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Abstract. Our goal is to start the investigation of dynamic algorithms
for solving games that are played on finite graphs. The dynamic game
determinacy problem calls for finding efficient algorithms that decide the
winner of the game when the underlying graph undergoes repeated mod-
ifications. In this paper, we focus on turn-based reachability games. We
provide an algorithm that solves the dynamic reachability game problem
on trees. The amortized time complexity of our algorithm is O(log n),
where n is the number of nodes in the current graph.

1 Introduction

We start to investigate dynamic algorithms for solving games that are played on
finite graphs. Games played on graphs, with reachability, Büchi, Muller, Streett,
parity and similar type of winning conditions, have recently attracted a great
attention due to connections with model checking and verification problems,
automata and logic [6][11][13][17]. Given one of these games, to solve the game
means to design an (efficient) algorithm that tells us from which nodes a given
player wins the game. Polynomial time algorithms exist to solve some of these
games, while efficient algorithms for other games remain unknown. For example,
on a graph with n nodes and m edges, the reachability game problem is in
O(n + m) and is PTIME-complete [8], and Büchi games are in O(n · m) [1].
Parity games are known to be in NP∩ Co-NP but not known to be in P.

An algorithm for solving the games is static if the games remain unchanged
over time. We pose the dynamic game determinacy problem:

We would like to maintain the graph of the game that undergoes a se-
quence of update and query operations in such a way that facilitates an
efficient solution of the current game.

Contrary to the static case, the dynamic determinacy problem takes as input
a game G and a (finite or infinite) sequence α1, α2, α3, . . . of update or query
operations. The goal is to optimize the average running time per operation over
a worst-case sequence of operations. This is known as the amortized running
time of the operations.



There has recently been increasing interest in dynamic graph algorithms
(See, for example, [4][5]). The dynamic reachability problem on graphs have
been investigated in a series of papers by King [9], Demetrescu and Italiano
[3], Roditty [14] and Roditty and Zwick [15][16]. In [16], it is shown that for
directed graphs with m edges and n nodes, there is a dynamic algorithm for
the reachability problem which has an amortized update time of O(m + n log n)
and a worst-case query time of O(n). This paper extends this line of research
to dynamic reachability game algorithms. In the setting of games, for a given
directed graph G and a player σ, a set of nodes T is reachable from a node u in
G means that there is a strategy for player σ such that starting from u, all paths
produced by player σ following that strategy reach T , regardless of the actions
of the opponent. Hence, the dynamic reachability game problem can be viewed
as a generalization of the dynamic reachability problem for graphs.

We now describe two-person reachability games played on directed finite
graphs. The two players are Player 0 and Player 1. The arena A of the game is
a directed graph (V0, V1, E), where V0 is a finite set of 0-nodes, V1 is a finite set
of 1-nodes disjoint from V0, and E ⊆ V0 × V1 ∪ V1 × V0 is the edge relation. We
use V to denote V0 ∪ V1. A reachability game G is a pair (A, T ) where A is the
arena and T ⊆ V is the set of target nodes for Player 0.

The players start by placing a token on some initial node v ∈ V and then
move the token in rounds. At each round, the token is moved along an edge
by respecting the direction of the edge. If the token is placed at u ∈ Vσ, where
σ ∈ {0, 1}, then Player σ moves the token from u to a v such that (u, v) ∈ E.
The play stops when the token reaches a node with no out-going edge or a
target node. Otherwise, the play continues forever. Formally, a play is a (finite
or infinite) sequence π = v0 v1 v2 . . . such that (vi, vi+1) ∈ E for all i. Player
0 wins the play π if π is finite and the last node in π is in T . Otherwise, Player
1 wins the play.

In this paper we provide an algorithm that solves the dynamic reachability
game played on trees. We investigate the amortized time complexity of the al-
gorithm. We concentrate on trees because: (1) Trees are simple data structures,
and the study of dynamic algorithms on trees is the first step towards the dy-
namic game determinacy problem. (2) Even in the case of trees the techniques
one needs to employ is non-trivial. (3) The amortized time analysis for the dy-
namic reachability game problem on graphs, in general case, is an interesting
hard problem. (4) Finally, we give a satisfactory solution to the problem on
trees. We show that the amortized time complexity of our algorithm is of order
O(log n), where n is the number of nodes on the tree. The space complexity of
our algorithm is O(n).

