Skip to main content

Colouring Non-sparse Random Intersection Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5734))

Abstract

An intersection graph of n vertices assumes that each vertex is equipped with a subset of a global label set. Two vertices share an edge when their label sets intersect. Random Intersection Graphs (RIGs) (as defined in [18,32]) consider label sets formed by the following experiment: each vertex, independently and uniformly, examines all the labels (m in total) one by one. Each examination is independent and the vertex succeeds to put the label in her set with probability p. Such graphs nicely capture interactions in networks due to sharing of resources among nodes. We study here the problem of efficiently coloring (and of finding upper bounds to the chromatic number) of RIGs. We concentrate in a range of parameters not examined in the literature, namely: (a) m = n α for α less than 1 (in this range, RIGs differ substantially from the Erdös-Renyi random graphs) and (b) the selection probability p is quite high (e.g. at least \(\frac{\ln^2{n}}{m}\) in our algorithm) and disallows direct greedy colouring methods.

We manage to get the following results:

  • For the case mp ≤ βln n, for any constant β < 1 − α, we prove that np colours are enough to colour most of the vertices of the graph with high probability (whp). This means that even for quite dense graphs, using the same number of colours as those needed to properly colour the clique induced by any label suffices to colour almost all of the vertices of the graph. Note also that this range of values of m, p is quite wider than the one studied in [4].

  • We propose and analyze an algorithm CliqueColour for finding a proper colouring of a random instance of \({\cal G}_{n, m, p}\), for any mp ≥ ln 2 n. The algorithm uses information of the label sets assigned to the vertices of G n, m, p and runs in \(O\left(\frac{n^2mp^2}{\ln{n}} \right)\) time, which is polynomial in n and m. We also show by a reduction to the uniform random intersection graphs model that the number of colours required by the algorithm are of the correct order of magnitude with the actual chromatic number of G n, m, p .

  • We finally compare the problem of finding a proper colouring for G n, m, p to that of colouring hypergraphs so that no edge is monochromatic. We show how one can find in polynomial time a k-colouring of the vertices of G n, m, p , for any integer k, such that no clique induced by only one label in G n, m, p is monochromatic.

Our techniques are novel and try to exploit as much as possible the hidden structure of random intersection graphs in this interesting range.

This work was partially supported by the ICT Programme of the European Union under contract number ICT-2008-215270 (FRONTS). Also supported by Research Training Group GK-693 of the Paderborn Institute for Scientific Computation (PaSCo).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Spencer, J.: “The Probabilistic Method”. John Wiley & Sons, Inc., Chichester (2000)

    Book  MATH  Google Scholar 

  2. Alon, N., Kahale, N.: A spectral technique for colouring random 3-colourable graphs. In: The Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pp. 346–355 (1994)

    Google Scholar 

  3. Beck, J.: An Algorithmic Approach to the Lovász Local Lemma. Random Structures & Algorithms 2, 343–365 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Behrisch, M., Taraz, A., Ueckerdt, M.: Colouring random intersection graphs and complex networks. SIAM J. Discrete Math. 23(1), 288–299 (2009)

    Article  MATH  Google Scholar 

  5. Bollobás, B.: “The chromatic number of random graphs”. Combinatorica 8(1), 49–55 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Busch, C., Magdon-Ismail, M., Sivrikaya, F., Yener, B.: Contention-free MAC Protocols for Asynchronous Wireless Sensor Networks. Distributed Computing 21(1), 23–42 (2008)

    Article  MATH  Google Scholar 

  7. Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Communication in Wireless Networks with Directional Antennas. In: The Proceedings of the 20th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2008), pp. 344–351 (2008)

    Google Scholar 

  8. Deijfen, M., Kets, W.: Random Intersection Graphs With Tunable Degree Distribution and Clustering. CentER Discussion Paper Series No. 2007-08, http://ssrn.com/abstract=962359

  9. Diaz, J., Lotker, Z., Serna, M.J.: The Distant-2 Chromatic Number of Random Proximity and Random Geometric Graphs. Inf. Process. Lett. 106(4), 144–148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.C.: Secure Communication over Radio Channels. In: The ACM Symposium on Principles of Distributed Computing (PODC), pp. 105–114 (2008)

