
Future-looking Logics on Data Words and Trees

Diego Figueira and Luc Segoufin?

INRIA, LSV, ENS Cachan, France

Abstract. In a data word or a data tree each position carries a label
from a finite alphabet and a data value from an infinite domain.
Over data words we consider the logic LTL↓1(F), that extends LTL(F)
with one register for storing data values for later comparisons. We show
that satisfiability over data words of LTL↓1(F) is already non primitive
recursive. We also show that the extension of LTL↓1(F) with either the
backward modality F−1 or with one extra register is undecidable. All
these lower bounds were already known for LTL↓1(X,F) and our results
essentially show that the X modality was not necessary.
Moreover we show that over data trees similar lower bounds hold for
certain fragments of XPath.

1 Introduction

A data word (data tree) is a word (tree) where each position carries a label from a
finite alphabet and a datum from some infinite domain. These models have been
considsered in the realm of semistructured data [3], timed automata [5] and ex-
tended temporal logics [9,8,12]. In this work we consider an infinite domain with
no structure where we can only test for equality or inequality between elements.

There have been various logics considered to specify properties over data
words and data trees. For example from the standpoint of Temporal Logics
(both on data words [8] and trees [12]), of First Order Logics (see [4] for the
data words case and [3] for trees), or of logics based on tree patterns [7,2].
The logic LTL↓1(X,F) is the extension of LTL(X,F) with the ability to use one
register for storing a data value for later comparisons. It has been studied in [9,8]
where satisfiability and expressivity issues have been addressed. In [8] it has
been established that the satisfiability problem for LTL↓1(X,F) is decidable and
non primitive recursive on data words. It is also shown in [8] that the two way
extension LTL↓1(X,F,F−1) is undecidable over data words and, similarly, that the
extension to 2 registers LTL↓2(X,F) is undecidable.

Here we show that even without the X modality, all the aforementioned lower
bounds remain valid: the satisfiability problem for LTL↓1(F) over data words is
non primitive recursive, while for LTL↓1(F,F−1) and LTL↓2(F) is undecidable.

Data trees can be seen as a coding of an xml document [3,12]. Therefore
XPath, the node selecting language of W3C [6], can be considered as a logic over
? The authors acknowledge the financial support of the Future and Emerging Tech-

nologies (FET) programme within the Seventh Framework Programme for Research
of the European Commission, under the FET-Open grant agreement FOX, number
FP7-ICT-233599.

data trees. By XPath, we refer to the 1.0 specification without all the domain
specific features (arithmetic, string manipulation, etc.) As XPath is at the core of
many xml standard languages (like XQuery and XSLT), deciding satisfiability
of some of its fragments can be of great help during optimization stages.

A data word can be seen as a special case of an unranked ordered data
tree, for instance by adding a root that is the parent of all the positions of the
data word. With this consideration the fragment XPath(→,→+,=) of XPath that
contains only the axis next-sibling (→) and following-sibling (→+) can be
seen as a fragment of LTL↓1(X,F). There are nonetheless two important differences
between the expressive power of XPath(→,→+,=) and LTL↓1(X,F). The first one
is that the axis →+ corresponds to the strict future modality in LTL, denoted Fs

in the sequel. Of course F can be defined using Fs but the opposite is not true in
the absence of X. The second difference lies in the fact that XPath can compare
data values in a way strictly more limited than LTL↓1. We illustrate this with an
example. At a position of a data word, LTL↓1(F) can store the current data value
in the register, check for a later symbol a with a data value different from the one
in the register, and then further check for a symbol b with a data value matching
the one of the register. In this spirit, XPath could only compare the data values
at the beginning and the end of the path and could not say anything about the
data value of the intermediate a symbol. Hence XPath(→+,=) should be seen as
a fragment of LTL↓1(Fs), incomparable with LTL↓1(F) in terms of expressive power.

Based on these ideas, we exhibit a syntactic fragment sLTL↓1(Fs) of LTL↓1(Fs)
that limits the use of register comparisons and has the same expressive power
as XPath(→+,=) on data words. We then show that satisfiability over data
words of sLTL↓1(Fs) is non primitive recursive. Similarly the same restriction on
LTL↓1(Fs,Fs

−1) yields a logic with the same expressive power as XPath(→+, +←,=),
which is shown to be undecidable.

Our non primitive recursive results are proved by a reduction from the empti-
ness problem of faulty counter automata. These are counter automata that may
have incrementing errors in their counters during the run. Non-emptiness for this
class of automata was proven to be decidable and not primitive recursive [16].
Our reduction will be centered in a strategy of using data values for coding –
with some limitations– a next step move of this automaton. We show that the
strict future modality together with the limited data comparison capabilities of
sLTL↓1(Fs) are sufficient for our coding. With the extra power of LTL↓1(F) for com-
paring data values, we also show that strictness of the future modality can be
avoided. Similar ideas are used for our undecidability results: The extra available
expressive power is sufficient to forbid the incrementing errors and thus to code
the emptiness problem of a Minsky Counter Automaton.

Related work. There are known complexity results concerning the satisfiability
problem of several data-aware fragments of XPath on data trees. When all nav-
igational axes are present, XPath is undecidable [11]. When all vertical axes are
present but in the absence of any horizontal axis, the status of the decidability
of XPath(↓, ↓+, ↑, ↑+,=) is not yet known [1]. In this paper we show that if decid-

able, the complexity of this fragment cannot be primitive recursive, even in the
absence of the axes ↓ and ↑.

In [3] decidability over data trees of the two-variable fragment of first order
logic, FO2(+1,∼) is established. As a direct consequence, a fragment of XPath
without any descendant/ancestor or following/previous-sibling axes in
the paths of the data test expressions, is shown to be decidable. On the oppo-
site, in the present work we focus on the satisfiability under the absence of the
successor axis.

In [12] it is shown that the emptiness problem for alternating automata
with one register over data trees is decidable. As a direct consequence it is
shown that XPath(↓, ↓+,→,→+,=), with some restriction on the expressions with
a data value test, is decidable and non primitive recursive. As a consequence of
the present work, the hardness result already holds for XPath(↓+,→,=) and for
XPath(→+,=).

We finally remark that, nevertheless, the satisfiability of XPath(↓, ↓+,=) is
“only” ExpTime-complete [10].

2 Preliminaries

We fix a finite set Σ of labels and an infinite set D of data values. The models
we consider are either data words or data trees. A data word σ over a finite
alphabet Σ is a non-empty word of (Σ×D)∗. We assume no structure on D and
D will be used only to perform tests for (in)equalities. In our examples we will
always use data values from N seen as a set of numbers. The data trees we will
be using are unranked and ordered. The domain of an unranked ordered tree
is represented by a prefix-closed set T of elements from N∗ such that whenever
n(i + 1) ∈ T then ni ∈ T . The elements of T will be called nodes of the tree.
A data tree t over Σ,D is a tree domain T together with a labeling function λ
assigning an element of Σ×D to any node of t. We use the standard terminology
for trees such as descendant, ancestor, sibling, etc.

LTL with registers. The most expressive logic for data words we treat here is
LTL↓n(F,X,F−1,X−1), the Linear Temporal Logic with the freeze quantifier (↓i),
test predicate (↑i) and next (X) and future (F) temporal operators together with
their inverse modalities (X−1,F−1). Sentences are defined:

ϕ,ψ ::= a | ↓i ϕ | ↑i | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | Oϕ

where a is a symbol from a finite alphabet Σ, i ∈ {1, . . . , n}, and O ranges over
{F,X,F−1,X−1}. We also use the strict future temporal operator Fs as a shortcut
for XF. We will consider fragments of this logics as simple restrictions to certain
temporal operators. Intuitively, in the evaluation of ↓i ϕ, current data value is
‘saved’ in the register i, and any appearance of ↑i in ϕ holds at a position iff its
datum is equal to the one stored in register i.

Given a data word σ, we write σi for the ith element (couple) of the word,
and π1, π2 for the projections on Σ and D. A valuation is defined as a partial

map v : {1, . . . , n} → D. The satisfaction relation |= is inductively defined (we
omitted X−1 and F−1 for succinctness):
σ, i |=v a iff π1(σi) = a σ, i |=v↑k iff k ∈ dom(v) and v(k) = π2(σi)
σ, i |=v↓k ϕ iff σ, i |=v[k 7→π2(σi)] ϕ σ, i |=v Xϕ iff i < |σ| and σ, i+ 1 |=v ϕ
σ, i |=v Fϕ iff for some i ≤ j ≤ |σ| we have σ, j |=v ϕ

where 1 ≤ i ≤ |σ|. We denote σ, i |=v∅ ϕ by σ, i |= ϕ, with v∅ the empty
valuation; and we write σ |= ϕ for σ, 1 |= ϕ. Also, in the case of LTL↓1 we use ↓
and ↑ instead of ↓1 and ↑1 for simplicity.

In Section 5 we will lift our results to trees and XPath. In order to do this it is
convenient to introduce now a restriction of LTL↓1 such that with this restriction
LTL↓1 corresponds to XPath. A formula of LTL↓1 is said to be simple if (i) there
is at most one occurrence of ↑ within the scope of each occurrence of ↓ and, (ii)
there is no negation between an occurrence of ↑ and its matching ↓, except maybe
immediately before ↑. We denote by sLTL↓1 the fragment of LTL↓1 containing only
simple formulas. The correspondence between sLTL↓1 and XPath will be made
explicit in Proposition 1 of Section 5.

Faulty counter systems. For proving our lower bounds we will use a reduction
from faulty counter automata that we describe here. A counter automaton (CA)
with zero testing is a tuple 〈Σ,Q, q0, n, δ, F 〉, where Σ is a finite alphabet, Q
is a finite set of states, q0 is the initial state, n ∈ N is the number of counters,
δ ⊂ Q × Σ × L × Q is the transition relation over the instruction set L =
{inc, dec, ifzero} × {1, . . . , n}, and F ⊂ Q is the set of accepting states. A
counter valuation is a function v : {1, . . . , n} → N. An error-free run over w ∈
Σ∗ is a finite sequence 〈q0, v0〉

w0,`0→ 〈q1, v1〉
w1,`1→ · · · observing the standard

interpretation of the instructions `0, `1, · · · (〈dec, c〉 can only be performed if c
is nonzero), where v0, v1, . . . are counter valuations, v0 assigns 0 to each counter,
and w = w0w1 . . . such that wi ∈ Σ ∪ {ε} for every i. A run is accepting iff it
ends with an accepting state.

A Minsky CA has error-free runs. For these automata, already with only
two counters, finitary emptiness is undecidable [14]. An Incrementing CA (from
now on ICA) is defined as a Minsky CA except that its runs may contain errors
that increase one or more counters non-deterministically. We write that two
valuations are in the relation v ≤ v′ iff, for every counter c, v(c) ≤ v′(c). Runs of

Incrementing CA are defined by replacing the relation
a,`→ by

a,`
 , where 〈p, u〉 a,`

〈q, v〉 iff there exist valuations u′, v′ such that u ≤ u′, v′ ≤ v and 〈p, u′〉 a,`→ 〈q, v′〉.
In [8, Theorem 2.9] it is shown that the results of [16] and [15] on Channel

Machines can be adapted to prove the following result.

Theorem 1. Emptiness of ICA is decidable and non primitive recursive.

3 The case of sLTL↓
1

In this section we show that satisfiability of sLTL↓1(Fs) is non primitive re-
cursive over data words. We then prove that satisfiability is undecidable for

sLTL↓1(Fs,Fs
−1). In the next section we will show that the logic LTL↓1(F) is also

non primitive recursive and that LTL↓1(F,F−1) is undecidable. In Section 5 we
will use the results of this section for proving lower bounds for several fragments
of XPath over data trees.