2 A Static Algorithm for Reachability Games

Let G = (A, T ) be a reachability game. A (memoryless) strategy for Player σ is a
partial function fσ : Vσ → V1−σ. A play π = v0 v1 ... conforms fσ if vi+1 = fσ(vi)
whenever vi ∈ Vσ and fσ is defined on vi for all i. All strategies in this paper



are memoryless. A winning strategy for Player σ from v is a strategy fσ such
that Player σ wins all plays starting from v that conform fσ. A node u is a
winning position for Player σ, if Player σ has a winning strategy from u. The
σ-winning region, denoted Wσ, is the set of all winning positions for Player σ.
Note that the winning regions are defined for memoryless strategies. A game
enjoys memoryless determinacy if the regions W0 and W1 partition V .

Theorem 1 (Reachability game determinacy[7]). Reachability games en-
joy memoryless determinacy. Moreover, there is an algorithm that computes W0

and W1 in time O(n + m).

Proof. For Y ⊆ V , set Pre(Y ) = {v ∈ V0 | ∃u[(v, u) ∈ E ∧ u ∈ Y ]} ∪ {v ∈ V1 |
∀u[(v, u) ∈ E → u ∈ Y ]}. Define a sequence T0, T1, ... such that T0 = T , and
for i > 0, Ti =Pre(Ti−1) ∪ Ti−1. There is an s such that Ts = Ts+1. We say a
node u has rank r, r ≥ 0, if u ∈ Tr − Tr−1. A node u has infinite rank if u /∈ Ts.
Once checks that a node u ∈ W0 if and only if u has a finite rank. Computing
W0 takes O(n + m) time. ut

3 Dynamic Reachability Game Problem: A Set-Up

As mentioned above, the dynamic game determinacy problem takes as input a
reachability game G = (A, T ) and a sequence α1, α2, . . . of update and query
operations. The operations produce the sequence of games G0, G1, . . . such that
Gi is obtained from Gi−1 by applying the operation αi. A dynamic algorithm
should solve the game Gi for each i. We use the notation

Ai = (V0,i ∪ V1,i, Ei), Vi, Ti, Wσ,i

to denote the arena, the set of nodes, the target set and σ-winning region for Gi.
We define the following six update operations and one query operation:

1. InsertNode(u, i, j) operation, where i, j ∈ {0, 1}, creates a new node u in Vi.
Set u as a target if j = 1 and not a target if j = 0.

2. DeleteNode(u) deletes u ∈ V where u is isolated, i.e., with no incoming or
outgoing edge.

3. InsertEdge(u, v) operation inserts an edge from u to v.
4. DeleteEdge(u, v) operation deletes the edge from u to v.
5. SetTarget(u) operation sets node u as a target.
6. UnsetTarget(u) operation sets node u not as a target.
7. Query(u) operation returns true if u ∈ W0 and false if u ∈ W1

By Theorem 1, each node of Vi belongs to either W0,i or W1,i.

Definition 1. A node u is in state σ if u ∈ Wσ. The node u changes its state
at stage i + 1, if u is moved either from W0,i to W1,i+1 or from W1,i to W0,i+1.



Using the static algorithm from Theorem 1, one produces two lazy dynamic
algorithms for reachability games. The first algorithm runs the static algorithm
after each update and therefore query takes constant time at each stage. The
second algorithm modifies the game graph after each update operation without
re-computing the winning positions, but the algorithm runs the static algorithm
for the Query(u) operation. In this way, the update operations take constant
time, but Query(u) takes the same time as the static algorithm. The amortized
time complexity in both algorithms is the same as the static algorithm.

4 Reachability Game Played on Trees

This section is the main technical contribution of the paper. All trees are di-
rected, and we assume that the reader is familiar with basic terminology for
trees. A forest consists of pairwise disjoint trees. Since the underlying tree of the
game undergos changes, the game will in fact be played on forests. We however
still say that a reachability game G is played on trees if its arena is a forest F .
We describe a fully dynamic algorithm for reachability games played on trees.

A forest F is implemented as a doubly linked list List(F ) of nodes. A node
u is represented by the tuple (p(u), pos(u), tar(u)) where p(u) is a pointer to
the parent of u (p(u) = null if u is a root), pos(u) = σ if u ∈ Vσ and a boolean
variable tar(u) = true iff u is a target.

