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Abstract. The paper studies the expressivity, relative succinctness and complexity
of satisfiability for hybrid extensions of the branching-time logics CTL and CTL+ by
variables. Previous complexity results show that only fragments with one variable do
have elementary complexity. It is shown that H1CTL+ and H1CTL, the hybrid exten-
sions with one variable of CTL+ and CTL, respectively, are expressively equivalent but
H1CTL+ is exponentially more succinct than H1CTL. On the other hand, HCTL+,
the hybrid extension of CTL with arbitrarily many variables does not capture CTL∗,
as it even cannot express the simple CTL∗ property EGFp. The satisfiability problem
for H1CTL+ is complete for triply exponential time, this remains true for quite weak
fragments and quite strong extensions of the logic.

1 Introduction

Reasoning about trees is at the heart of many fields in computer science , such as verifica-
tion and semistructured data. A wealth of sometimes quite different frameworks has been
proposed for this purpose, according to the needs of the respective application. For reasoning
about computation trees as they occur in verification, branching-time logics like CTL and tree
automata are two such frameworks. In fact, they are closely related [25].
In some settings, the ability to mark a node in a tree and to refer to this node turned out to
be useful. As neither classical branching-time logics nor tree automata provide this feature,
many different variations have been considered, including tree automata with pebbles [9, 24,
29], memoryful CTL∗ [16], branching-time logics with forgettable past [18, 19], and logics with
the “freeze” operator [14], the latter ones in the context of data trees [23]. As classical logic
naturally provides means to refer to a node, namely constants and variables, it is an obvious
question how these means can be incorporated into branching-time logics without losing their
desirable properties which made them prevailing in verification [26].

This question leads into the field of hybrid logics, where such extensions of temporal logics
are studied [3]. In particular, a hybrid extension of CTL has been introduced in [29].
As usual for branching-time logics, formulas of their hybrid extensions are evaluated at nodes
of a computation tree, but it is possible to bind a variable to the current node, to evaluate
formulas relative to the root and to check whether the current node is bound to a variable.
As an example, the HCTL-formula ↓x@rootEF(p∧EFx) intuitively says “I can place x at the
current node, jump back to the root, go to a node where p holds and follow some (downward)
path to reach x again. Or, equivalently: “there was a node fulfilling p in the past of the current
node”.

In this paper we continue the investigation of hybrid extensions of classical branching-time
logics started in [29]. The main questions considered are (1) expressivity, (2) complexity of the
satisfiability problem, and (3) succinctness. Figure 1 shows our results in their context. The
complexity of the model checking problems will be studied in future work.

Classical branching-time logics are CTL (with polynomial time model checking and ex-
ponential time satisfiability) and CTL∗ (with polynomial space model checking and doubly
exponential time satisfiability test). As CTL is sometimes not expressive enough3 and CTL∗

is considered too expensive for some applications, there has been an intense investigation of

3 Some things cannot be expressed at all, some only in a very verbose way.
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Fig. 1. Expressivity and complexity of satisfiability for hybrid branching-time logics. The lines indicate
strict inclusion, unrelated logics are incomparable.

intermediate logics. We take up two of them here: CTL+, where a path formula is a Boolean
combination of basic path formulas4 and ECTL, where fairness properties can be stated ex-
plicitly.

Whereas (even simpler) hybrid logics are undecidable over arbitrary transition systems [1],
their restriction to trees is decidable via a simple translation to Monadic Second Order logic.
However, the complexity of the satisfiability problem is high even for simple hybrid temporal
logics over the frame of natural numbers: nonelementary [10] , even if only two variables are
allowed [22, 29]. The one variable extension of CTL, H1CTL, behaves considerably better, its
satisfiability problem can be solved in 2EXPTIME [29]. This is the reason why this paper
concentrates on natural extensions of this complexity-wise relatively modest logic.
Even H1CTL can express properties that are not bisimulation-invariant (e.g., that a certain
configuration can be reached along two distinct computation paths) and is thus not captured
by CTL∗. In fact, [29] shows that H1CTL captures and is strictly stronger than CTL with
past, another extension of CTL studied in previous work [15]. One of our main results is that
H1CTL (and actually even HCTL+) does not capture ECTL (and therefore not CTL∗) as
it cannot express simple fairness properties like EGFp. To this end, we introduce a simple
Ehrenfeucht-style game (in the spirit of [2]). We show that existence of a winning strategy for
the second player in the game for a property P implies that P cannot be expressed in HCTL+.

In [29] it is also shown that the satisfiability problem for H1CTL∗ has nonelementary
complexity. We show here that the huge complexity gap between H1CTL and H1CTL∗ does not
yet occur between H1CTL and H1CTL+: we prove that there is only an exponential complexity
gap between H1CTL and H1CTL+, even when H1CTL+ is extended by past modalities and
fairness operators. We pinpoint the exact complexity by proving the problem complete for
3EXPTIME.

The exponential gap between the complexities for satisfiability of H1CTL and H1CTL+

already suggests that H1CTL+ might be exponentially more succinct than H1CTL. In fact, we
show an exponential succinctness gap between the two logics by a proof based on the height
of finite models. This refines the method of [17] based on model size. It should be noted that
an O(n)!-succinctness gap between CTL and H1CTL was established in [29]. We mention that
there are other papers on hybrid logics and hybrid tree logics that do not study expressiveness
or complexity issue, e.g., [11, 21].

The paper is organized as follows. Definitions of the logics we use are in Section 2. Expres-
sivity results are presented in Section 3. The complexity results can be found in Section 4, the
succinctness results in Section 5.

4 Precise definitions can be found in Section 2.
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2 Definitions

Tree logics. In this section, we define syntax and semantics of the logics we use. We assume
the reader is familiar with the tree logics CTL and CTL∗ [5]. However, we review the definition
of the syntax and semantics of them next. Formulas of CTL∗ are composed from state formulas
ϕ and path formulas ψ. They have the following abstract syntax.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Eψ | Aψ

ψ ::= ϕ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψUψ

We use the customary abbreviations Fψ for ⊤Uψ and Gψ for ¬F¬ψ.
The semantics of formulas is defined inductively. The semantics of path formulas is defined
relative to a tree5 T , a path π of T and a position i ≥ 0 of this path. E.g., T , π, i |= ψ1Uψ2 if
there is some j ≥ i such that T , π, j |= ψ2 and, for each l, i ≤ l < j, T , π, l |= ψ1.
The semantics of state formulas is defined relative to a tree T and a node v of T . E.g.,
T , v |= Eψ if there is a path π in T , starting from v such that T , π, 0 |= ψ. A state formula
ϕ holds in a tree T if it holds in its root. Thus, sets of trees can be defined by CTL∗ state
formulas.

CTL is a strict sub-logic of CTL∗. It allows only path formulas of the forms Xϕ and ϕ1Uϕ2

where ϕ, ϕ1, ϕ2 are state formulas. CTL+ is the sub-logic of CTL∗ where path formulas are
Boolean combinations of formulas of the forms Xϕ and ϕ1Uϕ2 and ϕ, ϕ1, ϕ2 are state formulas.

Hybrid logics. In hybrid logics, a limited use of variables is allowed. For a general introduc-
tion to hybrid logics we refer to [3]. As mentioned in the introduction, we concentrate in this
paper on hybrid logic formulas with one variable x. However, as we also discuss logics with
more variables, we define hybrid logics HkCTL∗ with k variables. For each k ≥ 1, the syntax
of HkCTL∗ is defined by extending CTL∗ with the following rules for state formulas.

ϕ ::= ↓xi ϕ | xi | @xi
ϕ | root | @root ϕ

where i ∈ {1, . . . , k}. The semantics is now relative to a vector u = (u1, . . . , uk) of nodes of
T representing an assignment xi 7→ ui. For a node v and i ≤ k we write u[i/v] to denote
(u1, . . . , ui−1, v, ui+1, . . . , uk). For a tree T a node v and a vector u, the semantics of the new
state formulas is defined as follows.

T , v,u |= ↓xi ϕ if T , v,u[i/v] |= ϕ
T , v,u |= xi if v = ui
T , v,u |= @xi

ϕ if T , ui,u |= ϕ
T , v,u |= root if v is the root of T
T , v,u |= @root ϕ if T , r,u |= ϕ, where r is the root of T

Similarly, the semantics of path formulas is defined relative to a tree T , a path π of T , a
position i ≥ 0 of π and a vector u. E.g., T , π, i,u |= Xψ if T , π, i+ 1,u |= ψ.
Intuitively, to evaluate a formula ↓xi ϕ one puts a pebble xi on the current node v and evaluates
ϕ. During the evaluation, xi refers to v (unless it is bound again by another ↓xi-quantifier).