3.1 Lower bound for sLTL↓1(Fs).

Theorem 2. Satisfiability of sLTL↓1(Fs) on data words is non primitive recursive.

Proof. We exhibit a PTime reduction from the non-emptiness of ICA to satisfi-
ability of sLTL↓1(Fs). Let C = 〈Σ,Q, q0, n, δ, F 〉 be an ICA.
Let L = {(inci)1≤i≤n, (deci)1≤i≤n, (ifzeroi)1≤i≤n}, and Σ̂ = Q× (Σ ∪ {ε})×
L×Q. We construct a formula ϕC ∈ sLTL↓1(Fs) that is satisfied by a data word
iff C accepts the word. We view a run of C of the form:

〈q0, v0〉
a,inci 〈q1, v1〉

b,decj
 〈q2, v2〉

b,ifzeroi 〈q3, v3〉 · · ·
as a string in Σ̂:

〈q0, a, inci, q1〉〈q1, b, decj , q2〉〈q2, b, ifzeroi, q3〉 · · ·
The formula ϕC will force that any string that satisfies it codes a run of C.

In order to do this, ϕC must ensure that:

(begin) the string starts with q0,
(end) the string ends with a state of F ,
(tran) every symbol of Σ̂ in the string corresponds to a transition of C,
(chain) the last component of a symbol of Σ̂ is equal to the first component of

the next symbol,
(pair) for each i, every symbol that contains inci occurring in the string to the

left of a symbol containing ifzeroi, can be paired with a symbol containing
deci and occurring in between the inci and the ifzeroi.

Before continuing let us comment on the (pair) condition. If we were coding
runs of a perfect Minsky CA (ie, with no incremental errors), to the left of any
position containing a ifzeroi, we would require a perfect matching between
inci and deci operations in order to make sure that the value of the counter i is
indeed zero at the position of the test. But as we are dealing with ICA, we only
need to check that each inci has an associated deci to its right and before the
test for zero, but we do not enforce the converse, that all deci match an inci.
This is fortunate because this would require past navigational operators.

The first difficulty comes from the fact that (pair) is not a regular relation.
The pairing will be obtained using data values. The second difficulty is to en-
force (chain) without having access to the string successor relation. In order
to simulate the successor relation we add extra symbols to the alphabet, with
suitable associated data values.

Let Σ′ = Σ̂ ∪{N, #, @}. The coding of a run consists in a succession of blocks.
Each block is a sequence of 3 or 4 symbols, “c N #” or “c @ N #”, with c ∈ Σ̂. The
data value associated to the c and # symbols of a block is the same and uniquely

determines the block: no two blocks may have the same data value. The data
value associated with the symbol N of a block is the data value of the next block.
If a block contains a symbol c that codes a inci operation that is later in the
string followed by a ifzeroi, then this block contains a symbol @ whose data
value is the that of the block containing deci that is paired with c.

For instance in the example of Fig. 1 one can see four blocks b1, b2, b3, b4.
Each of them starts with a symbol from Σ̂ coding a transition of the ICA and
ends with a # with the same data value marking the end of the block. Inside the
block, the data value of N is the same as the data value of the next block. The
data value of @ corresponds to that of a future block. In this example c1 must
correspond to a inci while c3 to deci and there must be a ifzeroi somewhere
to the remaining part of the word (say, b5). Moreover c2 can’t be a ifzeroi as
otherwise the data value of the symbol @ would refer to a block to the left of c2.

1

c0

2

N

1

#

2

c1

4

@

3

N

2

#

3

c2

4

N

3

#

4

c3

5

N

4

· · ·
b1 b2 b3 b4

Fig. 1. Coding of an ICA run.

We now show that the coding depicted above can be enforced in sLTL↓1(Fs). By
π1, π2, π3, π4 we denote the projection of each symbol of Σ̂ into its corresponding
component. To simplify the presentation we use the following abbreviations:

σ̂ ≡
_
c∈Σ̂

c inc(i) ≡
_

c∈Σ̂,π3(c)=inci

c inc ≡
_
i

inc(i)

dec(i) ≡
_

c∈Σ̂,π3(c)=deci

c last ≡ σ̂ ∧ ¬Fs σ̂ iz(i) ≡
_

c∈Σ̂,π3(c)=ifzeroi

c

The formula ϕC that we build is the conjunction of all the folowing formulas.

Forcing the structure
G(last⇒ ¬Fs>) : The string ends with the last transition,V
c∈{N,@,#} G(c⇒ ¬(↓Fs(c∧ ↑))) : the data value associated to each N, # and @

uniquely determines the occurrence of that symbol,
G
`
(σ̂ ∧ ¬last)⇒ (↓Fs(N ∧ Fs(#∧ ↑)))

´
: each occurrence of Σ̂ (except the last one)

is in a block that contains a N and then a #,V
iG
`
(inc(i) ∧ Fs(iz(i)))⇒ ↓Fs(@ ∧ Fs(N ∧ Fs(#∧ ↑)))

´
: every inci block to the left

of a ifzeroi must have a @ before the N,
G((σ̂ ∧ ¬inc)⇒ ¬ ↓Fs(@ ∧ Fs(#∧ ↑))) : only blocks inc are allowed to have a @,V
s∈{N,@} G

`
σ̂ ⇒ ¬(↓Fs(s ∧ Fs(s ∧ Fs(#∧ ↑))))

´
: there is at most one occurrence of N

and @ in each block,V
s∈Σ̂∪{#} G(σ̂ ⇒ ¬ ↓Fs(s ∧ Fs(#∧ ↑)) : there is exactly one symbol # and one symbol

of Σ̂ per block,
G
`
N⇒↓Fs(# ∧ Fs(σ̂∧ ↑))

´
: each symbol N’s datum points to a block to its right,

G(N⇒ ¬ ↓Fs(# ∧ Fs(# ∧ Fs(σ̂∧ ↑)))) : in fact N has has to point be the next block.

Once the structure has the expected shape, we can enforce the run as follows.
All the formulas below are based on the following trick. In a test of the form
↓Fs(N∧Fs(#∧ ↑)) which is typically performed at a position of symbol Σ̂, the last
symbol # must have the same data value as the initial position. Hence, because
of the structure above, both must be in the same block. Thus the middle symbol
N must also be inside that block. From the structure we know that the data value
of this N points to the next block. Therefore by replacing the test N by one of the
form N ∧ (↓ Fs(↑ ∧ s)) we can transfer some finite information from the current
block to the next one. This gives the desired successor relation.

Forcing a run

(begin)
_

c∈Σ̂,π1(c)=q0

c

(end) Fs

“
last ∧

_
c∈Σ̂,π4(c)∈F

c
”

(tran) All elements used from Σ̂ correspond to valid transitions. Let Σ̂C be
that set of transitions of C,

G
“ ^
c∈Σ̂\Σ̂C

¬c
”

(chain) For every c ∈ Σ̂,
G
“
c⇒

`
↓Fs

`
N ∧ Fs(#∧ ↑) ∧

_
d∈Σ̂,

π4(c)=π1(d)

(↓Fs(d∧ ↑))
´´”

(pair) We first make sure that the block of the @ of an inck is matched with
a block of a deck:V
k G
“
inc(k)⇒

“
¬ ↓Fs(@ ∧ Fs(#∧ ↑))∨ ↓Fs

`
@∧ ↓Fs(dec(k)∧ ↑) ∧ Fs(#∧ ↑)

´””
Now, every inck block to the left of a ifzerok block:
– 1. The block must contain an @ element:V

k G
`
inc(k)⇒

`
↓Fs(@ ∧ Fs(#∧ ↑)) ∨ ¬Fs(iz(k))

´´
– 2. The data value of that @ element must point to a future block before
any occurrence of ifzerok:V

k G
`
inc(k)⇒ ¬

`
↓Fs

`
@∧ ↓Fs(iz(k) ∧ Fs ↑) ∧ Fs(#∧ ↑)

´´´
This concludes the construction of ϕC . The correctness proof is standard. ut

3.2 Undecidability of sLTL↓1(Fs, Fs
−1)

We now consider sLTL↓1(Fs,Fs
−1). The extra modality can be used to code the

run of a (non faulty) Minsky CA.

Theorem 3. Satisfiability of sLTL↓1(Fs,Fs
−1) is undecidable.

Proof. Consider a Minsky CA C. We revisit the proof of Theorem 2. It is easy
to see that we can enforce the absence of faulty increments during the run
by asking that every deci element is referenced by some previous inci block:∧

i G(dec(i) ⇒↓ Fs
−(@∧ ↑)). We thus make sure that every dec is related to a

corresponding inc. Hence, the coding is that of a perfect (non faulty) run. ut

4 The case of LTL↓
1

In this section we lift the lower bounds of the previous section by considering the
temporal operator F instead of Fs. We can only do so by removing at the same
time the restriction to simple formulas. Hence the results of this section cannot
be applied to XPath. Notice that LTL↓1(F) and sLTL↓1(Fs) are incomparable in
terms of expressive power. Indeed, properties like ↓ F(a ∧↑̄∧F(b∧ ↑)) cannot be
expressed in sLTL↓1(Fs), while LTL↓1(F) cannot express that the model has at least
two elements. We do not know whether sLTL↓1(F), which is weaker than the two
above mentioned logics, is already non primitive recursive. The results of this
section improve the results of [8] which show that satisfiability is non primitive
recursive for LTL↓1(X,F) and undecidable for LTL↓1(X,F,F−1).

Theorem 4. Over data words,

1. Satisfiability of LTL↓1(F) is decidable and non primitive recursive.
2. Satisfiability of LTL↓1(F,F−1) is undecidable.

Proof. We only prove Item 1, the proof of Item 2 being similar.
Consider an ICA C and recall the coding of runs of C used in the proof of

Theorem 2. In the construction of the formula ϕC , whenever we have “s∧Fs(s′∧
ϕ)” for some ϕ and s 6= s′ two different symbols, Fs can be equivalently replaced
by the F temporal operator. This is the case in all formulas except in three
places: (i) The formula saying that N should point to the next block contains
∧ Fs(# ∧ ϕ). But from the structure that is enforced, this can equivalently be
replaced by #∧ F(N∧ F(#∧ϕ)). (ii) To enforce that each block contains at most
one occurrence of symbols in Σ̂ ∪ {N, #, @}. (iii) To enforce that no two symbols
in Σ̂ ∪ {N, #, @} have the same data value.

In order to cope with (ii) and (iii), we use a slightly different coding for runs
of C. This coding is the same as the one for the proof of Theorem 2 except that
we allow succession of equal symbols, denoted as group in the sequel. Note that
in a group two different occurrences of the same symbol in general may have
different data values, as we can no longer enforce their distinctness. However, as
we will see, we can enforce that the Σ̂ group of elements of a block have all the
same data value.

Hence a block is now either a group of c ∈ Σ̂ followed by a group of N followed
by a group of # or the same with a group of @ in between. A coding of a run is
depicted in Figure 2.

This structure is enforced by modifying the formulas of the proof of Theo-
rem 2 as follows.

1

c0

1

c0

2

N

1

#

1

#

2

c1

4

@

4

@

7

@

3

N

2

#

8

#

3

c2

4

N

4

N

3

#

4

c3

4

c3

5

N

4

#

4

· · ·

b1 b2 b3 b4

Fig. 2. LTL↓1(F) cannot avoid having repeated consecutive symbols.

(i) The formulas that limit the number of occurrences of symbols in a block
are replaced by formulas limiting the number of groups in a block.

(ii) The formulas requiring that no two occurrences of a same symbol may
have the same data values are replaced by formulas requiring that no two
occurrences of a same symbol in different groups have the same data value.

(iii) In all other formulas, Fs is replaced by F.
(iv) Finally, we ensure that although we may have repeated symbols inside a

block, all symbols from Σ̂ have the same data value.

G(σ̂ ⇒ ¬ ↓ F((σ̂ ∨ #) ∧ ¬ ↑ ∧F(#∧ ↑)))

Note that this implies that each N of a group must have the same data
values as they all point to the next block. However there could still be @
symbols with different data values as depicted in Fig. 2.

The new sentences now imply, for instance, that:

1. Every position from a group of c ∈ Σ̂ have the same data value which is
later matched by an element of a group of #.

2. Every position from a group of N has the same data value as a position c ∈ Σ̂
of the next block (and then, it has only one possible data value).

3. Every position from a group @ has the same data value as a position c ∈ Σ̂
of a block to its right. Note that the data values of two @ of the same group
may correspond to the data values of symbols in different blocks. This is
basically the main conceptual difference with the previous proof.

The proof of correctness of the construction is left to the reader. ut

Note that in the previous proof we used the fact that LTL↓1(F), although it
has only one register, can make (in)equality tests several times throughout a
path (as used in the formula of item (iv) in the proof), something that sLTL↓1(Fs)
and XPath cannot do.

Two registers. When 2 registers are available the previous result can be adapted
to code a (non faulty) Minsky CA with a strategy similar to [8, Theorem 5.4].

Theorem 5. Satisfiability of LTL↓2(F) is undecidable over data words.

5 Data trees and XPath

We now turn to data trees. An xml document can be seen as an unranked tree
with attributes and data values in its nodes. While a data tree has only one data
value per node, an xml document element may have several attributes each of
which with an associated data value. All XPath fragments treated in this paper
can force all elements of an xml document to have only one attribute. Therefore
all hardness results in the present work hold also for the class of xml documents.

The logic XPath. XPath is a two-sorted language, with path expressions (α, β, . . .)
and node expressions (ϕ,ψ, . . .). These are defined by mutual recursion:

α, β ::= ↓ | ↓+ | ↑ | ↑+ | → | →+ | ← | +← | ε | αβ | α ∪ β | α[ϕ]
ϕ,ψ ::= σ | 〈α〉 | ¬ϕ | ϕ ∧ ψ | α = β | α 6= β (σ ∈ Σ)

A path expression essentially describes a traversal of the tree by using the axis:
child (↓), descendant (↓+), the next-sibling (→), following-sibling (→+)
and their inverses, with the ability to test at any stage for node conditions. Let
t be a data tree with domain T and labeling function λ. The semantics of XPath
is defined by induction is the usual intuitive way, we only give here some cases:

[[↓]]t = {(x, xi) | xi ∈ T} [[αβ]]t = {(x, z) | ∃y.(x, y) ∈ [[α]]t ∧ (y, z) ∈ [[β]]t}
[[〈α〉]]t = {x ∈ T | ∃y.(x, y) ∈ [[α]]t} [[α[ϕ]]]t = {(x, y) ∈ [[α]]t | y ∈ [[ϕ]]t}
[[ε]]t = {(x, x) | x ∈ T} [[α+]]t = the transitive closure of [[α]]t

[[α = β]]t = {x ∈ T | ∃y, z.(x, y) ∈ [[α]]t, (x, z) ∈ [[β]]t, π2(λ(y)) = π2(λ(z))}
[[α 6= β]]t = {x ∈ T | ∃y, z.(x, y) ∈ [[α]]t, (x, z) ∈ [[β]]t, π2(λ(y)) 6= π2(λ(z))}

A key property for using results of Section 3 is that simple formulas can be
translated to XPath and back. The proof of this result is straightforward by
induction on the formula.

Proposition 1. Over data words, sLTL↓1(Fs) and XPath(→+,=) have the same
expressive power. The same holds for sLTL↓1(Fs,Fs

−1) and XPath(+←,→+,=).
Moreover, in both cases, the transformation from sLTL↓1 to XPath takes polyno-
mial time while it takes exponential time in the other direction.

The restriction on negations in the definition of sLTL↓1 corresponds to the
fact that XPath path expressions are always positive: any path α is essentially
a nesting of operators F with intermediate tests. We remark that there is a big
difference between XPath(→+,=) over data words and XPath(↓+,=) over data
trees. Indeed XPath(↓+,=) is closed under bisimulation and hence it cannot as-
sume that the tree is a vertical path. As the string structure was essential in
the proof of Theorem 2, the non primitive recursiveness of XPath(→+,=) over
data words does not lift to XPath(↓+,=) over data trees. Actually, satisfiabi-
lity of XPath(↓+,=) is ExpTime-complete [10]. However, if one considers the
logic XPath(↓+,→,=) then the axis → can be used to enforce a vertical path
(¬ ↓+ [→]) and therefore it follows from Theorem 2 and Proposition 1 that:

Corollary 1. Satisfiability of XPath(↓+,→,=) on data trees is at least non prim-
itive recursive.

Similarly, in XPath(↓+, ↑+,=) one can simulate a string by going down to a
leaf using ↓+ and then use the path from that leaf to the root as a string using ↑+.

Corollary 2. Satisfiability of XPath(↓+, ↑+,=) on data trees is at least non prim-
itive recursive.

Note that the decidability of XPath(↓+,→,=) and of XPath(↓+, ↑+,=) is still
an open problem.

Open problem: Is XPath(↓+, ↑+,=) decidable over data trees?

It would be interesting to know whether the strictness of the axis ↓+ is nec-
essary in the above two results. This boils down to know whether sLTL↓1(F) is
already not primitive recursive over data words. Note that the proof of Theo-
rem 4 uses in an essential way the possibility to make (in)equality tests several
times throughout a path. This is exactly what cannot be expressed in sLTL↓1(F).

Open problem: Is satisfiability of sLTL↓1(F) primitive recursive over data words?

We conclude with some simple consequences of Theorem 3 and Proposition 1:

Corollary 3. Satisfiability of XPath(+←,→+,=) and of XPath(↓+, ↑+,→,=) over
data trees is undecidable.

Corollary 4. Satisfiability of XPath(→+, ↓, ↑,=) is undecidable.

Proof. This is similar to the proof of Theorem 3 with a slight difference. Consider
that the coding of the run of the counter machine is done at the first level of the
tree (i.e., at distance 1 from the root). Then, the property to ensure that every
decrement has a corresponding increment is now:

∧
i ¬ ↓ [dec(i) ∧ ¬ε =↑↓ [@]].

6 Discussion

By [8] it is known that satisfiability of LTL↓1(X,F) with infinite data words is
undecidable. The proof of Theorem 4 can be extended to code runs of ICA over
infinite data words, which is known to be undecidable, to show that this result
already holds in the absence of X.

Theorem 6. On infinite data words, the satisfiability problem of LTL↓1(F) is
undecidable.

Summary of results

In the table below we summarize the main results and some of the consequences
we have mentioned. In this table, PR stands for non primitive recursive.

Logic Complexity Details

LTL↓1(F) PR, decidable Theorem 4 & [8]

LTL↓1(F,F−1) undecidable Theorem 4

LTL↓2(F) undecidable Theorem 5

sLTL↓1(Fs) PR, decidable Theorem 2 & [8]

sLTL↓1(Fs,Fs
−1) undecidable Theorem 3

XPath(↓+,→,=) PR, decidability unknown Corollary 1

XPath(↓+, ↑+,=) PR, decidability unknown Corollary 2

XPath(↓+, ↑+,→,=) undecidable Corollary 3

XPath(→+, ↓, ↑,=) undecidable Corollary 4

References

1. Michael Benedikt, Wenfei Fan, and Floris Geerts. XPath satisfiability in the pres-
ence of DTDs. J. ACM, 55(2), 2008.

2. Henrik Björklund, Wim Martens, and Thomas Schwentick. Optimizing conjunctive
queries over trees using schema information. In MFCS, pages 132–143, 2008.

3. Mikolaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc
Segoufin. Two-variable logic on data trees and XML reasoning. In PODS, pages
10–19, 2006.

4. Mikolaj Bojańczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire
David. Two-variable logic on words with data. In LICS, pages 7–16, 2006.

5. Patricia Bouyer, Antoine Petit, and Denis Thérien. An algebraic approach to data
languages and timed languages. Inf. Comput., 182(2):137–162, 2003.

6. J. Clark and S. DeRose. XML path language (XPath). Website, 1999. W3C
Recommendation. http://www.w3.org/TR/xpath.

7. Claire David. Complexity of data tree patterns over XML documents. In MFCS,
pages 278–289, 2008.

8. Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier and register
automata. ACM Transactions on Computational Logic, 2009.

9. Stéphane Demri, Ranko Lazić, and David Nowak. On the freeze quantifier in
constraint LTL: Decidability and complexity. In TIME, pages 113–121, 2005.

10. Diego Figueira. Satisfiability of downward XPath with data equality tests. In
PODS, Providence, Rhode Island, USA, 2009. ACM Press.

11. Floris Geerts and Wenfei Fan. Satisfiability of XPath queries with sibling axes. In
DBPL, volume 3774, pages 122–137. Springer, 2005.

12. Marcin Jurdziński and Ranko Lazić. Alternating automata on data trees and
XPath satisfiability. CoRR, abs/0805.0330, 2008.

13. Alexei Lisitsa and Igor Potapov. Temporal logic with predicate lambda-
abstraction. In TIME, pages 147–155, 2005.

14. Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc.,
1967.

15. Joel Ouaknine and James Worrell. On Metric temporal logic and faulty Turing
machines. In FoSSACS, volume 3921, pages 217–230, 2006.

16. Philippe Schnoebelen. Verifying lossy channel systems has nonprimitive recursive
complexity. Information Processing Letters, 83(5):251–261, September 2002.

http://www.w3.org/TR/xpath

A Missing proofs

A.1 Correctness of the construction of the proof of Theorem 2

Given an ICA C, the proof exhibited a formula ϕC ∈ XPath(→∗,=) that is satis-
fied by a data word iff C accepts the word. We show here that the construction
is correct.

From data word to an accepting ICA run Let w be a data word satisfying
ϕC . Let B1B2 · · ·Bm be the decomposition of w into blocks as described above.
Let ci = 〈qi, ai, `i, qi+1〉 be the element of Bi in Σ̂. We show that w′ = a1a2 · · · am

is accepted by C. We construct a run of C on w′ such that C is in state qi before
reading letter ai of w′ and execute the transitions ci. By (tran) each one of
these are valid transitions of the ICA, and (chain) ensures that the sequence is
consistent. (begin) takes care of the initialization condition and (end) of the
accepting condition. It remains to construct the valuation v1, . . . , vm+1 of the

counter at each step such that we have 〈qi, vi〉
ai,`i 〈qi+1, vi+1〉 as desired.

As expected v1 is the zero valuation. We construct the rest of the valua-
tions by induction, simulating a perfect counter machine and introducing incre-
menting errors in a lazy way, whenever necessary. At step i, given a transition
〈qi, ai, `i, qi+1〉 and the current valuation vi we set vi+1 such that 〈qi, vi〉

ai,`i
〈qi+1, vi+1〉.

– If `i is inck, then vi+1 := vi[k 7→ vi(k)+1] and clearly 〈qi, vi〉
ai,`i→ 〈qi+1, vi+1〉.

– If `i is deck then:
• If vi(k) > 0 then vi+1 := vi[k 7→ vi(k)− 1].
• If vi(k) = 0, then vi+1 := vi.

In both cases one can verify that 〈qi, vi〉
ai,`i 〈qi+1, vi+1〉, the transition being

with an incrementing error of 1 in the second case.
– If `i is ifzerok, we set vi+1 := vi. To ensure that 〈qi, vi〉

ai,`i 〈qi+1, vi+1〉
we must show that necessarily vi(k) = 0. This is a consequence of condition
pair. This condition enforces that each inck must be paired with a unique
deck to its right and before the ifzerok test. Hence the lazy strategy above
ensures that each increment is decremented later on and before the zero test.

From an accepting ICA run to data word Given an accepting run of the
ICA 〈q1, v1〉

a1,`1 〈q2, v2〉
a2,`2 . . .

am,`m 〈qm+1, vm+1〉 we construct a data word w
verifying ϕC as follows. Let ci be 〈qi, ai, `i, qi+1〉. w consists of a concatenation
of m blocks B1B2 · · ·Bm each one defined:

– If i = m, Bi is the word ci with data value m.
– If i < m, and `i ∈ {deck, ifzerok}, then set Bi to ciN# with respective data

values i, i+ 1, i.
〈ci, i〉〈N, i+ 1〉〈#, i〉

– If i < m and `i is inck. Consider the minimal d > i such that vd+1(k) = vi(k)
and set Bi to

• ci @ N # with respective data values i, d, i+ 1, i if d exists
• ci N # with respective data values i, i+ 1, i if not.

This construction assigns the unique data value i to each block Bi, and set
the data value of each symbol N to the data value of the next block Bi+1. The
constraints (begin), (end), (tran), (chain) are obviously true. It remains to
verify the constraints on @: they must have a unique data value, must point
to a corresponding dec instruction that occur before any corresponding zero
test, and no two @ may point to the same dec instruction. Consider a position
i such that `i is inck with a subsequent zero test ifzerok at position j > i.
Because the zero test is correct, the increment of counter k made at step i must
be decremented at some position between i and j. Hence there is a i < d < j
such that vd+1(k) = vi(k). By construction the data value of the @ symbol of Bi

is the minimal such d. By minimality, cd must be a deck instruction. Assume
now that at position i′ < i there is also a inck instruction. The data value
of the @ symbol of Bi′ cannot be d. Because if this would be the case then
vi′(k) = vd+1(k) = vi(k) and d would not be minimal for the position i′. Hence
(pair) is also satisfied and w |= ϕC .

A.2 Proof of Theorem 4.2

Recall the statement.
Theorem 4.2 Over data words, Satisfiability of LTL↓1(F,F−1) is undecidable.

Proof (sketch). Consider a Minsky Counter Automaton C. We revisit the pre-
vious proof. We modify the coding of a run of C by also inserting a group of
symbols @ in each dec block. Using F−1, we add formulas ensuring that every
block containing a dec instruction also contains a group of @ symbols such that
their data values refer to previous blocks containing a matching inc instruction.
We also make sure that two @ from different blocks have different data values. All
this can be done by taking the F−1 counterpart of the formulas we constructed
with F.

We show that the new formula ϕC is satisfied by a data word iff C accept
the word. Constructing a data word that satisfies ϕC from a word accepted by
C is done as in the proof of Theorem 2.

For the other direction one needs to show that from a word that satisfies
ϕC , the corresponding word with the obvious run and obvious valuations of the
counter is accepting for C. One can verify that the new extra conditions do imply
that no null counter is ever decreased and each zero test is correct, based on the
fact that for every deci there must be at least one inci to its left, and for every
inci there must have a related deci before any ifzeroi test.

A.3 Proof of Theorem 5

First recall the statement of Theorem 5:

Theorem 5 Satisfiability of LTL↓2(F) is undecidable over data words.

Proof. We adapt the proof of part 1. of Theorem 4 using ideas already present
in [8,13] for coding Minsky CA with only forward temporal operators. Fix a two
counter machine C = 〈Σ,Q, q0, 2, δ, F 〉. The main idea is to modify the coding
of Theorem 4 by adding in each block a symbol h1 whose data value is supposed
to be the one of the last inc1 that has previously occurred, a symbol l1 whose
data value is supposed to be the one of the last inc1 that has not been decreased
yet and similarly with h2 and l2 for the second counter. A zero test of counter
1 can then only occur in a block where the data values of h1 and l1 match. The
coding is depicted in Figure 3.

cI0

1

h

1

l N # cI1

2

h

1

l N #cD2

3

h

1

l N # cI3

3

h

2

l N # cI4

4

h

2

l N #cD5

5

h

2

l N #cD6

5

h

3

l N #cD7

5

h

4

l N #cZ8

5

h

5

l N # · · ·
inc inc dec inc inc dec dec dec ifzero

Fig. 3. Coding of a 1-counter machine run. Only data values of the h and l
symbols are represented for the sake of clarity. Only one symbol per group is
also represented. Elements depicted as cIi , cDi and cZi correspond, respectively,
to increment, decrement and zero testing symbols of Σ̂.

Based on these ideas, the formula ϕC that we construct makes sure that:

(i) The structure. We enforce a structure that is a sequence of blocks of the
form “〈q, w, l, q′〉h1l1h2l2N#”, with the possibility that there are repeated
consecutive symbols. This can be done in the same way we did before.
As for the previous codings, we demand that in each block, for every element
in the first group of Σ̂ symbols there is an element in the last group of
symbols # with the same data value. This is enforce with a formula of LTL↓1(F)
as before.
With the help of the second register we can now enforce that each group of
symbols has the same data value, for all symbol s we have the formula:

G
(
σ̂ ⇒↓1 ¬F

(
s∧ ↓2 F (s ∧ ¬ ↑2 ∧F(#∧ ↑1))

))
(ii) Each 〈q, w, l, q′〉 occurring in the string is in δ. For the first one q = q0, and

for the last one q′ ∈ F . For any 〈q, w, l, q′〉 and 〈q′′, w′, l′, q′′′〉 in consecutive
blocks, q′ = q′′. This can be checked just as in the previous codings.

(iii) In the initial block, the data values of h1 and l1 are the same and the data
values of h2 and l2 are the same (we only show the formula for h1 and l1):

↓1 ¬F
(
h1∧ ↓2 F(l1 ∧ ¬ ↑2 ∧F(#∧ ↑1))

)

(iv) In any block immediately after a ifzero instruction, the data values of
h1,l1,h2,l2 are identical to those of the ifzero instruction. We only give the
formula for ifzero1 instruction with the h1 symbol.
¬F
(
iz(1)∧ ↓1 F

(
h1∧ ↓2 F(ψ ∧ F(#∧ ↑1))

))
where ψ ≡ N∧ ↓1 F(h1 ∧ ¬ ↑2 ∧F(#∧ ↑1))

(v) In any block immediately after an inc1 instruction, h1 is not in the same
class as any preceding h1 (stated in the formula below) and l1, h2, l2 are in
the same class as in the previous block (this can be stated using a formula
similar to the one for for item (iv)).

¬F
(
h1∧ ↓1 F

(
inc(1)∧ ↓2 ∧F(ϕ ∧ F(#∧ ↑2))

))
where ϕ ≡ N∧ ↓2 F

(
↑2 ∧F(h1∧ ↑1 ∧F(#∧ ↑2))

)
We have of course corresponding formulas for blocks with inc2 instructions.

(vi) In any dec1 block, h1 and l1 have different data values.

¬F
(
dec(1)∧ ↓1 F

(
h1∧ ↓2 F(l1∧ ↑2 ∧F(#∧ ↑1))

))
We have a corresponding formula for blocks with a dec2 instruction.

(vii) In any ifzero1 block, h1 and l1 have the same data value. This can be
expressed with a formula as above. We have a corresponding formula for
ifzero2 blocks.

(viii) In any block immediately after a dec1 block B,
– h1 is in the same class as the previous h1, and
– l1 is in the same class as the h1 occurring in a block immediately after the
rightmost block (occurring before B) with a h1 that is in the same class as
the l1 of B.
– h2 and l2 are in the same class as their corresponding symbol of B.
The first and third conditions can be expressed using formulas similar to
those above. The difficult part is to enforce the second condition. For this
we introduce some macros:

InBlocki(ϕ) ≡↓i F(ϕ ∧ F(#∧ ↑i))
NextBlocki(ϕ) ≡↓i F(N ∧ F(#∧ ↑i)∧

↓i F(σ̂ ∧ ϕ ∧ F(#∧ ↑i)))
InNextBlocki(ϕ) ≡ NextBlocki(InBlocki(ϕ))

The second condition can then be stated:

¬F
(
σ̂∧ ↓2 F

(
h1∧ ↓1 F

(
N ∧ F(#∧ ↑2)∧

↓2 F(σ̂∧ ↑2 ∧F(h1 ∧ ¬ ↑1 ∧ ↓2 ϕ))
)))

where ϕ ≡ F
(
dec(i) ∧ InBlock2(l1∧ ↑1) ∧ InNextBlock1(l1 ∧ ¬ ↑2)

)
We have a corresponding formula for blocks following a dec2 instruction.

ut

A.4 Proof of Proposition 1

Proposition 1 Over data words, sLTL↓1(Fs) and XPath(→+,=) have the same ex-
pressive power. The same hold for sLTL↓1(Fs,Fs

−1) and XPath(+←,→+,=). More-
over, in both cases, the transformation from sLTL↓1 to XPath takes polynomial
time while it takes exponential time in the other direction.

Proof (sketch). The translation from sLTL↓1 to XPath is straightforward by in-
duction. One then naturally obtain equality tests of the form ε = α or ε 6= α
depending on whether the unique possible negation is present or not.

The other translation is also by induction. The non trivial part concerns the
translation of node expressions of the form α = β. Over data words, one of the
path expressions α or β must end first, say α. In this case the node expression
can be decomposed into a disjunction of (exponentially many) expressions that
first start with a path expression that merge α with the part β1 of β that is
common to with α, followed by a test of the form ε = β2, where β = β1β2. Tests
of the form ε = β2 are the immediate to translate into sLTL↓1.

B Complete semantics of XPath

Recall that XPath is a two-sorted language, with path expressions (α, β, . . .) and
node expressions (ϕ,ψ, . . .). These are defined by mutual recursion:

α ::=↓|↓+|↑|↑+|→|→+|←| +←| ε | αβ | α ∪ β | α[ϕ]
ϕ ::= σ | 〈α〉 | ¬ϕ | ϕ ∧ ψ | α = β | α 6= β (σ ∈ Σ)

A path expression essentially describes a traversal of the tree by using the axis:
child (↓), descendant (↓+), the next-sibling (→), following-sibling (→+)
and their inverses, with the ability to test at any stage for node conditions. Let
t be a data tree with domain T and labeling function λ. The semantics of XPath
is defined by induction as follows:

[[↓]]t = {(x, xi) | xi ∈ T}
[[↑]]t = {(xi, x) | xi ∈ T}

[[←]]t = {(xi, x(i− 1)) | x(i− 1) ∈ T}
[[→]]t = {(xi, x(i+ 1)) | x(i+ 1) ∈ T}

[[α+]]t = the transitive closure of [[α]]t

[[ε]]t = {(x, x) | x ∈ T}
[[αβ]]t = {(x, z) | ∃y.(x, y) ∈ [[α]]t ∧ (y, z) ∈ [[β]]t}

[[α ∪ β]]t = [[α]]t ∪ [[β]]t

[[α[ϕ]]]t = {(x, y) ∈ [[α]]t | y ∈ [[ϕ]]t}
[[σ]]t = {x ∈ T | π1(λ(x)) = σ}

[[〈α〉]]t = {x ∈ T | ∃y.(x, y) ∈ [[α]]t}

[[¬ϕ]]t = T \ [[ϕ]]t

[[ϕ ∧ ψ]]t = [[ϕ]]t ∩ [[ψ]]t

[[α = β]]t = {x ∈ T | ∃y, z.(x, y) ∈ [[α]]t,

(x, z) ∈ [[β]]t, π2(λ(y)) = π2(λ(z))}
[[α 6= β]]t = {x ∈ T | ∃y, z.(x, y) ∈ [[α]]t,

(x, z) ∈ [[β]]t, π2(λ(y)) 6= π2(λ(z))}

	Future-looking Logics on Data Words and Trees
	Diego Figueira and Luc Segoufin