Our algorithm supports all the operations listed in Section 3. At stage s,
the algorithm maintains a forest Fs obtained from Fs−1 after performing an
operation. We briefly discuss the operations and their implementations:

– Inputs of the update and query operation are given as pointers to their
representatives in the linked list List(Fs).

– The operations InsertNode and DeleteNode are performed in constant time.
The InsertNode(u, i, j) operation links the last node in List(Fs) to a new
node u. The DeleteNode(u) operation deletes u from List(Fs).

– All other update operations and the query operation have amortized time
O(log n), where n is the number of nodes in V .

– The InsertEdge(u, v) operation is performed only when v is the root of a
tree not containing u. InsertEdge(u, v) links the trees containing u and v.
DeleteEdge(u, v) does the opposite by splitting the tree containing u and v
into two trees. One contains u and the other has v as its root.

4.1 Splay Trees

We describe splay trees (see [10] for details) which we will use in our algorithm.
The splay trees form a dynamic data structure for maintaining elements drawn
from a totally ordered domain D. Elements in D are arranged in a collection PD

of splay trees, each of which is identified by the root element.

– Splay(A, u): Reorganize the splay tree A so that u is at the root if u ∈ A.



– Join(A,B): Join two splay trees A,B ∈ PD, where each element in A is less
than each element in B, into one tree.

– Split(A, u): Split the splay tree A ∈ PD into two new splay trees

Above(u) = {x ∈ A | x > u} and Below(u) = {x ∈ A | x ≤ u}.
– Max(A)/Min(A): Returns the Max/Min element in A ∈ PD.

Theorem 2 (splay trees[12]). For the splay trees on PD, the amortized time
of the operations above is O(log n), where n is the cardinality of D. ut

4.2 Dynamic Path Partition

Recall that a node u is in state σ at stage s if u ∈ Wσ,s. Denote the state of
u at stage s by States(u). The update operations may change the state of u.
This change may trigger a series of state changes on the ancestors of u. The
state of u does not change if no update operation is applied to a descendant of
u. We need to have a ChangeState(u) algorithm which carries out the necessary
updates when the state of u is changed. The ChangeState(u) algorithm will not
be executed alone, but will rather be a subroutine of other update operations.

One may propose a naive ChangeState(u) algorithm as follows. We hold for
each node v its current state. When ChangeState(u) is called, it first changes the
state of u, then checks if the parent p(u) of u needs to change its state. If so,
we changes the state of p(u), and checks if the parent of p(u) needs to change
its state, etc. This algorithm takes O(n) amortized time. Our goal is to improve
this time bound. For this, we introduce dynamic path partition explained below.

Let x <F y denote the fact that x is an ancestor of y in forest F . Set
Path(x, y) = {z | x ≤F z ≤F y}.
Definition 2. A path partition of a forest F is a collection PF of sets such that
PF partitions the set of nodes in F and each set in PF is of the form Path(x, y)
for some x, y ∈ F .

Nodes in Path(x, y) are linearly ordered by <F . Call the element of PF that
contains u the block of u. A block is homogeneous if all its elements have the same
state. A path partition PF is homogeneous if each block in PF is homogeneous.
For any u in Fs, set νs(u) = |{v | (u, v) ∈ Es ∧ States(u) = States(v)}|.
Definition 3. A node u in Fs is stable at stage s if u ∈ Ts or for some σ ∈
{0, 1}, u ∈ Vσ,s ∩ Wσ,s and νs(u) ≥ 2. We use Zs to denote the set of stable
nodes at stage s.

The following lemma shows how state changes influence non-stable nodes in
homogeneous fragments of blocks. The proof follows from the definitions.

Lemma 1. Suppose x is stable, x ≤Fs y, Path(x, y) is homogeneous and there
is no stable node in {z | x <Fs z ≤Fs y}. If y changes state at stage s + 1 then
the nodes in the set {z | x <Fs z ≤Fs y} are precisely those nodes that need to
change their states. ut



Definition 4. A path partition of F is stable if whenever a node u is stable, it
is the ≤F -maximum element in its own block.

From this definition, for a stable path partition, if u is stable, all elements
x 6= u in the block of u are not stable. An example of a stable and homogeneous
partition is the trivial partition consisting of singletons.

At stage s, the algorithm maintains two data structures, one is the linked list
List(Fs) as described above, and the other is the path partition PFs

. Each node
u in List(Fs) has an extra pointer to its representative in PFs

. The path partition
is maintained to be homogeneous and stable. Denote the block of u at stage s
by Bs(u). To obtain logarithmic amortized time, each Bs(u) is represented by a
splay tree.

4.3 ChangeState(u) Algorithm

The ChangeState(u) algorithm carries out two tasks. One is that it changes the
states of all the necessary nodes of the underlying forest once u changes its state.
The second is that it changes the path partition by preserving its homogeneity
and stability properties. For the ease of notations, in this subsection we do not
use the subscripts s for the forest Fs and the target set Ts. We write F for Fs

and T for Ts.

We explain our ChangeState(u) algorithm informally. Suppose u changes its
state at stage s + 1. The algorithm defines a sequence of nodes x1 >F x2 >F

. . . where x1 = u. For i ≥ 1, the algorithm splits Bs(xi) into two disjoint
sets Above(xi) and Below(xi) and temporarily sets Bs+1(xi) = Below(xi). By
homogeneity, all nodes in Below(xi) have the same state at stage s. Change
the state of all nodes in Bs+1(xi) (this can be done by Lemma 1) and join the
current two blocks containing u and Bs+1(xi) into one. If min{Bs+1(xi)} is the
root, stop the process. Otherwise, consider the parent of min{Bs+1(xi)} which is
wi = p(min{Bs+1(xi)}). If States(wi) 6= States(xi) or wi ∈ Zs, stop the loop, do
not define xi+1 and Bs+1(u) is now determined. Otherwise, set xi+1 = wi and
repeat the above process for xi+1. Consider the last wi in the process described
above that did not go into the block of u. If wi /∈ Zs and it becomes stable
after the change, split Bs(wi) into Above(wi) and Below(wi) and declare that
wi ∈ Zs+1. These all determine the new partition at stage s + 1.

Algorithm 1 implements the ChangeState(u) procedure. The current block
of v is denoted by B(v). Elements of B(v) are stored in a splay tree with order
≤F . With the root of each splay tree B(v) the variable q(B(v)) ∈ {0, 1} is
associated to denote the current state of nodes in B(v). The while loop computes
the sequence x1, x2, ... and w1, w2, ... described above using the variables x and
w. The boolean variable ChangeNext decides if the while loop is active. The
boolean variable Stable(v) indicates whether v is stable. With each stable node
v, the variable n(v) equals ν(v) at the given stage.

The next two lemmas imply that the path partition obtained after the exe-
cution of ChangeState(u) remains homogeneous and stable.



Algorithm 1 ChangeState(u).
1: ChangeNext ← true; x ← u.
2: while ChangeNext do
3: Split(B(x), x); q(B(x)) ← 1− q(B(x)); Join(B(u), B(x)).
4: if p(min{B(x)}) = null then Stop the process. end if
5: w ← p(min{B(x)}).
6: if Stable(w) ∨ q(B(w)) = q(B(u)) then ChangeNext ← false. end if
7: x ← w.
8: end while
9: Run UpdateStable(x, u)

Algorithm 2 UpdateStable(x, u).
1: if Stable(x) then
2: n(x) ← [q(B(u)) = q(B(x))? n(x) + 1 : n(x)− 1].
3: if n(x) < 2 ∧ ¬ tar(x) then Stable(x) ← false. end if
4: else
5: Stable(x) ← true; Split(B(x), x); n(x) ← 2.
6: end if

Lemma 2. Bs+1(u) = {z |States(z) 6= States+1(z)}.
Proof. If z = u then States(z) 6= States+1(z). Assume z 6= u and z ∈ Bs+1(u).
Let x be the ≤F -maximum node in Bs(z). By definition of Bs+1(u), x /∈ Zs

and States(x) = States(u). Therefore by Lemma 1 and the construction of the
algorithm, Bs+1(u) ⊆ {z |States(z) 6= States+1(z)}.

Conversely, if States(z) 6= States+1(z), z must be an ancestor of u. Let
x be the ≤F -minimum node in Bs+1(u). If x is the root, {z |States(z) 6=
States+1(z)} ⊆ Bs+1(u). If x is not the root, either p(x) ∈ Zs or States(p(x)) =
States+1(u). Again by Lemma 1 and description of the algorithm, States(x) =
States+1(x) and thus {z |States(z) 6= States+1(z)} ⊆ Bs+1(u). ut
Lemma 3. Suppose v /∈ Zs. The node v ∈ Zs+1 if and only if v is the parent of
the ≤F -least node that changes its state at stage s + 1.

Proof. Suppose for simplicity that v ∈ V0,s. The case when v ∈ V1,s can be
proved in a similar way. Suppose one of v’s children, say v0, is the ≤F -least node
that changes its state at stage s + 1. If States(v) = 1, then all of its children
are in W1,s. Thus States+1(v0)=0, and v should also changes to state 0. This
contradicts with the ≤F -minimality of v1. Therefore v ∈ W0,s. Since v /∈ Zs,
exactly one of its child, say v1 is in W0,s. If v1 = v0, then none of v’s children is
in W0,s+1 and States(v) 6= States+1(v). Therefore v1 6= v0. Thus at stage s + 1,
v has exactly two children in W0,s+1 and v ∈ Zs+1.

On the other hand, suppose v ∈ Zs+1. This means that, v ∈ W0,s+1 and v
has two children v0, v1 in W0,s+1. Note that for any x, at most one child of x
may change state at any given stage. Therefore, at most one of v0 and v1, say
v1, is in W0,s. Hence v ∈ W0,s, and States(v) =States+1(v). Therefore v0 is the
≤F -least node that changes state at stage s + 1. ut



4.4 Update and Query operations

We describe the update and query operations. The query operation takes a
parameter u and returns q(B(u)), which is the state variable associated with the
root of the splay tree representing B(u). We use an extra variable c(u) to denote
the current number of children of u.

In principle, the algorithms for operations InsertEdge(u, v), DeleteEdge(u, v),
SetTarget(u) and UnsetTarget(u) perform the following three tasks. (1) Firstly, it
carries out the update operation on u and v. (2) Secondly, it calls ChangeState(u)
in the case when u needs to change state. (3) Lastly, it updates c(z), n(z) and
Stable(z) for each z. Task (1) is straightforward by changing the values of p(v)
and tar(u). Task (2) (3) can be done by using a fixed number of if statements,
each with a fixed boolean condition involving comparisons on the variables. We
illustrate this using the InsertEdge(u, v) operation as follows.

Algorithm 3 InsertEdge(u, v).
1: p(v) ← u; c(u) ← c(u) + 1.
2: if ¬ tar(u) ∧ q(B(u)) 6= q(B(v)) ∧ (c(u) = 1 or q(B(u)) 6= Pos(u)) then
3: Run ChangeState(u).
4: else if Stable(u) ∧ q(B(u)) = q(B(v)) then
5: n(u) ← n(u) + 1.
6: else if ¬Stable(u) ∧ c(u) > 1 ∧ q(B(u)) = q(B(v)) =Pos(u) then
7: Stable(u) ← true; Split(B(u), u); n(u) ← 2.
8: end if

The InsertEdge(u, v) operation is described in Algorithm 3. Suppose the path
partition on Fs is homogeneous and stable, and

1. q(B(z)) = States(z).
2. n(z) = |{z′ | (z, z′) ∈ Es∧ States(z) = States(z′)}|.
3. c(z) = |{z′ | (z, z′) ∈ Es}|.
4. Stable(z) is true if and only if z ∈ Zs.

Suppose the edge (u, v) is inserted at stage s + 1. We prove the following two
lemmas which imply the correctness of the algorithm.

Lemma 4. ChangeState(u) is called in the InsertEdge(u, v) algorithm if and
only if States(u) 6= States+1(u).

Proof. Note that ChangeState(u) is called if and only if the condition for the if
statement at Line 2 of Algorithm 3 holds. We prove one direction of the lemma,
the other direction is straightforward.

Suppose States(u) 6= States+1(u). It must be that u /∈ Ts and States(u) 6=
States(v). Suppose further that u is not a leaf at stage s. If u ∈ V0,s∩W0,s, there
is a child w of u which is also in W0,s. This means that States(u) = States+1(u).
Similarly, one may conclude that u does not change state if u ∈ V1,s ∩ W1,s.



Therefore u ∈ (V0,s ∩ W1,s) ∪ (V1,s ∩ W0,s). Therefore the condition for the if
statement at Algorithm 3 Line 2 holds. ut
Lemma 5. Stable(u) is true at stage s + 1 if and only if u ∈ Zs+1.

Proof. It is easy to see that if u ∈ Zs then u ∈ Zs+1 and Stable(u) is set to
true at stage s + 1. Suppose u /∈ Zs. Note that Stable(u) is set to true at stage
s + 1 if and only if Line 6 in Algorithm 3 is reached and the condition for the if
statement at this line holds, if and only if u is not a leaf at stage s, States(u) =
States+1(u) =States(v) and u ∈ Vσ,s ∩Wσ,s for some σ ∈ {0, 1}.

If u is not a leaf, States(u) = States+1(u) =States(v) and u ∈ Vσ,s ∩ Wσ,s

for some σ ∈ {0, 1}, then there is a child w of u in Wσ,s and thus u ∈ Zs+1. On
the other hand, suppose u ∈ Zs+1. If u changes state, then u ∈ Vσ,s ∩ W1−σ,s

for some σ ∈ {0, 1}. This means all children of u are in W1−σ,s and u /∈ Zs+1.
Therefore it must be that u did not change state. By definition of a stable node,
u is not a leaf, States(u) =States(v) and u ∈ Vσ,s ∩Wσ,s. ut

Algorithm 4 DeleteEdge(u, v).
1: p(v) ← null; c(u) ← c(u)− 1.
2: if B(u) = B(v) then Split(B(u), u). end if
3: if ¬Stable(u) ∧ q(B(u)) = q(B(v)) ∧ [(c(u) = 0 ∧ q(B(u)) = 0) ∨ (q(B(u)) =

Pos(u))] then
4: Run ChangeState(u).
5: end if
6: if Stable(u) ∧ q(B(u)) = q(B(v)) then
7: n(u) ← n(u)− 1.
8: if n(u) < 2 then Stable(u) ← false. end if
9: end if

The DeleteEdge(u, v) operation is described in Algorithm 4. Suppose that
the edge (u, v) is deleted at stage s + 1. We also have the following two lemmas
which imply the correctness of the algorithm. The proofs are similar in spirit to
the proofs of Lemma 4 and Lemma 5.

Lemma 6. ChangeState(u) is called in the DeleteEdge(u, v) algorithm if and
only if States(u) 6= States+1(u). ut
Lemma 7. Stable(u) is true at stage s + 1 if and only if u ∈ Zs+1. ut

The SetTarget(u) and UnsetTarget(u) operations are described in Algorithm
5 and Algorithm 6, respectively.

4.5 Correctness

The next lemma implies the correctness of the algorithms 1-6.



Algorithm 5 SetTarget(u).
1: if c(u) = 0 then n(u) = 0.
2: else if Pos(u) 6= q(B(u)) then n(u) ← [Pos(u) = 0? 0 : c(u)].
3: else if Stable(u) then n(u) ← [Pos(u) = 0? n(u): c(u)− n(u)].
4: else n(u) ← [Pos(u) = 0? 1 : c(n)− 1]. end if
5: tar(u) ← true; Stable(u) ←true; Split(B(u), u).
6: if q(B(u)) = 1 then Run ChangeState(u). end if

Algorithm 6 UnsetTarget(u).
1: if (Pos(u) = 0 ∧ n(u) = 0) ∨ (Pos(u) = 1 ∧ n(u) < c(u)) then
2: Run ChangeState(u); n(u) ← c(u)− n(u).
3: end if
4: Stable(u) ← [(n(u) > 1 ∧ Pos(u) = q(B(u)))? true: false].
5: tar(u) ← false.

Lemma 8. At each stage s, States(z) = q(B(z)) for all node z ∈ Fs.

Proof. The proof proceeds by induction on s. For simplicity, we assume that the
initial forest F0 contains only isolated nodes. We set for each node z, p(z) =
null, c(z) = n(z) = 0, B(z) = {z}, Stable(z) = true if and only if q(B(z)) = 0
if and only if tar(z) = true. For the case when F0 is an arbitrary forest, we
may assume that the variables c(z), n(z), B(z), Stable(z) and q(B(z)) has been
pre-set to their respect values as described in the previous subsection. We use
γs(u) to denote the number of children of u in stage s and recall that νs(u) is
the number of u’s children in the same state as u. The lemma follows from the
fact that the following six inductive assumptions are preserved at each stage s.

