3") = [0)Br|3®) and
Br1|B®) = [1)Br|BW) for all i € I, considering that the additional qubit is in Bob’s handshat ¢énd of turrt.
Furthermore, we havigBro| ) [* + | Br1|8™)|* = 2| Br|3?)|?, and as a consequenge, ( .« | Br|57)[* =
2t4 which completes the proof of our claim. O

Proof of Lemmal3 At the end of the quantum communication protocol, Alice amabBhare a quantum state,)
satisfying Clainill fort = ¢. Alice and Bob then perform binaryf {1, —1}-valued) measurementsand B on their

respective parts of the state. By orthonormality of theesliattéi)), we have for the correlation

C = (b|ABI,) )
= > iy > (1AL AAy a9 (89| BLBBY(BY)). (4)
i,j€I T,Ue{0,1}4
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We may now define the vecto@éz) andb(y) in a22f|1|2-dimensional complex vector space, with coordinates
arviy(x) = oA} AAr]a®), (5)
bruig(x) = w;(8¥|BLBBy[BY), VT,U€{0,1}%i.jel. (6)

so thatC' = @(x) - b(y). Moreover, using the fact that the(?"))’s define an orthonormal basis for Alice’s register and
the property on the norms of the operatdrs, we have

la@? = Yl Y [al?|AfA4r|a®)P (7)
i,j€1 T,Ue{0,1}4

= Yl Y 1AL AAr|a@))? ©)
i€l T,Ue{0,1}9

< Yl Y 1AL PIAra)? = 2%, )
i€l T,Ue{0,1}9

where|$\") is the renormalized statéAr|a(?)). So, we havéa(z)| < 27, and similarly|b(y)| < 294.
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