The hybrid logics HkCTL+ and HkCTL are obtained by restricting HkCTL∗ in the same
fashion as for CTL+ and CTL, respectively. The logic HCTL is the union of all logics HkCTL,
likewise HCTL+ and HCTL∗.

A state formula ϕ of a hybrid logic is satisfiable if there exists a tree T with T , r,u |= ϕ,
where r is the root of T and u = (r, . . . , r) is a vector of adequate length. In this case we also

5 In general, we consider finite and infinite trees and, correspondingly, finite and infinite paths in
trees. It should always be clear from the context whether we restrict attention to finite or infinite
trees.
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say that T is a model of ϕ (denoted as T |= ϕ). A state formula ϕ is finitely satisfiable if it
has a finite model.

Two path formulas ψ and ψ′ are equivalent (denoted as ψ ≡ ψ′) if for all trees T , all
paths π of T and all vectors u of adequate length it holds: T , π, 0,u |= ψ iff T , π, 0,u |= ψ′.
Similarly, two state formulas ϕ and ϕ′ are equivalent (denoted as ϕ ≡ ϕ′) if for all trees T ,
all nodes v and all vectors u of adequate length it holds: T , v,u |= ϕ iff T , v,u |= ϕ′. We say
that a logic L′ is at least as expressive as L (denoted as L ≤ L′) if for every ϕ ∈ L there is a
ϕ′ ∈ L′ such that ϕ ≡ ϕ′. L and L′ have the same expressive power if L ≤ L′ and L′ ≤ L. L′

is strict more expressive than L if L ≤ L′ but not L′ ≤ L.

Size, depth and succinctness. For each formula ϕ, we define its size |ϕ| as usual and its
depth d(ϕ) as the nesting depth with respect to path quantifiers.

It should be remarked that the definition of d(ϕ) is tailored for the proof of inexpressibility
with respect to HkCTL. For general HkCTL∗ formulas one would count also the nesting of
temporal operators.

The formal notion of succinctness is a bit delicate. We follow the approach of [12] and
refer to the discussion there. We say that a logic L is h-succinct in a logic L′, for a function
h : N → R, if for every formula ϕ in L there is an equivalent formula ϕ′ in L′ such that
|ϕ′| ≤ h(|ϕ|). L is F-succinct in L′ if L is h-succinct in L′, for some h in function class F . We
say that L is exponentially more succinct than L′ if L is not h-succinct in L′, for any function
h ∈ 2o(n).

Normal forms. It will sometimes be convenient to restrict the set of operators that have to
be considered. To this end, we say that a HkCTL formula is in E-normal form, if it does not
use the path quantifier A at all. A formula is in U-normal form if it only uses the combinations
EX, EU and AU (but not, e.g., EG and AX).

Proposition 1. Let k ≥ 1.

(a) For each HkCTL formula ϕ there is an equivalent HkCTL-formula in U-normal form and
the size of ψ is linear in the size of ϕ.

(b) For each HkCTL formula ϕ there is an equivalent HkCTL-formula in E-normal form.

Proof. (a) This can be easily shown just as for CTL. Actually, the original definition of CTL
by Emerson and Clarke [5] used only EX, EU and AU.

(b) This is straightforward as A(ψUχ) can equivalently expressed as (¬E(¬χ) U(¬χ∧¬ψ))∧
(¬EG¬χ). However, it should be noted that the recursive application of this replacement
rule may result in a formula of exponential size.

⊓⊔

3 Expressivity of HCTL and HCTL+

3.1 The expressive power of HCTL+ compared to HCTL

Syntactically CTL+ extends CTL by allowing Boolean combinations of path formulas in the
scope of a path quantifier A or E. Semantically this gives CTL+ the ability to fix a path and test
its properties by several path formulas. However in [6] it is shown that every CTL+-formula
can be translated to an equivalent CTL-formula. The techniques used there are applicable to
the hybrid versions of these logics.

Theorem 2. For every k ≥ 1, HkCTL has the same expressive power as HkCTL+.
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Proof. The main difficulty in the translation from CTL+ to CTL can be described as follows:
In a formula like E[Fϕ1∧ . . .∧Fϕn] it is not determined in which order the formulas ϕ1, . . . , ϕn
hold on the path fixed by the quantifier E. In [6] this problem is solved by listing all possible
orders. For instance the formula ϕ = E[Fϕ1 ∧ Fϕ2] is equivalent to ϕ′ = EF(ϕ1 ∧ EFϕ2) ∨
EF(ϕ2∧EFϕ1). The transformation algorithm for CTL+ to CTL in [6] is based on the following
equivalences of CTL+-formulas6:

(1) ¬Xϕ ≡ X¬ϕ

(2) ¬(ϕUϕ′) ≡ [(ϕ ∧ ¬ϕ′)U(¬ϕ ∧ ¬ϕ′)] ∨G¬ϕ′

(3) E(ψ ∨ ψ′) ≡ Eψ ∨ Eψ′

(4) Xϕ ∧Xϕ′ ≡ X(ϕ ∧ ϕ′)
(5) Gϕ ∧Gϕ′ ≡ G(ϕ ∧ ϕ′)

(6) E[

n̂

i=1

(ϕiUϕ
′
i) ∧ Xχ ∧Gξ] ≡

_

I⊆{1,...,n}

[
^

i∈I

ϕ
′
i ∧ ξ ∧

^

i/∈I

ϕi ∧ EX(χ ∧ E(
^

i/∈I

(ϕiUϕ
′
i) ∧Gξ))]

(7) E[
n̂

i=1

(ϕiUϕ
′
i) ∧Gχ] ≡

_

π∈Permutation({1,...,n})

[E[(
n̂

i=1

ϕi ∧ χ)U(ϕ′
π(1)∧

E[(
^

i6=π(1)

ϕi ∧ χ)U(ϕ′
π(2) ∧ E[(

^

i6=π(1),π(2)

ϕi ∧ χ)U(ϕ′
π(3) . . .U(ϕ′

π(n) ∧ EGχ) . . .)])])]]

As explained above in equivalence (7) a disjunction of all possible orders of the formulas
ϕ′
i is formulated. These equivalences also hold for HkCTL+. It can easily be shown that the

occurence of root, @root, ↓x or @x for a variable x does not destroy any of the equivalences.
Furthermore, as already indicated, if a formula on the right or the left side of one of the
equivalences is in the scope of ↓x then the node to which x is assigned is (up to a new ↓x)
unique which means that x can be treated like a usual proposition. Altogether the translation
algorithm for CTL+ to CTL presented in [6] also gives a translation algorithm from HkCTL+ to
HkCTL for every k ≥ 1. In [6] it is noticed that the factorial blowup introduced by equivalence
(7) is the worst blowup in the whole transformation process and since n! = 2O(n log n) the
transformation of a formula ϕ results in a formula of length 2O(n log n). ⊓⊔

The transformation algorithm in Theorem 2 also yields an upper bound for the succinctness
between H1CTL+ and H1CTL.

Corollary 3. H1CTL+ is 2O(n logn)-succinct in H1CTL.

3.2 Fairness is not expressible in HCTL+.

In this subsection, we show the following result.

Theorem 4. There is no formula in HCTL+ which is logically equivalent to E
∞

Fp.

Here, T , v,u |= E
∞

Fϕ if there is a path π starting from v that has infinitely many nodes v′

with T , v′,u |= ϕ. As an immediate consequence of this theorem, HCTL+ does not capture
CTL∗.

In order to prove Theorem 4, we define an Ehrenfeucht-style game that corresponds to the
expressive power of HCTL. A game for a different hybrid logic was studied in [2]. We show
that if a set L of trees can be characterized by a HCTL-formula, the spoiler has a winning
strategy in the game for L. We expect the converse to be true as well but do not attempt to
prove it as it is not needed for our purposes here.

Let L be a set of (finite or infinite) trees. The HCTL-game for L is played by two players,
the spoiler and the duplicator. First, the spoiler picks a number k which will be the number

6 In [6] and its journal version [7] there are some slight inaccuracies in the equivalences. Here we list
the corrected ones.
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of rounds in the core game. Afterwards, the duplicator chooses two trees, T ∈ L and T ′ 6∈ L.
The goal of the spoiler is to make use of the difference between T and T ′ in the core game.

The core game consists of k rounds of moves, where in each round i a node from T and
a node from T ′ are selected according to the following rules. The spoiler can choose whether
she starts her move in T or in T ′ and whether she plays a node move or a path move.

In a node move she simply picks a node from T (or T ′) and the duplicator picks a node
in the other tree. We refer to these two nodes by ai (in T ) and a′i (in T ′), respectively, where
i is the number of the round.

In a path move, the spoiler first chooses one of the trees. Let us assume she chooses T , the
case of T ′ is completely analogous. She picks an already selected node aj of T , for some j < i
and a path π starting in aj . However, a node aj can only be selected if there is no other node
al, l < i below aj . The duplicator answers by selecting a path π′ from a′j . Then, the spoiler
selects some node a′i from π′ and the duplicator selects a node ai from π.

The duplicator wins the game if at the end the following conditions hold, for every i, j ≤ k:

– ai is the root iff a′i is the root;
– ai = aj iff a

′
i = a′j ;

– for every proposition p, p holds in ai iff it holds in a′i;
– there is a (downward) path from ai to aj iff there is a path from a′i to a

′
j ;

– aj is a child of ai iff a
′
j is a child of a′i.

Theorem 5. If a set L of (finite and infinite) trees can be characterized by a HCTL-formula,
the spoiler has a winning strategy on the HCTL-game for L.

Proof. Let L be a set of trees and ϕ ∈ HCTL such that, for every tree T , T is in L if and
only if T |= ϕ. We show that the spoiler has a winning strategy with kϕ rounds in the game
for L, where kϕ only depends on ϕ.

The proof is by induction on the structure of ϕ. As usual, we have to prove a slightly
stronger statement for the induction step. We show that, for every HCTL-formula ϕ with
variables from Xl := {x1, . . . , xl}, there is kϕ such that, for trees T , T ′, nodes v from T and
v′ from T ′ and node vectors u and u

′, the spoiler has a winning strategy in the kϕ-round core
game on (T , v,u) and (T ′, v′,u′) if T , v,u |= ϕ and T ′, v′,u′ 6|= ϕ.

Thus, the proof uses a slightly extended game, in which the duplicator does not only choose
T and T ′ but also nodes v, v′ and node vectors u,u′. The game starts in a situation where
nodes a0 := v and ai := ui, for 1 ≤ i ≤ l are already selected in T and correspondingly in
T ′. In the remaining k rounds al+1, . . . , al+k and a′l+1, . . . , a

′
l+k are selected and the winning

condition applies to a0, . . . , al+k and a′0, . . . , a
′
l+k.

It is easy to see that the theorem follows from this extended statement.
If ϕ is atomic, it can only test propositional properties of v and hence the spoiler wins the

game by choosing kϕ = 0.
The rest of the proof is by case distinction on the outermost operator or quantifier of ϕ.

– If ϕ = ¬ψ, the spoiler has a winning strategy for ψ by the hypothesis. She can simply
follow that winning strategy whilst switching the roles of T and T ′. In particular, kϕ = kψ.

– If ϕ = ψ ∨χ the spoiler chooses kϕ = max(kψ , kχ). In the core game she either follows the
winning strategy for ψ or for χ depending on whether T , v,u |= ψ or T , v,u |= χ.

– The case that ϕ = ψ ∧ χ is analogous to the previous one.
– If ϕ = EXψ the spoiler chooses kϕ = kψ + 1. Let T , v,u, T ′, v′,u′ be selected by the

duplicator. As T , v,u |= ϕ there is a child w of v such that T , w,u |= ψ. On the other
hand, there is no child w′ of v′ with T ′, w′,u′ |= ψ. Thus, the spoiler can select al+1 := w
and win the remaining kψ rounds no matter which child of v′ is chosen by the duplicator.
She simply mimics the strategy of the game for ψ on (T , al+1,u) and (T ′, a′l+1,u

′). If the
duplicator does not choose a child of v′ the spoiler wins instantly.

– As AXψ ≡ ¬EX¬ψ, the case of ϕ = AXψ is already covered by the previous cases.

6



– If ϕ = E(ψUχ) the spoiler chooses kϕ = max(kψ + 2, kχ + 1). Let T , v,u, T ′, v′,u′ be
selected by the duplicator. As T , v,u |= E(ψUχ), there is some node w below v such that
T , w,u |= χ and, for each node z on the path from v to w it holds T , z,u |= ψ. The spoiler
does a node move in T and selects al+1 = w.
Let w′ be the node selected by the duplicator. As T ′, v′,u′ 6|= ϕ, we can conclude that
T ′, w′,u′ 6|= χ or, for some z′ on the path from v′ to w′, T ′, z′,u′ 6|= ψ. In the former
case, the game continues, in the latter case she selects v′l+2 = z′. In either case, she has a
winning strategy for the remaining max(kψ , kχ) rounds by induction.

– If ϕ = A(ψUχ), ϕ is equivalent to ϕ1 ∧ϕ2 where ϕ1 = ¬EG¬χ and ϕ2 = ¬E((¬χ)U(¬ψ ∧
¬χ)). The spoiler chooses kϕ = max(kψ , kχ) + 2.
Let T , v,u, T ′, v′,u′ be selected by the duplicator. If T ′, v′,u′ 6|= ϕ2 the winning strategy
of the spoiler is already given by the previous cases. Otherwise, T ′, v′,u′ |= EG¬χ. Let
ρ′ be a path starting from v′ such that T ′, ρ′, 0 |= G¬χ. Let w′ be the first node on this
path for which none of the nodes a′1, . . . , al is below w′. The spoiler selects w′ in a node
move. Let w be the node selected by the duplicator. If there is a node z on the path from
v to w such that T , z,u |= χ, the spoiler chooses z in a subsequent node move and wins
by induction as there is no corresponding node between v′ and w′. Otherwise she makes a
path move in which she first selects the sub-path π′ of ρ′ starting in w′. Let π be a path in
T starting from w as selected by the duplicator. As T , w,u |= ϕ1, there is a node z on π
such that T , z,u |= χ. The spoiler selects this node as ai+1 and, as the duplicator cannot
find such a node on π′ wins by induction.

– If ϕ = ↓xiψ, for some i, the spoiler simply chooses kϕ = kψ. After the selection of
T , v,u, T ′, v′,u′ by the duplicator she mimics the game for ψ on the structures (T , v,u[i/v])
and (T ′, v′,u′[i/v′]).

– If ϕ = @xi
ψ, for some i, the spoiler mimics the game on (T , ui,u) and (T ′, u′i,u

′).
⊓⊔

Now we turn to the proof of Thm. 4. It makes use of the following lemma which is easy
to prove using standard techniques (see, e.g., [20]). The lemma will be used to show that the
duplicator has certain move options on paths starting from the root. The parameter Sk given
by the lemma will be used below for the construction of the structures Bk.

For a string s ∈ Σ∗ and a symbol a ∈ Σ let |s| denote the length of s and |s|a the number
of occurrences of a in s.

Lemma 6. For each k ≥ 0 there is a number Sk ≥ 0 such that, for each s ∈ {0, 1}∗ there is
an s′ ∈ {0, 1}∗ such that |s′| ≤ Sk and s ≡k s

′.

Here, ≡k is equivalence with respect to the k-round Ehrenfeucht game on strings (or equiva-
lently with respect to first-order sentences of quantifier depth k). It should be noted that, if
k ≥ 3 and s ≡k s

′, then the following conditions hold.

– s ∈ {0}∗ implies s′ ∈ {0}∗.
– If the first symbol of s is 1 the same holds for s′.
– If s does not have consecutive 1’s, s′ does not either.

We fix some Sk, for each k.
The proof of Thm. 4 uses the HCTL-game defined above. Remember that the spoiler opens

the game with the choice of a k ∈ N and the duplicator responds with two trees T ∈ L and
T ′ 6∈ L. We want to show that the duplicator has a winning strategy so we need to construct
such trees, and then need to show that the duplicator has a winning strategy for the k-round
core game on T and T ′.

We will use transition systems in order to finitely represent infinite trees. A transition
system is a K = (V,E, v0, ℓ) where (V,E) is a directed graph, v0 ∈ V , and ℓ labels each state
v ∈ V with a finite set of propositions. The unraveling T (K) is a tree with node set V + and
root v0. A node v0 . . . vn−1vn is a child of v0 . . . vn−1 iff (vn−1, vn) ∈ E. Finally, the label of a
node v0 . . . vn is ℓ(vn).

7



Inspired by [8] we define transition systems Ai, for each i ≥ 0, as depicted in Fig. 2 (a).
Nodes in which p holds are depicted black, the others are white (and we subsequently refer to
them as black and white nodes, respectively).

A0 : Ak : ⇒Ak−1

(a)

Bk : ⇒ANk

(b)

Fig. 2. Illustration of the definition of (a) Ak and (b) Bk. The path of white nodes in Bk consists of
Sk nodes. The double arrow ⇒ indicates that every white node on the left is connected to every black
node on the right.

Thus, A0 has a black (root) node and a white node with a cycle. Ai has a black (root)
node, a white node with a cycle and a copy of Ai−1. Furthermore, there is an edge from the
white node below the root of Ai to each black node in the copy of Ai−1 (as indicated by
⇒). Let Ti := T (Ai). We first introduce some notation and state some simple observations
concerning the tree Ti.

(1) For a node v in Ti we denote the maximum number of black nodes on a path starting in
v (and not counting v itself) the height h(v) of v. Then the root of Ti has height i.

(2) If u and v are black nodes of some Ti with h(u) = h(v) then the subtrees T (u) and T (v)
induced by u and v are isomorphic.

(3) The height of a tree is defined as the height of its root.
(4) A white node v of height i has one white child (of height i) and i black children of heights

0, . . . , i− 1. A black node has exactly one white son.
(5) Each finite path π of Ti induces a string s(π) ∈ {0, 1}∗ in a natural way: s(π) has one

position, for each node of π, carrying a 1 iff the corresponding node is black.
(6) The root of Ti has only one child. We call the subtree induced by this (white!) child Ui. If

v is a white node of height i then T (v) is isomorphic to Ui.

Next we define numbers Nk inductively as follows: N0 := 0 and Nk := Nk−1+max(S3, Sk)+1.
The following lemma shows that the duplicator has a winning strategy in two structures

of the same kind, provided they both have sufficient depth.

Lemma 7. Let i, j, k be numbers such that i, j ≥ Nk. Then the duplicator has a winning
strategy in the k-round core game on

(a) Ti and Tj, and
(b) Ui and Uj.

Proof of Lemma 7. The proof is by induction on k, the case k = 0 being trivial. Thus, let
k > 0. We first show (a). Let us assume first that the spoiler makes a node move in Ti on v
(node moves in Tj are symmetric). We distinguish two cases depending on the height of v. In
both cases let r, r′ be the roots of Ti and Tj respectively.

Case h(v) > Nk−1. Let π denote the path from r to v. By Lemma 6 there is a string s′

with |s′| ≤ Sl such that s(π) ≡l s
′, where l = max(k, 3). As j ≥ Nk = Nk−1 + Sl + 1, there is

a node v′ of height ≥ Nk−1 in Tj such that the path7 π′ from r′ to v′ satifies s(π′) = s′. The
duplicator chooses v′ as her answer in this round. We have to show that she has a winning
strategy for the remaining k − 1 rounds. Her strategy is a composition of the following three
strategies for different parts of the trees.8

7 It should be noted that l ≥ 3 guarantees in particular that s′ does not have consecutive 1’s.
8 By a standard argument the different strategies can be combined into a strategy on T and T ′

(see again [20]). It is helpful here that path moves only involve paths that are below all previously
selected nodes. Hence, a path move always only affects one of the sub-games.
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(i) If the spoiler does a (node or path) move in T (v) or T (v′) the duplicator can reply
according to her winning strategy in the (k − 1)-round game in these two trees which is
guaranteed by induction as both have height ≥ Nk−1.

(ii) If the spoiler chooses a node on π or π′ then the duplicator answers following her strategy
in the k-round Ehrenfeucht game on the strings s(π) and s(π′).

(iii) The remaining (and most complicated) sub-strategy concerns moves elsewhere in Ti (the
case of a move elsewhere in T ′

j is again symmetric). Let w be a node chosen by the spoiler
(in a node move or as the starting node of a path). Let y be the last node of π on the
path ρ from r to w. Node y has two different successors – namely one on π and one on
ρ, hence it must be white by fact (4) above. Let z be its successor on ρ. Let y′ be the
node corresponding to y on π′ as induced by the winning strategy of the duplicator on
s(π) and s(π′).

– If z has height < Nk−1 let z′ be the unique (black!)9 child of y′ of the same height as
z. By fact (2) above, T (z) and T (z′) are isomorphic and the duplicator has a winning
strategy in these two subtrees induced by an isomorphism.

– If z has height ≥ Nk−1 let z′ be some child of y′ (of the same color as z, not on π′,
and with height ≥ Nk−1. (Note that z and z′ can be both black or both white). By
induction the duplicator has a winning strategy on T (z) and T (z′).

Case h(v) ≤ Nk−1. Let π be the path from r to v, and u1 be the highest black node on π with
h(u1) ≤ Nk−1. Then we must have h(u1) = Nk−1 because π contains black nodes of height up
to i ≥ Nk. Hence, u1 has a white parent u2 s.t. h(u2) > Nk−1. We determine a node u′2 in T ′

in the same way we picked v′ for v in the first case. In particular, h(u′2) ≥ Nk−1 and for the
paths ρ leading from r to u2 and ρ′ leading from r′ to u′2 we have s(ρ) ≡k s(ρ

′).
Let u′1 be the black child of u′2 of height h(u1). As h(u1) = h(u′1) there is an isomorphism

σ between T (u1) and T (u2) and we choose v′ := σ(v). An illustration is given in Figure 3.
The winning strategy of the duplicator for the remaining k − 1 rounds follows σ on T (u1)

and T (u2) and is analogous to the first case in the rest of the trees.

Next, we assume that the first move of the spoiler is a path move in T (path moves in
T ′ are again symmetric).

Let π be the path chosen by the spoiler. Let v be the lowest black node of π. Let v′ be
the node chosen by the duplicator had the spoiler selected v in a node move and let π′ be the
path from r′ to v′ extended by the unique infinite white path below v′. We can distinguish
the same two cases as for node moves.

If the node a′ selected by the spoiler on π′ is from T (v′) (in case 1) or from T (u′1) (in
case 2), the duplicator can choose a corresponding node a by the isomorphism. Otherwise,
the duplicator replies by the node a of ρ induced by the k-round (!) winning strategy of the
duplicator on s(ρ) and s(ρ′).

This completes the inductive step for (a).
For (b) the proof is completely analogous. This completes the proof of the lemma.

⊓⊔
We are now prepared to prove Thm. 4.

Proof of Theorem 4. By Theorem 2 it is sufficient to show that no formula equivalent to

E
∞

Fp exists in HCTL. To this end, we prove that the duplicator has a winning strategy in the

HCTL-game for the set of trees fulfilling E
∞

Fp.
We next define transition systems Bk, for k ≥ 0. As illustrated in Figure 2 (b), Bk has a

black root from which a path of length Sk of white nodes starts. The last of these white nodes
has a self-loop and an edge back to the root. Furthermore, Bk has a copy of ANk

and there is
an edge from each white node of the initial path to each black node of the copy of ANk

.

9 z must be black as all nodes on π have height ≥ Nk−1 and only black nodes may have a smaller
height than their parent.
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Fig. 3. Illustration of the case where h(v) ≤ Nk−1. The colors of v and v′ are not known a priori.

Clearly, for each k, Bk |= E
∞

Fp and Ak 6|= E
∞

Fp.
We show in the remainder of the proof that, for each k, the duplicator has a winning

strategy in the k-round core game on T = T (Bk) and T ′ = T (ANk
).

We call the nodes of T induced by the extra nodes that Bk has over ANk
extra nodes.

The proof is again by induction on k and it is very similar to the proof of Lemma 7. The
case k = 0 is again trivial.

A node move v in T is answered just as it was in the proof of the lemma. The duplicator
then wins by induction. Likewise node moves v′ in T ′ are answered as in the proof of the
lemma and (besides the root) no special black node of T is involved.

It remains to deal with path moves. Path moves starting in T ′ can be handled as in the
proof of the lemma. Likewise path moves starting in T with a path π of finitely many black
nodes can be handled along the same lines.

The only real new case is when the spoiler chooses a path π in T that has infinitely many
black nodes. The duplicator answers by choosing the unique path π′ of T ′ starting from r′

that only consists of white nodes. Let v′ be a node of π′ that is chosen by the spoiler. By
(the remark after) Lemma 6, there is a string s of ≤ Sk zeros such that s ≡k s(ρ

′), where
ρ′ is the path from r′ to v′. The duplicator thus picks the node v on π such that s(ρ) = s,
where ρ denotes the path from r to v. Note that by construction, the initial white path of
T is long enough to guarantee the existence of such a node v. That the duplicator has a
winning strategy for the remaining k− 1 rounds can be shown along the same lines as before.
Subsequent choices of paths with infinitely many black nodes are answered by paths with one
black node and infinitely many white ones. ⊓⊔

4 Satisfiability of H1CTL+

Theorem 8. Satisfiability of H1CTL+ is hard for 3EXPTIME.

Proof. The proof is by reduction from a tiling game (with 3EXPTIME complexity) to the
satisfiability problem of H1CTL+. Actually we show that the lower bound even holds for the
fragment of H1CTL+ without the U-operator (but with the F-operator instead).

An instance I = (T,H, V, F, L, n) of the 2EXP-corridor tiling game consists of a finite
set T of tile types, two relations H,V ⊆ T × T which constitute the horizontal and vertical
constraints, respectively, two sets F,L ⊆ T which describe the starting and end conditions,
respectively, and a number n given in unary. The game is played by two players, E and A, on
a board consisting of 22

n

columns and (potentially) infinitely many rows. Starting with player
E and following the constraints H , V and F the players put tiles to the board consecutively
from left to right and row by row. The constraints prescribe the following conditions:

– A tile t′ can only be placed immediately to the right of a tile t if (t, t′) ∈ H .
– A tile t′ can only be placed immediately above a tile t if (t, t′) ∈ V .
– The types of all tiles in the first row belong to the set F .

Player E wins the game if a row is completed containing only tiles from L or if A makes a
move that violates the constraints. On the other hand, player A wins if E makes a forbidden
move or the game goes on ad infinitum.

10



A winning strategy for E has to yield a countermove for all possible moves of A in all pos-
sible reachable situations. Furthermore, the starting condition and the horizontal and vertical
constraints have to be respected. Finally, the winning strategy must guarantee that either
player A comes into a situation where he can no longer make an allowed move or a row with
tiles from L is completed.

The problem to decide for an instance I whether player E has a winning strategy on I is
complete for 3EXPTIME. This follows by a straightforward extension of [4].

Now we show in full detail how to build a formula ϕI of length O(|I| · |T |) from an instance
I with tile set T of the 2EXP-corridor tiling game such that ϕI is satisfiable if and only if
player E has a winning strategy in the game for I. In fact, a tree will satisfy ϕI if and only if
it encodes a winning strategy of player E. Here, the encoding tree represents all possible plays
(for the various moves of player A) for a fixed (and winning) strategy of player E.

Encoding of the winning strategy for player E. We encode strategies for player E as T -labeled
trees in which each move is represented by a sequence of nodes (see Figure 5). The first move
of player E is represented by a sequence starting at the root. Each sequence corresponding
to a move of E is followed by several branches, one for every possible next move of A. Each
sequence corresponding to a move of A is followed by one sequence of nodes corresponding to
the move of player E following the strategy. It is clear that such a tree represents a winning
strategy if every root path corresponds to a sequence of moves resulting in a win for player E.

In the encoding we use the propositions {pose, poso, b0, ..., bn−1, rowe, row o, b, o, c, q♯} ∪
{pt | t ∈ T }. In order to be able to describe the constraints via a H1CTL+-formula of polyno-
mial length we serially number all positions of a row of the board in the style of [27]. While in
[27] a row10 consists of 2n positions we have to deal with 22

n

positions in the current proof. We
encode each position by a sequence of 2n nodes, each of which we call position bits. For each
of these nodes the propositions b0, ..., bn−1 encode a binary number. Each position bit in turn
represents one bit of a binary number of length 2n via proposition b11. Each such sequence is
preceded by a position node which holds some additional information that will be described
later. We call a sequence of length 2n + 1 representing one position of the tiling a position
sequence. In each position bit of a position sequence proposition pt holds for the tiling type t
of its tile. A row is represented by 22

n

position sequences preceded by a row node. Altogether,
a row is represented by a row sequence consisting of (2n + 1)22

n

+ 1 nodes.
For technical reasons, each position node of an even (odd) position is marked using the

proposition pose, (poso, respectively). Likewise, the row nodes of even (odd) rows are marked
using row e (rowo). It is worth noting that the tree branches only12 after position nodes in
which poso holds as the odd positions are tiled by A.

To compare two nodes of a path that are far apart we use a technique that was originally
invented in [27] and was also applied in [13]. To this end, we use two kinds of nodes: original
nodes which are labelled with the proposition o and copy nodes labelled with the proposition
c. For the encoding of the winning strategy only the original nodes are relevant. Each original
node has a copy node with identical propositions (except for the proposition o) as a child.
Likewise, each copy node has only copy nodes with identical propositions as children (see
Figure 4). Copy nodes will enable us to ”mark” an original node v by fixing a path π through
v and its copy node child. Since copy nodes carry the propositions of their parent original
nodes, assertions about an original node can be tested in any of their subsequent copy nodes.

Proposition q♯ is used to label the part of the tree which does not belong to the encoding
of the winning strategy.

10 Actually, the proof in [27] uses alternating Turing machines and thus encodes configurations rather
than rows.

11 It should be noted that the lowest bit of this binary number is represented by the position bit with
the highest number.

12 After the modification in the next paragraph, this statement only holds with respect to original
nodes.
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Testing vertical constraints. The most difficult condition to test is that a tree respects the
vertical constraints. Thus, we have to check the following condition: For every row, except
the first one, the tile of every position is consistent with the tile of the corresponding position
in the previous row.

To this end, we have to compare two position sequences representing corresponding posi-
tions in consecutive rows. Two sequences represent corresponding positions if, whenever two
position bits are equivalent with respect to b0, . . . , bn−1, they are also equivalent with respect
to b. The technical challenge is to do this comparison with a formula of linear (as opposed
to exponential) size. Finally, it has to be checked that the position bits of the two position
sequences are consistent with respect to V .

Let r and r′ be row sequences representing two consecutive rows. Let s′ be some position
sequence of r′ for which consistency with the corresponding position of the previous row r
shall be checked.

We first give an informal description of the formula that checks the vertical constraints.
Assume that x is associated with the last position bit of the position sequence s′ representing
the j-th position in r′. We first construct a formula ξ that becomes true exactly at the first
position bit v of the position sequence s representing position j in row r on the path to x.

To this end, ξ checks that there is a path starting in v, continuing at least to the last node
of s (from where it might follow copy nodes) and from each non-copy node u on this path,
there is a path leading to some copy node of a node u′ in s′ with exactly the same propositions
b0, . . . , bn−1, b.

This can be expressed as

ξ = o ∧

n−1
∧

i=0

¬bi ∧ E
[

F

n−1
∧

i=0

bi ∧G
(

o→ E[(Frow o ∧ ¬Frow e ∨ Frowe ∧ ¬Frow o)∧

G(¬c → EFx) ∧ FE(Fx ∧G¬ϕpos) ∧

n−1
∧

i=0

(bi ↔ F(c ∧ bi)) ∧ b↔ F(c ∧ b)]
)]

Here, ϕpos is an abbreviation for poso ∨ pose indicating that a node is a position node. The

path formula F
∧n−1
i=0 bi ensures that the current path continues at least to the last position

bit of the current position from where it might follow copy nodes. The path formula Frowo ∧
¬Frowe ∨ Frowe ∧ ¬Frow o makes sure that the current path meets exactly two rows. The
path formula G(¬c → EFx)∧FE(Fx∧G¬ϕpos ) tests that the path reaches the same position
sequence as the node carrying x but no subsequent position sequence.

The vertical constraints now hold if, whenever x is put to the last position node of some
position sequence s′ with tile type t′, if at some node v the formula ξ holds then the tile type t at
v has to be such that (t, t′) ∈ V . This can now be expressed by AG

[
∧

t′∈T [(o∧
∧n−1
i=0 bi∧pt′) →

↓x.@rootAG(ξ →
∨

(t,t′)∈V pt)]
]

.

For an instance I of 2EXP-corridor tiling game we present the whole formula ϕI of length
in O(|I||T |) such that ϕI is satisfiable if and only if player E has a winning strategy in the

game for I. The formula ϕI is composed of the conjunction of χ =
∧10
i=1 χi and ψ =

∧7
i=1 ψi

where χ describes the basic tree structure that is needed to formulate a strategy and the ψ
guarantees that the model of ϕI corresponds to a winning strategy for player E. Each of the
subformulas χi, ψi is of length O(|I||T |).

We first introduce some abbreviations:

– ϕpos = pose ∨ poso (pos ition node)
– ϕrow = rowe ∨ row o (row node)

– ϕfirst = o ∧
∧n−1
i=0 ¬bi (first (and original) node in a position sequence)

– ϕlast =
∧n−1
i=0 bi (last node in a position sequence, not necessarily original)

– ψfull = G¬ϕpos ∧ F(c ∧ ϕlast ) (the path extends exactly until the end of the position
sequence and continues with copy nodes; in this sense it is a full path)

12



– ψ2pos = (Fpose ∧ ¬Fposo) ∨ (Fposo ∧ ¬Fpose) (the path meets two (consecutive) pos ition
sequences)

– ψ2row = (Frow e ∧ ¬Frow o) ∨ (Frowo ∧ ¬Frowe) (the path meets two (consecutive) row
sequences)

The first formula helps to describe some properties in a simple way.
T1: Each node of the tree is labelled with exactly one of the propositions row e, rowo, pose,
poso, q♯, o and c.

χ1 = AG[(ϕrow ∨ ϕpos ∨ q♯ ∨ o ∨ c)∧

(pose → ¬poso ∧ ¬row e ∧ ¬row o ∧ ¬q♯ ∧ ¬o ∧ ¬c)∧

(poso → ¬pose ∧ ¬row e ∧ ¬row o ∧ ¬q♯ ∧ ¬o ∧ ¬c)∧

(row e → ¬pose ∧ ¬poso ∧ ¬row o ∧ ¬q♯ ∧ ¬o ∧ ¬c)∧

(row o → ¬pose ∧ ¬poso ∧ ¬row e ∧ ¬q♯ ∧ ¬o ∧ ¬c)∧

(q♯ → ¬pose ∧ ¬poso ∧ ¬row e ∧ ¬rowo ∧ ¬o ∧ ¬c)∧

(o→ ¬pose ∧ ¬poso ∧ ¬row e ∧ ¬rowo ∧ ¬q♯ ∧ ¬c)∧

(c→ ¬pose ∧ ¬poso ∧ ¬row e ∧ ¬row o ∧ ¬q♯ ∧ ¬o)]

T2: The root induces with the proposition rowe the encoding of the first row and every node
labelled with rowe or rowo has exactly one child labled with pose signalising the encoding of a
new position.

χ2 = rowe ∧ AG[ϕrow → EX(pose ∧ ↓x.@rootEF(EXx ∧ AXx))]

T3: Every child of a pose-or poso-node is labelled with the initial position bit number encoded
by b0 . . . bn−1 .

χ3 = AG[ϕpos → AXϕfirst ]

T4: As long as the last position bit of a position is not reached, the next node is labelled with
the next position bit number.
In order to keep the length of χ4 within the bound O(|I||T |), we make use of additional
propositions d0, . . . , dn−1 and e0, . . . , en−1. The idea is that di = 1 iff bj = 1, for all j < i and
that ei = 1 iff bj = 0, for all j < i.

χ4 = χ4a ∧ χ4b

χ4a = AG
(

d0 ∧

n−1
∧

i=1

[di ↔ (di−1 ∧ bi−1)] ∧ e0 ∧

n−1
∧

i=1

[ei ↔ (ei−1 ∧ ¬bi−1)]
)

χ4b = AG
[

(o ∧ ¬ϕlast ) →
(

↓x.EX(o ∧ [(en−1 ∧ bn−1 ∧@x¬bn−1) ∨ (¬en−1 ∧ (bn−1 ↔ @xbn−1))]∧

n−2
∧

i=0

[(ei+1 ∧@xdi+1) ∨ (ei ∧ bi ∧@x¬bi) ∨ (¬ei ∧ (bi ↔ @xbi))])
)]

T5: Each position bit has a child, which represents a copy of it. The nodes of a subtree rooted
at a copy node are labelled exactly with the same propositions.

χ5 = AG[(o→ ↓x.EX(c ∧

n−1
∧

i=0

(bi ↔ @xbi) ∧ b↔ @xb))∧

(c → ↓x.AG(c ∧

n−1
∧

i=0

(bi ↔ @xbi) ∧ b↔ @xb))]
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T6: Each position bit has exactly two children. One of them is its copy node and the other one
is:

(a) the next position bit if the current node is not already the last position bit or
(b) a node containing one of the propositions pose, poso, row e, row o and q♯, otherwise.

χ6 = χ6a ∧ χ6b

χ6a = AG[(o ∧ ¬ϕlast ) →EX(o ∧ ↓x.@rootEF(EXx ∧ AX(o→ x)))∧

EX(c ∧ ↓x.@rootEF(EXx ∧ AX(c → x)))∧

AX(o ∨ c)]

χ6b = AG[(o ∧ ϕlast ) →EX(c ∧ ↓x.@rootEF(EXx ∧AX(c → x)))∧

EX(¬c ∧ ↓x.@rootEF(EXx ∧ AX(¬c → x)))∧

AX(c ∨ ϕpos ∨ ϕrow ∨ q♯)

T7:With the propositions row e and rowo the counting of the positions of the current row starts.
This means that the next position gets the initial position number. Therefore the proposition b
is set to false in every position bit of this position.

χ7 = AG[ϕrow → EXAXE[ψfull ∧G¬b]]

Compared to the increasing of a position bit number the increasing of a position number is a
little bit complicated because in the latter case the bits are distributed over several nodes. In
addition, we have to account for the case that player A cannot make a move without violating
the horizontal or vertical constraints. In this case the game is over and q♯-nodes follow only.
We describe the increasing of a position number in three parts.

χ8 = χ8a ∧ χ8b ∧ χ8c

T8a: If the last position is reached then a new row is started or the game is over.

χ8a = AG[ϕfirst ∧ E[ψfull ∧Gb] → E[G¬ϕpos ∧ F(o ∧ ϕlast ∧ EX(ϕrow ∨ q♯))]]

T8b: If the last position is not reached and it is the turn of player E then the next position
sequence definitely has to be encoded and it gets the next position number.

χ8b =AG[ϕfirst ∧ E[G¬ϕpos ∧ F(c ∧ ϕlast ∧ b)] ∧ E[ψfull ∧ F¬b] → θ]

Find the highest bit which has to be flipped.

θ =E[ψfull ∧ F(o ∧ ¬b ∧ EX(¬c ∧ (o→ E[ψfull ∧Gb])) ∧ θ′)]

Flip the same bit in the next position sequence.

θ′ =↓x.[θ′′ ∧ E[ψfull ∧ F(o ∧ ϕlast∧

EX(ϕpos ∧ AXE[ψfull ∧ F(o ∧

n−1
∧

i=0

(bi ↔ @xbi) ∧ (b↔ @xb)∧

EX(¬c ∧ (o→ E[ψfull ∧G¬b])))]))]]
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If the proposition b is satisfied in a position bit preceding the flipped bits then it is also satisfied
in the same position bit in the next position sequence.

θ′′ =@rootEF[ϕfirst ∧ E[G¬ϕpos ∧ Fx ∧ F(c ∧

n−1
∧

i=0

(bi ↔ @xbi))∧

G(o ∧ ¬x→ A[ψ2pos ∧

n−1
∧

i=0

(bi ↔ F(c ∧ bi)) → b↔ F(c ∧ b)])]]

T8c: If the last position is not reached and it is the turn of player A then the next position
sequence has not to be encoded but the game could be over.

χ8c =AG[ϕfirst ∧ E[G¬ϕpos ∧ F(c ∧ ϕlast ∧ ¬b)] → (E[ψfull ∧ F(o ∧ ϕlast ∧ EXq♯)] ∨ θ)]

T9: Determining whether a position/row has an even or uneven number.

χ9 = χ9a ∧ χ9b

χ9a =AG[ϕpos → ↓x.@rootAG[ϕpos ∧ EXE[ψfull ∧ F(o ∧ ϕlast ∧ EXx)] →

(pose ↔ @xposo)]]

χ9b =AG[ϕrow → ↓x.@rootAG[ϕrow ∧ EXE[G¬ϕrow ∧ F(c ∧ ϕlast )∧

F(o ∧ ϕlast ∧ EXx)] → (rowe ↔ @xrow o)]]

T10: Each move of player A is followed by exactly one counter move of player E. Because the
even positions correspond to the moves of player E, every position node labeled with pose must
have exactly one child.

χ10 = AG[pose → EX↓x.@rootEF(EXx ∧ AXx)]

Now we use the tree structure described above to encode a winning strategy for player E.
W1: The game ends after a finite sequence of moves.
We express this by postulating that on every rootpath which does not contain any copy nodes
a q♯-node is eventually reached. A q♯-node is followed only by q♯-nodes.

ψ1 =A(G¬c → Fq♯) ∧AG(q♯ → AGq♯)

W2: To each position belongs exactly one tile type.
We remember that a tile type t is represented by the proposition pt in all position bits of a
position sequence.

ψ2 =AG[[o→
∨

t∈T

(pt ∧
∧

t6=t′∈T

¬pt′)] ∧ [o ∧ ¬ϕlast →
∧

t∈T

(t ↔ EX(o ∧ t))]]

W3: According to the horizontal constraints, the tile type of every position, except the first one
on each row, is consistent with the tile type of the precedent position.

ψ3 =AG[ϕfirst →
∧

t′∈T

[pt′ → ↓x.@rootAG[ϕfirst ∧ ¬x ∧ E[Fx ∧ ψ2pos ∧G¬ϕrow ] →
∨

(t,t′)∈H

pt]]]
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Fig. 4. A row sequence in the encoding of a winning strategy for player E. The upper nodes are copy
nodes.

W4: According to the vertical constraints, for every row, except the first one, it holds that the
tile type of every position on this row is consistent with the tile type of the same position on
the precedent row.

ψ4 =AG[ϕfirst →
∧

t′∈T

[pt′ → E[ψfull ∧ F(o ∧ ϕlast ∧ ↓x.@rootAG[ξ →
∨

(t,t′)∈V

pt])]]]

ξ =ϕfirst ∧ E[Fx ∧G(¬c→ EFx) ∧ ψ2row]∧

E[ψfull ∧G(o→ E[G(¬c→ EFx) ∧ FE[G¬ϕpos ∧ Fx]∧

n−1
∧

i=0

(bi ↔ F(c ∧ bi)) ∧ b↔ F(c ∧ b)])]

W5: All possible moves of player A are represented in the encoding.

ψ5 =AG[ϕfirst ∧ E[ψfull ∧ F(o ∧ ϕlast ∧ ¬b)] →
∧

t∈T

(pt →
∧

(t,t′)∈H

(E[ψfull ∧ F(o ∧ ϕlast ∧ EX(ϕpos ∧ EXpt′))]∨

E[ψfull ∧ F(o ∧ ϕlast∧

↓x.@rootEF(ξ∧
∨

(t′′,t′)/∈V

E[ψfull∧

F(o ∧ ϕlast ∧ EX(pt′′ ∧ EFx))]))]))]

W6: All tile types in the first row are from the set F .

ψ6 = AG[ϕfirst ∧ ↓x.@rootEXE[G¬ϕrow ∧ Fx] →
∨

t∈F

pt]

W7: Unless the game terminates prematurely (because player A is not able to make a further
move) all tile types in the last row are from the set L.

ψ7 =AG[o ∧ ϕlast ∧ b ∧ EXq♯ →

↓x.@rootEF[ϕrow ∧ EXE[G¬ϕrow ∧ Fx ∧G(ϕfirst →
∨

t∈L

pt)]]]

Finally we obtain the formula ϕI as a conjunction of the formulas encoding the properties
T1-T10 and W1-W7. It should be noticed that a model for ϕI can contain multiple possible
moves for player E on each position. In this case it suffices to choose one of the suggested
moves because every rootpath without copy nodes represents a win for E.

⊓⊔

We can obtain, by simple instantiation, a consequence of this lower complexity bound
which will be useful later on in proving the exponential succinctness of H1CTL+ in H1CTL.
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Corollary 9. There are finitely satisfiable H1CTL+ formulas ϕn, n ∈ N, of size O(n) s.t.

every tree model Tn of ϕn has height at least 22
2n

.

Proof. Consider the following instances of the 2EXP-tiling game: In := (T,H, V, F, L, n) where
T = {0, 1} × {l, f, s}. Tiles are supposed to model bit values in their first component. The
second component describes whether or not a bit has to be flipped (value f) or remains the
same (value s) in the increase of a value encoded in binary through these bits. The value l

is used to mark the lowest bit in a number. Remember that in binary increase the lowest bit
always gets flipped whereas the flipping of any other bit is determined by the value of itself,
the value of the next lower bit and the question whether or not that bit gets flipped. We
denote a tile as 0l for instance rather than (0, l).

In is constructed in a way that forces both players to put down the number 0 in binary
coding into the first row of the 22

n

-arena and, whenever a row encodes a number i, then
the players need to place the binary encoding of i + 1 into the next row. Thus, there will be
(almost) no choices for the players. Player E should win when the highest possible number

22
2n

is placed in a row.
The starting constraints are F := {0l, 0s}. Hence, the first row must encode 0. The hori-

zontal constraints are as follows.

H := {(0l, bs), (1l, bf), (0f, bs), (1f, bf), (0s, bs), (1s, bs)}

where b is, in any case, an arbitrary value in {0, 1}.
Now note that with this H and F , there are only two possible first rows that the players

can lay down: 0l0s . . . 0s or 0s . . . 0s, and it is player E who determines entirely through his
first choice which of these it is going to be.

Next we will translate the informal description of binary increase given above into the
vertical constraints.

V := {(0l, 1l), (1l, 0l), (0f, 1x), (1f, 0x), (0s, 0x), (1s, 1x)}

where x is, in any case this time, an arbitrary value in {f, s}.
Now note that, if a row i is layed down entirely, then the vertical constraints determine

uniquely the bit value of each tile in the next row. Furthermore, if the first tile in row i is of
the form bl then the first tile in row i+1 is uniquely determined to be (1− b)l, and H as well
as the bit values in row i + 1 uniquely determine the flip-values of all the bits in row i + 1.
Furthermore, all lowest bits that are all 1 in row i are 0 in row i+ 1, the lowest bit that is 0
in row i is 1 in row i+ 1, and all other bits in row i+ 1 retain their value from row i. Hence,
if row i encodes the number i in binary (starting with 0), then row i+ 1 encodes the number
i+ 1 in binary.

Thus, if player E chooses tile 0l as the first one, then both players have no choice but to
lay down the binary encodings of 0, 1, 2, . . .. On the other hand, if player E chooses tile 0s as
the first one then all rows will encode the number 0 because the entire arena must be tiled
with 0s only.

Finally, remember that the goal is to construct In in a way that enforces a play filling 22
2n

many rows. This can now easily be achieved by constuction the end constraints in a way that

player E only wins when the number 22
2n

−1 has been placed down in a row. We therefore set
L := {1l, 1f}. Note that in the successive increase as constructed above, the last row cannot
contain the tile 1s. ⊓⊔

Using the ideas of the transformation mentioned in Theorem 2 we can show that the lower
bound for H1CTL+ is optimal. Even for strictly more expressive logics than H1CTL+ the
satisfiability problem remains in 3EXPTIME.

Theorem 10. The satisfiability problem for H1CTL+ is 3EXPTIME-complete.
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Proof. Let H1PECTL+ be the logic H1CTL+ augmented with the operators Y, S,
∞

F and
∞

G
and similarly H1PCTL be H1CTL augmented with Y and S. We describe how to transform a
H1PECTL+-formula ϕ into an satisfiability equivalent H1PCTL-formula ϕ′. The transforma-
tion algorithm we use yields an exponential blowup in the formula length. As satisfiability of
H1PCTL is in 2EXPTIME [28] we get the desired 3EXPTIME upper bound for satisfia-
bility of H1PECTL+.

The transformation algorithm uses the equivalences already used in the proof of Theorem
2 plus additional equivalences to deal with the extra operators. For convenience of the reader,
we state all equivalences in the following.

(1) ¬Xϕ ≡ X¬ϕ
(2) ¬Yϕ ≡ Y¬ϕ
(3) ¬(ϕUϕ′) ≡ [(ϕ ∧ ¬ϕ′)U(¬ϕ ∧ ¬ϕ′)] ∨G¬ϕ′

(4) ¬(ϕSϕ′) ≡ (ϕ ∧ ¬ϕ′)S(¬ϕ ∧ ¬ϕ′)

(5) ¬
∞

Gϕ ≡
∞

F¬ϕ
(6) E(ψ ∨ ψ′) ≡ Eψ ∨ Eψ′

(7) Xϕ ∧ Xϕ′ ≡ X(ϕ ∧ ϕ′)
(8) Yϕ ∧ Yϕ′ ≡ Y(ϕ ∧ ϕ′)
(9) Gϕ ∧Gϕ′ ≡ G(ϕ ∧ ϕ′)

(10)
∞

Gϕ ∧
∞

Gϕ′ ≡
∞

G(ϕ ∧ ϕ′)
(11) Extraction of past operators

E[

k
∧

i=1

Yϕi ∧

l
∧

i=1

(ψiSψ
′
i) ∧ Xχ ∧Gξ ∧

∞

Gρ ∧

m
∧

i=1

(ηiUη
′
i) ∧

n
∧

i=1

∞

Fκi ∧

o
∧

i=1

¬
∞

Fλi]

≡

k
∧

i=1

Yϕi ∧

l
∧

i=1

(ψiSψ
′
i) ∧ E[Xχ ∧Gξ ∧

∞

Gρ ∧

m
∧

i=1

(ηiUη
′
i) ∧

n
∧

i=1

∞

Fκi ∧

o
∧

i=1

¬
∞

Fλi]

(12) Elimination of the X-operator

E[Xϕ ∧Gψ ∧
∞

Gχ ∧

l
∧

i=1

(ξiUξ
′
i) ∧

m
∧

i=1

∞

Fκi ∧

n
∧

i=1

¬
∞

Fλi]

≡

∨

I⊆{1,...,l}

[
∧

i∈I

ξ′i ∧ ψ ∧
∧

i/∈I

ξi ∧ EX(ϕ ∧ E[Gψ ∧
∞

Gχ
∧

i/∈I

(ξiUξ
′
i) ∧

m
∧

i=1

∞

Fκi ∧
n
∧

i=1

¬
∞

Fλi])]

(13) Disjunction over all possible sequences in which the formulas ξ′i with 1 ≤ i ≤ l can occur

E[Gψ ∧
∞

Gχ ∧

l
∧

i=1

(ξiUξ
′
i) ∧

m
∧

i=1

∞

Fκi ∧

n
∧

i=1

¬
∞

Fλi]

≡

∨

π∈Perm({1,...,n})

[E[(

n
∧

i=1

ξi ∧ ψ)U(ξ
′
π(1) ∧ E[(

∧

i6=π(1)

ξi ∧ ψ)U(ξ
′
π(2)∧

E[(
∧

i6=π(1),π(2)

ξi ∧ ψ)U(ξ
′
π(3) ∧ ...U(ξ

′
π(n) ∧ E[Gψ ∧

∞

Gχ ∧

m
∧

i=1

∞

Fκi ∧

n
∧

i=1

¬
∞

Fλi])...)])])]]
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(14) Elimination of the
∞

G-operator

E[Gψ ∧
∞

Gχ ∧

m
∧

i=1

∞

Fκi ∧

n
∧

i=1

¬
∞

Fλi] ≡ E[ψU(E[G(ψ ∧ χ) ∧

m
∧

i=1

∞

Fκi ∧

n
∧

i=1

¬
∞

Fλi])]

(15) Elimination of ¬
∞

F

E[Gψ ∧

m
∧

i=1

∞

Fκi ∧

n
∧

i=1

¬
∞

Fλi] ≡ E[ψU(E[G(ψ ∧

n
∧

i=1

¬λi) ∧

m
∧

i=1

∞

Fκi])]

(16) Elimination of the
∞

F-operator

E[Gϕ ∧
m
∧

i=1

∞

Fκi]

is satisfiable if and only if

m
∧

i=1

AG(¬EG(pi ∧ ¬κi)) ∧ EG(ϕ ∧

m
∧

i=1

pi)

is satisfiable

Note that in (16) the two formulas are equivalent only with respect to satisfiability. For every
formula κi, the new formula uses an additional proposition pi which is supposed to hold on

all paths satisfying
∞

Fκi.
Let ϕ be a H1PECTL+-formula. We can assume that ϕ does not contain the path quantifier

A because of Aψ ≡ ¬E¬ψ. In a bottom up fashion the algorithm replaces each subformula
Eψ of ϕ by a H1PCTL-formula. Thus, it only remains to describe how to transform a formula

Eψ where ψ is a boolean combination of path formulas of the form Yχ, χSχ′, Xχ, χUχ′,
∞

Fχ

and
∞

Gχ with χ ∈ H1PCTL. The transformation involves the following steps:

- Using De Morgan’s laws the ¬-operators are pushed to the leaves of the Boolean combi-
nation.

- By applying equivalences (1)-(5) negations can be eliminated from the outermost Boolean
combination and a formula Eψ is obtained in which ψ is a positive Boolean combination

of path formulas of the form Yχ, χSχ′, Xχ, Gχ,χUχ′,
∞

Fχ, ¬
∞

Fχ and
∞

Gχ
– By applying equivalences (6)-(10) the formula can be transformed into a formula of the

form

E[
∧k
i=1 Yϕi ∧

∧l
i=1(ψiSψ

′
i) ∧ Xχ ∧Gξ ∧

∞

Gρ ∧
∧m
i=1(ηiUη

′
i) ∧

∧n
i=1

∞

Fκi ∧
∧o
i=1 ¬

∞

Fλi].
– Eventually, applying equivalences (11) - (16) a H1PCTL-formula ϕ′ is obtained which is

satisfiable if and only if ϕ is satisfiable.

It can be shown that the factorial blowup in equivalence (7) is the worst blowup in the trans-
formation algorithm [6]. As n! = 2O(n log n) we can conclude that |ϕ′| is at most exponential
in |ϕ|. ⊓⊔

5 The Succinctness of H1CTL+ w.r.t. H1CTL

In Corollary 3 an upper bound of 2O(n logn) for the succinctness of H1CTL+ in H1CTL is
given. In this section we establish the lower bound for the succinctness between the two logics.
Actually we show that H1CTL+ is exponentially more succinct than H1CTL. The model-
theoretic approach we use in the proof is inspired by [17]. We first establish a kind of small
model property for H1CTL.
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Theorem 11. Every finitely satisfiable H1CTL-formula ϕ with |ϕ| = n has a model of depth

22
O(n)

.

Proof. In [28] it was shown that for every H1CTL-formula ϕ, an equivalent nondeterministic

Büchi tree automaton Aϕ with 22
O(|ϕ|)

states can be constructed. It is easy to see by a pumping

argument that if Aϕ accepts some finite tree at all, it accepts one of depth 22
O(|ϕ|)

. It should be
noted that the construction in [28] only constructs an automaton that is equivalent to ϕ with
respect to satisfiability. However, the only non-equivalent transformation step is from ϕ to a
formula ϕ′ without nested occurrences of the ↓-operator (Lemma 4.3 in [28]). It is easy to see
that this step only affects the propositions of models but not their shape let alone depth. ⊓⊔

Corollary 9 and Theorem 11 together immediately yield the following.

Corollary 12. H1CTL+ is exponentially more succinct than H1CTL.

6 Conclusion

The aim of this paper is to contribute to the understanding of one-variable hybrid logics on
trees, one of the extensions of temporal logics with reasonable complexity. We showed that
H1CTL+ has no additional power over H1CTL but is exponentially more succinct, we settled
the complexity of H1CTL+ and showed that hybrid variables do not help in expressing fairness
(as HCTL+ cannot express EGFp).

However, we leave a couple of issues for further study, including the following.

– We conjecture that the succinctness gap between H1CTL+ and H1CTL is actually θ(n)!.
– We expect the HCTL-game to capture exactly the expressive power of HCTL. Remember

that here we needed and showed only one part of this equivalence.
– The complexity of Model Checking for HCTL has to be explored thoroughly, on trees and

on arbitrary transition systems. In this context, two possible semantics should be explored:
the one, where variables are bound to nodes of the computation tree and the one which
binds nodes to states of the transition system (the latter semantics makes the satisfiability
problem undecidable on arbitrary transition systems [2])
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Fig. 5. An encoding of a winning strategy for player E in the case where n = 2.
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