(1) The set {B(v) | v ∈ V0,s ∪ V1,s} forms a homogeneous path partition of Fs.
(2) For each z, c(z) = γs(z).
(3) For each z, n(z) = νs(z) whenever z is stable.
(4) For each z, Stable(z) is set to True if and only if z is a stable node.
(5) The path partition {B(v) | v ∈ V } is stable.
(6) For each z, States(z) = q(B(z)). ut

5 Complexity

We analyze the amortized complexity of our algorithm. Each InsertEdge(u, v),
DeleteEdge(u, v), SetTarget(u), and UnsetTarget(u) algorithm runs at most once
the ChangeState(u) algorithm, a fixed number of splay tree operations, and a
fixed number of other low-level operations such as pointer manipulations and
comparisons. By Theorem 2, each splay tree operation takes amortized time
O(log n) where n is the number of nodes in the forest. Therefore, the amortized
time complexity for these operations is O(log n) plus the amortized time taken
by the ChangeState(u) algorithm.



We now focus on the amortized time complexity of the ChangeState(u) al-
gorithm. The algorithm runs in iterations. At each iteration, it processes the
current block of nodes B(x) and examines the parent w of the ≤F -least node in
B(x). If w does not exist or does not need to change state, the algorithm stops
and calls UpdateStable(w, x); otherwise, the algorithm sets x to w and starts
another iteration. Each iteration in the algorithm and the UpdateStable(w, x)
algorithm both run a fixed number of splay tree operations and therefore takes
amortized time O(log n). Therefore the algorithm takes time O(τ log n+log n) to
execute a sequence of k update operations, where τ is the number of iterations
of ChangeState(u). We prove the following lemma which implies the O(log n)
amortized time complexity of the above update operations.

Lemma 9. For any sequence of k update operations, the total number of itera-
tions ran by the ChangeState(u) algorithm is O(k).

Proof. Given a forest F = (V, E) and path partition PF . For a node u ∈ V , let
B(u) denote the block of u. Define EP

F ⊆ P 2
F such that for all u, v ∈ V

(B(u), B(v)) ∈ EP
F if and only if (∃w ∈ B(u))(∃w′ ∈ B(v))(w, w′) ∈ E

The pair (PF , EP
F ) also forms a forest, which we call the partition forest of PF .

We prove the lemma using the accounting method (see [2]). At each stage s,
we define the credit function ρs : PFs → N. For block B ∈ PF0 , let ρ0(B) be the
number of children of B in PF0 . At each stage s + 1, the credit function ρs+1 is
obtained from ρs with the following requirements:

– We create for each execution of InsertEdge(u, v) and ChangeState(u) an
amortized cost of 1. This cost contributes towards the credit ρs(B(u)). Note
that we can create amortized cost at most 2 at each stage.

– For each iteration of ChangeState(u), we take out 1 from ρs(B) of some
B ∈ PFs .

Let ts be the total number of iterations ran at stage s. Our goal is to define
ρs in such a way that for any s > 0,

∑

B∈PFs

ρs(B) ≤
∑

B∈PFs−1

ρs−1(B) + 2− ts

and ρs(B) ≥ 0 for any B ∈ PFs . Note that the existence of such a credit function
ρs implies for any k,

k∑
s=1

ts ≤ 2k ∈ O(k).

We define our desired credit function ρs by preserving, for every stage s, the
following invariant:

(∀B ∈ PFs) ρs(B) = | {B′ ∈ PFs | (B, B′) ∈ EP
Fs
} |.

The detailed procedure for defining ρs is omitted due to space restriction. ut



Theorem 3. There exists a fully dynamic algorithm to solve reachability games
played on trees which supports InsertNode(u, i, j) and DeleteNode(u) in constant
time, and InsertEdge(u, v), DeleteEdge(u, v), SetTarget(u), UnsetTarget(u) and
Query(u) in amortized O(log n)-time where n is the number of nodes in the
forest. The space complexity of the algorithm is O(n).

Proof. By Lemma 9, the update operations have amortized time complexity
O(log n). The splay tree data structures take space O(n) at each stage. ut
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