    Google Scholar 

  11. Dolev, S., Lahiani, L., Yung, M.: secret swarm unit reactive k −Secret sharing. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 123–137. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Efthymiou, C., Spirakis, P.G.: On the existence of hamiltonian cycles in random intersection graphs. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 690–701. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Erdös, P., Selfridge, J.: On a Combinatorial Game. J. Combinatorial Th (A) 14, 298–301 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fill, J.A., Sheinerman, E.R., Singer-Cohen, K.B.: Random Intersection Graphs when m = ω(n): An Equivalence Theorem Relating the Evolution of the G(n, m, p) and G(n, p) models, http://citeseer.nj.nec.com/fill98random.html

  15. Frieze, A., Mubayi, D.: Colouring Simple Hypergraphs, arXiv:0901.3699v1 (2008)

    Google Scholar 

  16. Frieze, A.: On the Independence Number of Random Graphs. Disc. Math. 81, 171–175 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Godehardt, E., Jaworski, J.: Two models of Random Intersection Graphs for Classification. In: Opitz, O., Schwaiger, M. (eds.) Studies in Classification, Data Analysis and Knowledge Organization, pp. 67–82. Springer, Heidelberg (2002)

    Google Scholar 

  18. Karoński, M., Scheinerman, E.R., Singer-Cohen, K.B.: On Random Intersection Graphs: The Subgraph Problem. Combinatorics, Probability and Computing Journal 8, 131–159 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kothapalli, K., Scheideler, C., Schindelhauer, C., Onus, M.: Distributed Colouring in \(O(\sqrt{\log{n}})\) bits. In: The 20th IEEE International Parallel & Distributed Processing Symposium (IPDPS) (2006)

    Google Scholar 

  20. Leone, P., Moraru, L., Powell, O., Rolim, J.D.P.: Localization algorithm for wireless ad-hoc sensor networks with traffic overhead minimization by emission inhibition. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2006. LNCS, vol. 4240, pp. 119–129. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Łuczak, T.: The chromatic number of random graphs. Combinatorica 11(1), 45–54 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  23. Molloy, M., Reed, B.: Colouring Graphs whose Chromatic Number is almost their Maximum Degree. In: The Proceedings of Latin American Theoretical Informatics, pp. 216–225 (1998)

    Google Scholar 

  24. Molloy, M., Reed, B.: Further Algorithmic Aspects of the Local Lemma. In: The Proceedings of the 30th ACM Symposium on Theory of Computing, pp. 524–529 (1998)

    Google Scholar 

  25. Nikoletseas, S., Raptopoulos, C., Spirakis, P.: Colouring Non-Sparse Random Intersection Graphs, http://wwwhni.uni-paderborn.de/alg/mitarbeiter/raptopox/

  26. Nikoletseas, S.E., Raptopoulos, C., Spirakis, P.G.: The existence and efficient construction of large independent sets in general random intersection graphs. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1029–1040. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Nikoletseas, S., Raptopoulos, C., Spirakis, P.: Large Independent Sets in General Random Intersection Graphs. Theoretical Computer Science (TCS) Journal, Special Issue on Global Computing (2008)

    Google Scholar 

  28. Nikoletseas, S., Raptopoulos, C., Spirakis, P.: On the Independence Number and Hamiltonicity of Uniform Random Intersection Graphs. In: accepted in the 23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS) (2009)

    Google Scholar 

  29. Raptopoulos, C., Spirakis, P.G.: Simple and efficient greedy algorithms for hamilton cycles in random intersection graphs. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 493–504. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  30. Ross, S.M.: “Stochastic Processes”, 2nd edn. John Wiley & Sons, Inc., Chichester (2000)

    Google Scholar 

  31. Schindelhauer, C., Voss, K.: Oblivious Parallel Probabilistic Channel Utilization without Control Channels. In: The 20th IEEE International Parallel & Distributed Processing Symposium (IPDPS) (2006)

    Google Scholar 

  32. Singer-Cohen, K.B.: Random Intersection Graphs, PhD thesis. John Hopkins University (1995)

    Google Scholar 

  33. Stark, D.: The Vertex Degree Distribution of Random Intersection Graphs. Random Structures & Algorithms 24(3), 249–258 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nikoletseas, S., Raptopoulos, C., Spirakis, P.G. (2009). Colouring Non-sparse Random Intersection Graphs. In: Královič, R., Niwiński, D. (eds) Mathematical Foundations of Computer Science 2009. MFCS 2009. Lecture Notes in Computer Science, vol 5734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03816-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03816-7_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03815-0

  • Online ISBN: 978-3-642-03816-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics