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Abstract. In a Proof-Carrying Code scenario, certificate generation re-
mains a challenging problem. Typically, it is implemented as a compiler
module that targets low-level executable code. Hence, since automatic,
the properties under verification are limited to very simple safety policies.
Discharging verification conditions automatically for arbitrarily complex
properties is unfeasible. Therefore, it requires the support of tool-based
interactive verification, which commonly targets high-level structured
code. To connect source code verification and compiled code certification
we have proposed a technique to build, from a certificate of the source
program, a certificate for the result of its compilation. In this tutorial, we
illustrate the principles of this technique, certificate translation, in the
context of a certified quicksort algorithm. For each transformation step
that defines the compiler, we explain the corresponding transformation
of the certificate.

1 Introduction

Certificate translation [2, 4] is a general method that reconciles interactive ver-
ification of source programs with automated verification of compiled programs,
using certificates as a means to convey evidence about program correctness. More
precisely, certificate translation offers the possibility of generating certificates for
complex properties of compiled programs—with the potential cost of interactive
verification of source programs—and thus provides an alternative to certifying
compilation, which is used in the context of Proof-Carrying Code [19] to generate
automatically certificates that compiled programs respect simple policies.

Certificate translation primarily focuses on the interplay between compila-
tion and program correctness: given a compiler T.U from a source language S to a
target language T , and a compiler T.Uspec from a specification language SpecS for
source programs to a specification language SpecT for target programs, certifi-
cate translation is concerned with the following two intimately related questions:

1. for every program p and specification φ, does the correctness of p w.r.t. φ
entail the correctness of TpU w.r.t. TφUspec?

2. for every program p and specification φ, is there a method to transform
evidence of the correctness of p w.r.t. φ into evidence TpU w.r.t. TφUspec?
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Answering these questions requires making precise the notion of program cor-
rectness, and to a lesser extent on the notion of evidence. To ensure compatibility
with typical Proof-Carrying Code architectures, we base our infrastructure for
verifying program correctness on generators of proof obligations (a.k.a. verifica-
tion conditions) from annotated programs. On the other hand, we do not need to
commit to a particular format for certificates, and assume instead the existence
of a binary judgment c :` φ stating that c is a certificate for φ, and of a set of
operations for making some basic manipulations on certificates.

Thus, a program p satisfies a specification φ iff the set of proof obligations
PO(p, φ) = {φ1, . . . , φn} is provable, and evidence that p satisfies φ takes the
form of a set of certificates Cert(p, φ) = {c1, . . . , cn} such that c1 :` φ1 and . . .
and cn :` φn. Then, the problem tackled by certificate translation is to find a
function T Ucert : ∀p φ, Cert(p, φ) → Cert(TpU,TφUspec), i.e., a procedure that
transforms a set certificates for the source program into a set of certificates for
the result of the compilation.

The purpose of this tutorial is to illustrate the principles and effects of cer-
tificate translation on the example of the quicksort function. We start from an in-
teractive proof of the quicksort function in a small imperative language with pro-
cedures and arrays; the code is given in Figure 1. We assume that the quicksort
function is certified to satisfy the specification

{Pre : 0 ≤ start ≤ end ≤|vec|}
quicksort(start, end)

{Post : ∀k. start ≤ k < end⇒ vec[k] ≤ vec[k + 1]}
where vec is a global array variable. That is, if the values held by the parameters
start and end are within the bounds of the array vec, after the execution of
quicksort, vec holds increasing values in the range [start, end].

The certificate transformation process follows the overall structure of a clas-
sical compiler, which operates on the input program in successive and indepen-
dent transformation steps. For each program compilation step, we transform the
specification and the certificates accordingly. An overall scheme of the compiler
under consideration can be found in Figure 2, together with the corresponding
certificate translation steps. In these transformation steps, the code is gradu-
ally transformed towards its final executable representation. First, the high-level
structured code is transformed to a low-level intermediate program represen-
tation (RTL). In this intermediate representation, the compiler proceeds with
successive optimizing transformations. The final step transforms the intermedi-
ate representation into stack-based code.

Outline. Section 2 provides an informal review of the principles of Proof Car-
rying Code. In Section 3, we define the source programming language and a
corresponding verification framework. In Section 4, we describe the intermediate
RTL program representation. In this setting, a verification framework for RTL
is defined, and a short verification example is provided. In Section 5, we deal
with certificate transformation along compiler phases, including non-optimizing
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quicksort(start, end){
if (start < end) {
p = partition(start, end);
quicksort(start, p);
quicksort(p+1, end);
}
return;

}

swap(i, j){
t = vec[i];
vec[i] = vec[j];
vec[j] = t;
return;

}

partition(start, end){
pivot = vec[start];
i = start;
j = end;
while (i < j) {

while (vec[i] ≤ pivot ∧ i < j)
i++;

while(pivot < vec[j] ∧ i < j)
j--;

if (i < j) swap(i, j);
}
swap(start, i-1);
return i-1;
}

Fig. 1. Quicksort Algorithm
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compilation, loop-induction strength reduction, dead variable elimination loop
unrolling, and redundant conditional elimination. In Section 5.8, we show preser-
vation of proof obligations in the generation of the final stack-based code. We
conclude in Section 6.

2 A brief and informal review of Proof Carrying Code

Proof Carrying Code (PCC) [16] provides a general framework for protecting
end-users against malicious mobile code. PCC promotes trust via verifiable ev-
idence, and requires mobile code being distributed together with certificates
which attest its adherence to the end-user policies. Certificates help dispensing
code consumers from the high cost of proving that the code respects their poli-
cies; instead, code consumers merely have to check that the incoming certificate
is a correct proof, a process that can be fully automated.

A PCC infrastructure is composed of several elements. Figure 2 shows a
scheme of the client side of a PCC architecture. We briefly describe each com-
ponent:

– A formal logic in which the expected behavior of the program is specified.
Commonly, PCC adopts first-order or higher-order logic to both specify and
verify the program.

– A verification condition generator that automatically produces a set of proof
obligations for the code and its specification. The validity of the generated
proof obligations ensures that the code complies with its specification.

– A formal representation of proofs, a.k.a. certificates, that provides efficiently
verifiable evidence of the validity of proof obligations.

– A proof checker that verifies that the certificate does indeed establish the
proof obligations.

Proof Carrying Code benefits from a number of distinctive features that make
it a very appropriate basis for security architectures for global computers, and
in particular for addressing the security issues highlighted above.

Proof Carrying Code is based on verification rather than trust. Indeed, Proof
Carrying Code focuses on the behavior of downloaded components rather
than on its origins. In particular, it does not require the existence of a global
trust infrastructure (although it can be used in combination with crypto-
graphic based trust infrastructures), for a further discussion see [1].

Proof Carrying Code is transparent for end users. While Proof Carrying Code
builds upon ideas from program verification, which in its full generality re-
quires interactive proofs, the PCC architecture does not require the code con-
sumers to build proofs. Rather, it requires code consumers to check proofs,
which is fully automatic.

Proof Carrying Code is general. The only restriction on the security policy is
that it should be expressible in the formal logic, which is often very expres-
sive.
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Proof Carrying Code is flexible and configurable. The same architecture can be
used for different policies. In particular, the VCGen and the proof checker
are independent of the policy, while the certificate generation can in principle
be adapted to different safety properties.

Proof Carrying Code does not sacrifice performance to security. PCC technol-
ogy advocates for static verification, and therefore does not incur in the
overhead cost inherent to dynamic techniques based on monitoring.

Compiled 
Program

Code Producer

Compiler

VCGen

Prover

Verification 
Conditions

Source 
Program

Certificates

Code Consumer

Execution

VCGen

Proof 
Checker

Verification 
Conditions

OK

Fig. 3. PCC Scheme - Code Client Side.

3 Tool Based Source Code Verification

3.1 Programming Language Setting

In this section, we define the high-level imperative language for writing source
programs. A source program is defined as a collection of procedures, each of
them consisting of its formal parameters and the statement that defines its body.
Expressions and statements are described in Figure 4. V and A represent the
set of scalar and array variables, respectively. Most of the constructions in the
grammar of the figure are standard, ⊕ stands for an integer operation and a[e]
stands for the integer value stored in the array a at position e. Statements include
assignments to array structures, a[e]:=e, and procedure invocations of the form
x:=f(e). The statement if b then c stands for if b then c else skip.

For simplicity, we assume source programs to be well-formed, in the sense
that every execution path reaches a return statement. The following definition
formalizes this requirement:
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integer expressions e ::= e ⊕ e | n | x | a[e]
boolean expressions b ::= true | false | e on e | b ∧ b | . . .

statements c ::= skip | x:=e | a[e]:=e | c; c | return e
| f(e) | x:=f(e)
| if b then c else c | while b do c

Fig. 4. Source Programs

Definition 1. We define well-formed programs as the minimum set of state-
ments wf that satisfy the following conditions:

wf(return)
wf(c2)⇒ wf(c1; c2)
wf(c1) ∧ wf(c2)⇒ wf(if b then c1 else c2)
wf(c)⇒ wf(while b do c)

In this chapter, we consider scalar and array variables as allocated in separate
stores. In particular, scalar variables are local to the execution of a procedure
body, and array variables are global to the whole program. Let ΣV and ΣA
represent the set of partial functions from program variables to integer values
V → Z and from array variables to array values A → (N ⇀ Z), respectively. We
denote with Σ the set of elements in ΣV ×ΣA.

The semantics of the programming language described above is standard.
It is defined in Figure 5 by a relation ⇒⊆ (Prog × Σ) × (Σ + ΣF ), where ΣF
denotes the set of final states composed of a final value and a final execution
state: ΣF = Z×ΣA. In the figure, σ represents an element in Σ, and σV and σA
the first and second projection of the pair σ. For a scalar state σV ∈ ΣV , scalar
variable x and n ∈ Z, [σV : x 7→ n] stands for the function that maps x to n,
and any other variable y to σV y. For an array state σA ∈ ΣA, array variable a
and b ∈ N → Z, [σA : a 7→ b] stands for the function that maps a to b, and any
other array variable a′ to σA a′. The expression [x 7→ n] denotes the function
that maps x to n and is undefined for every other variable.

For the integer and boolean expressions e and b, JeKσ and JbKσ stands for their
standard interpretation in the state σ. In the presence of out-of-bounds array
accesses, the interpretation function is undefined, and the program execution
gets stuck. We denote xf the formal parameter of a procedure f . Since array
variables are considered global to the whole program, xf is necessarily a scalar
variable.

3.2 Verification Setting

Logical verification techniques have been widely studied and used from the early
70’s, pioneered by the work of Floyd [11] and Hoare [12]. There is currently a va-
riety of program verification tools, most of them focused on high-level imperative
programming languages [7, 6, 10, 15].
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〈skip, σ〉 ⇒ σ

JeKσ = n ∈ Z
〈x:=e, σ〉 ⇒ [σ : x 7→ JeKσ]

0 ≤ Je1Kσ <|a|
〈a[e1]:=e2, σ〉 ⇒ [σ : a 7→ [a : Je1Kσ 7→ Je2Kσ]]

〈c1, σ〉 ⇒ σ′ 〈c2, σ′〉 ⇒ s

〈c1; c2, σ〉 ⇒ s

〈c1, σ〉 ⇒ s s ∈ ΣF
〈c1; c2, σ〉 ⇒ s

JeKσ = n ∈ Z
〈return e, σ〉 ⇒ 〈n, σA〉

JeKσ = n ∈ Z c body of f 〈c, 〈[xf 7→ n], σA〉〉 ⇒ 〈m,σ′A〉
〈x := f(e), 〈σV , σA〉〉 ⇒ 〈[σV : x 7→ m], σ′A〉

〈c; while b do c, σ〉 ⇒ s

〈while b do c, σ〉 ⇒ s
JbKσ 〈while b do c, σ〉 ⇒ σ

J¬bKσ

〈c1, σ〉 ⇒ s

〈if b then c1 else c2, σ〉 ⇒ s
JbKσ

〈c2, σ〉 ⇒ s

〈if b then c1 else c2, σ〉 ⇒ s
J¬bKσ

Fig. 5. Source Program Semantics

One distinctive goal of tool based verification is automating the process as
much as possible. In general, a verification tool extracts from a program and its
logical specification a set of first-order formulae, namely the verification condi-
tions, that must be discharged in order to prove the program correct. Requiring
the verification process to be automatic makes weakest precondition based verifi-
cation preferable to using Hoare-clauses. In addition, such verification tools feed
an automatic theorem prover with the verification conditions. Those verification
conditions that fail to be automatically discharged must be proved interactively
by the user of the verification tool.

In the rest of this section, we formalize a weakest-precondition based verifi-
cation method for simple imperative programs, we prove the method sound with
respect to the program semantics defined above, and we show the extraction of
verification conditions in the example of the quicksort algorithm.

Specification language. As a specification language we use first-order for-
mulae as defined in Figure 6. Most of the syntactic constructions are standard,
except perhaps for the special purpose variable res that refers to the value re-
turned by a procedure, and the scalar and array variables x? and a? that refer
to the initial value of the scalar and array variables x and a, respectively. We
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let V? and A? stand for the sets of variables {x? | x ∈ V} and {x? | x ∈ A},
respectively.

ē ::= n | x | x? | a[ē] | a?[ē] | ē⊕ ē | res
ϕ ::= true | false | ē on ē | ¬ϕ | ϕ ∧ ϕ | ϕ⇒ ϕ | ∀x. ϕ

Fig. 6. Specification Language

The validity of an assertion in a particular execution state σ ∈ Σ is standard.
In particular, an assertion that contains the expression a[e] is invalid in those
execution states in which a[e] is not well defined, i.e. in those states in which e
is out of the bounds of the array a. We assume a relation |= to denote that an
assertion ϕ ∈ A is valid when interpreted in the state σ ∈ Σ, written |= σ : ϕ.

The specification of a procedure consists of a tuple (Pre, annot,Post), where
Pre and Post specify the procedure pre and postcondition. The verification set-
ting only considers partial correctness, i.e., it only ensures the correctness of
terminating executions. The partial function annot : L⇀ A maps any program
loop at label k to the corresponding loop invariant annot(k). Some restrictions
apply to the assertions Pre and Post. Any array variable may appear in the as-
sertion Pre, but the only scalar variables that appear in Pre are the procedure
arguments. Similarly, Post can refer to the current and initial value of any array
variable, the special return variable res, and the initial values of the procedure
arguments. The invariants specified by the partial function annot can refer to the
initial and current value of any scalar and array variable, but not to the variable
res.

For notational convenience, we associate labels k ∈ L to loop statements,
denoted whilek b do c. In order to be able to extract verification conditions
automatically, we require procedure specifications to annotate every program
loop, as stated in the following definition.

Definition 2 (Well-annotated Source Program). A procedure p with spec-
ification (Pre, annot,Post) is well-annotated if k ∈ dom(annot), for every loop
statement whilek b do c in P . A program is well-annotated if all its procedures
are well annotated.

In the rest of the chapter, we only consider well-annotated programs.
A VCgen for source programs is defined by the set of proof obligations PO,

in terms of the function WP, as shown in Figure 7. In the figure, the expression
φ[~V/~V ? ] represents the result of substituting in φ every array and scalar variable
x? in V? or A? by x.

One desirable property of a verification framework is its soundness with re-
spect to the program semantics. The following lemma formalizes this result:
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WP(skip, φ) = 〈φ, ∅〉 WP(return e, φ) = 〈Post[e/res], ∅〉

WP(x:=e, φ) = 〈φ[e/x], ∅〉

WP(a[e1]:=e2, φ) = 〈φ[[a:e1 7→e2]/a], ∅〉

Φ = Pref [e/xf ] ∧ ∀res, V ′. Postf [V
′,V/V,V ? ][e/xf

? ]⇒ φ[V
′
/V ][res/x]

V array variables modified by f

WP(x:=f(e), φ) = 〈Φ, ∅〉

WP(c1, φ) = 〈φ1, θ1〉 WP(c2, φ) = 〈φ2, θ2〉
WP(if b then c1 else c2, φ) = 〈b⇒ φ1 ∧ ¬b⇒ φ2, θ1 ∪ θ2〉

WP(c, annot(k)) = 〈φ1, θ〉 Φ
.
= annot(k)⇒ (b⇒ φ1) ∧ (¬b⇒ φ)

WP(whilek b do c, φ) = 〈annot(k), {Φ} ∪ θ〉

WP(c1, φ2) = 〈φ1, θ1〉 WP(c2, φ) = 〈φ2, θ2〉
WP(c1; c2, φ) = 〈φ1, θ1 ∪ θ2〉

〈φ, θ〉 = WP(c,Post) c the body of p

PO(p)
.
= {Pre⇒ φ[

~V/~V ? ]} ∪ θ

Fig. 7. Source Code VCgen Rules

Lemma 1 (Source Code VCGen Soundness). Let the statement c be the
body of the procedure p with specification (Pre, annot,Post). Let σ represent an
initial state that satisfies |= σ : Pre, and that every proof obligation in PO(p) is
valid. Then, every reachable final state satisfies the assertion Post. Formally, if
〈c, σ〉 ⇒ 〈n, σ′A〉, then |= 〈[res 7→ n], σ′A〉 : Post.

Example 1. To illustrate a verification process of a simple algorithm, consider
the procedure partition shown in Figure 8. Figure 9, provides the specifications
for the running example, including the procedures quicksort and swap. Every
procedure is specified with a pre and postcondition. A partial function annot is
defined only for the procedure partition, since it is the only one that contains
loop statements.

Consider for instance the procedure swap. Since it contains no loops, the
VCgen returns a single proof obligation. From the definition of the WP function,
the proof obligation we obtain is:

inBound(i) ∧ inBound(j)⇒ swapped(i, j)[[vec:j7→t]/vec][[vec:i7→vec[j]]/vec][vec[i]/t]
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After computing the set of proof obligations for the whole program, one can
see that they are all valid formulae. In the rest of this paper we assume that a
certificate is provided for each of these proof obligations.

partition(start, end){
pivot = vec[start];
i = start;
j = end;

while[la] (i < j) {
while[lb] (vec[i] ≤ pivot ∧ i < j)
i++;

while[lc](pivot < vec[j] ∧ i < j)
j--;

if (i < j) swap(i, j);
}
swap(start, i-1);
return i-1;

}

Fig. 8. Quicksort Algorithm - Procedure partition

4 RTL Verification and Certification

4.1 Programming Language Setting

In this section, we provide a definition of an intermediate RTL program repre-
sentation. Commonly, most of the compiler optimizations are applied after the
program is transformed into this RTL representation.

We define the body of an RTL procedure as a directed graph, where nodes
represent program points and edges represent the execution of a statement or a
conditional jump. The following definition states this formally.

Definition 3. The body of an RTL procedure is defined by a tuple 〈N , E , G〉,
where N ⊆ L is a subset of labels that represents the program points, the relation
E ⊆ N ×N defines the execution flow, and G : E → (Instr + B) maps every edge
to instructions or boolean expressions, defined in Figure 10. An RTL program P
is defined as a collection of RTL procedures.

As can be seen in Figure 10, boolean conditions are defined as integer com-
parisons between two variables. Similarly, instructions involve at most one array
access or two program variables. In the figure, e represents an integer expres-
sion (one array access or an arithmetic operation between at most two scalar
variables).
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Pre Post

quicksort subRange(start, end) sorted(start, end)

swap inBound(i) ∧ inBound(j) swapped(i, j)

partition subRange(start, end) partitioned(res, start, end)

annot(la)
.
= start ≤ i ≤ j <|vec| ∧subRange(start, end)∧

smaller(pivot, start, i) ∧ greater(pivot, j, end)∧
pivot = vec[start] ∧ inBound(i) ∧ inBound(j)

annot(lb)
.
= annot(la)

annot(lc)
.
= annot(la) ∧ (pivot < vec[i] ∨ i ≥ j)

smaller(x, i, j)
.
= ∀k ∈ N. (i ≤ k < j ⇒ vec[k] ≤ x)

greater(x, i, j)
.
= ∀k ∈ N. (i ≤ k < j ⇒ x < vec[k])

partitioned(x, i, j)
.
= ∀k ∈ N. (i ≤ k ≤ x⇒ vec[k] ≤ vec[x])∧

(x < k < j ⇒ vec[x] < vec[k])
inBound(i)

.
= 0 ≤ i <|vec|

subRange(i, j)
.
= 0 ≤ i ≤ j ≤|vec|

swapped(i, j)
.
= vec[i] = vec?[j] ∧ vec[j] = vec?[i]∧
∀k ∈ N. (i 6= k 6= j ⇒ vec[k] = vec?[k])

sorted(i, j)
.
= ∀k, k′. (i ≤ k ≤ k′ < j ⇒ vec[k] ≤ vec[k′])

Fig. 9. Quicksort Algorithm Specification

For every l ∈ N , we denote succ(l) the set of successors of node l, i.e.,
{l′ ∈ N | 〈l, l′〉 ∈ E}.

In the rest of the chapter, we use the subscript p to make explicit that the
representation 〈Np, Ep, Gp〉 belongs to a procedure p. We omit, however, the
subscript p when it is clear from the context.

In order to define the semantics of RTL programs, we need to define a notion
of well-formed code representation.

Definition 4 (Well-formed Program). A procedure representation 〈N , E , G〉
is well-formed if

– lin, lout ∈ L, representing the initial and final label, respectively, are in N .
Furthermore, {l | lin ∈ succ(l)} = succ(lout) = ∅.

– The graph is closed. Formally, for every l ∈ N , we have that succ(l) ⊆ N .

A program is well-formed if all its procedures are well-formed.

In the rest of the chapter we consider only well-formed RTL programs. Fur-
thermore, to ensure determinism, we assume that for every node l ∈ N , only
one of the following situations arise:

– there are exactly two outgoing edges 〈l, lt〉 and 〈l, lf 〉, and they are mapped
by G to boolean conditions such that G[〈l, lf 〉] = ¬G[〈l, lf 〉], or
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(B) b ::= v1 on v2 | ¬(v1 on v2)
(expressions) e ::= n | v | n⊕ v | v ⊕ v | a[v]

(Instr) ins ::= nop | v := e | a[v] := v
| invoke f (~x) | return v

Fig. 10. RTL Instructions

– there is a single outgoing edge 〈l, l′〉, such that G[〈l, l′〉] ∈ Instr.

The RTL semantics and verification setting consider non-deterministic RTL pro-
grams. However, we can restrict our attention to deterministic RTL programs,
since the conditions above are satisfied by the result of compiling a high-level
program into the RTL representation.

Let Σ and ΣF the set of intermediate and final states defined as in previous
section. The semantics of well-formed RTL programs is defined by a relation
 p: L ×Σ → ΣF , where p denotes the procedure under execution.

Gp[〈l, lout〉] = return v

〈l, σ〉 p 〈JvKσ, σA〉
Gp[〈l, l′〉] = nop 〈l′, σ〉 p s s ∈ ΣF

〈l, σ〉 p s

Gp[〈l, l′〉] = v := invoke p′ x 〈lin, 〈[xp′ 7→ JxKσ], σA〉〉 p′ 〈n, 〈σ′V , σ′A〉〉
〈l′, 〈[σV : v 7→ n], σ′A〉 p s s ∈ ΣF

〈l, σ〉 p s

Gp[〈l, l′〉] = b b ∈ {(v1 on v2),¬(v1 on v2)} JbKσ 〈l′, σ〉 p s s ∈ ΣF
〈l, σ〉 p s

Gp[〈l, l′〉] = v := e JeKσ = n ∈ Z 〈l′, 〈[σV : v 7→ n], σA〉〉 p s s ∈ ΣF
〈l, 〈σV , σA〉〉 p s

Gp[〈l, l′〉] = a[v1] := v2
0 ≤ Jv1Kσ <|a| 〈l′, 〈σV , [σA : a 7→ [a : Jv1Kσ 7→ Jv2Kσ]]〉〉 p s s ∈ ΣF

〈l, 〈σV , σA〉〉 p s

Fig. 11. Semantics of RTL Programs

Example 2. As an example of the intermediate program representation, consider
the RTL graph of the procedure partition shown in Figure 15.
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4.2 Verification Setting

Specification language. A specification of an RTL procedure is defined by a
tuple (Pre, annot,Post), where annot maps program labels in L to intermediate
specifications. The first-order formulae that define the specification follow the
same restrictions as in previous section.

As before, we require every cycle of the control flow graph of the program
to be annotated, so that a full program annotation can be generated from the
partial annotation annot.

Definition 5 (Well-annotated RTL Program). A procedure with specifica-
tion (Pre, annot,Post) is well-annotated if every loop in the procedure body con-
tains at least one annotation. That is, for every cyclic path 〈l1, l2〉...〈lk, l1〉 we
require {l1, . . . , lk} ∩ dom(annot) 6= ∅. A program is well-annotated if all its pro-
cedures are well-annotated.

Given a cycle of the directed graph, a first-order formulae annotating one of
its labels can be interpreted as a loop invariant. In fact, as we state later, the
result of compiling a well-annotated program is a well-annotated RTL program,
in which the original loop invariants annotate every cycle of the control-flow
graph.

Notice that the definition of well-annotated code provides an induction prin-
ciple on the set of labels, with dom(annot) as the set of base cases and E ∩ (L×
(L \ dom(annot))) an order relation with no infinite chains.

Example 3. Let (Pre, annot,Post) be the specification for the code in Figure 15.
Due to the presence of a cycle in the graph, at least one of the loop labels must be
annotated. For instance, as in the source program, one may define the invariant
at the loop header l as annot(l) .= y ≥ 1 ∧ c ∗ xy = x?y

?

. One can see that this
specification is sufficient for the program to be well-annotated.

Given a well-annotated RTL program, a VCgen is defined by extracting a set
of proof obligations from each well-annotated procedure p:

po(p) = {Prep ⇒ wpp(lin)[V/V ? ]}∪
{annotp(l)⇒

∧
l′∈succ(l) wpi(Gp[〈l, l′〉],wpp(l′)) | l ∈ dom(annotp)}

where the predicate transformers wpi and wpp are defined in Figure 12. In the
figure, a represents every array variable that may get modified by p. The assertion
ϕ[V

?

/V ] stands for the substitution in ϕ of every array variable x? ∈ V ? by x ∈ V .

Lemma 2 (VCgen Soundness). Consider a well-annotated RTL program P .
Assume that for every procedure p of P , po(p) is a valid set of proof obligations.
Then, for every procedure p, if 〈lin, σ〉 p 〈n, σ′〉 then |= [σ′ : res 7→ n] : Post.

4.3 Certificate Infrastructure

In general, a program certificate can be defined as a mathematical object that
provides efficiently verifiable evidence of the validity of logical formulae. There
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wpi(nop, ϕ) = ϕ

wpi(v := e, ϕ) = ϕ[e/v]

wpi(a[v1] := v2, ϕ) = ϕ[[a:v1 7→v2]/a]

wpi(v1 on v2, ϕ) = (v1 on v2)⇒ ϕ

wpi(¬(v1 on v2), ϕ) = ¬(v1 on v2)⇒ ϕ

wpi(invoke f x, ϕ) = Pref [x/xf ]∧
∀res,a′Postf [a

′,a/a,a? ][xf
?

/x]⇒ ϕ[a
′
/a]

wpi(return v, ϕ) = ϕ[v/res]

wpp(l) =

8<:
Postp if l = lout

annot(l) if l ∈ dom(annot)V
l′∈succ(l) wpi(Gp[〈l, l′〉],wpp(l

′)) otherwise

Fig. 12. RTL VCgen rules

are several formal representation of certificates, depending on competing criteria
such as ease of generation and transformation, ease of checking, and the size of
certificates. One notion of certificate representation are proof scripts, a sequence
of logical deduction statements in the language of a proof-assistant. More com-
monly, certificates are represented as terms of the λ-calculus, as suggested by
the Curry-Howard isomorphism [13].

The development of the certificate transformations depends strongly on the
representation of certificates. To provide a generic presentation of the proof
transformations, we prefer to abstract from the actual implementation of cer-
tificates. Instead, we assume a set of operations over proofs, formalized by an
abstract proof algebra, shown in Figure 13.

For instance, an actual implementation of these operations in a λ-term rep-
resentation of certificates would define the intro∧ operation of the proof algebra
as the λ-term λf. λg. λa. 〈fa, ga〉.

5 Certificate Translation

In general, verification conditions are not preserved by program transformations.
Consequently, a priori, the certificates that are used to attest the verification of
a source program cannot be reused to certify the transformed program. Fur-
thermore, the original specification can become unprovable. In most cases, the
transformation of the certificate is closely dependent on the first step of the op-
timization, in which the compiler gathers static information about the execution
of the program. Indeed, in order to preserve the soundness of the specification,
several optimizations require that invariants are strengthened with the result of
the analysis that justifies the optimization. Intuitively, this comes as a need to



15

introtrue : Γ ` true
axiom A : Γ ` A if A ∈ Γ
ring : Γ ` n1 = n2 if n1 = n2 is a ring equality

intro∧ : Γ ` A→ Γ ` B → Γ ` A ∧B
elim∧,l : Γ ` A ∧B → Γ ` A
elim∧,r : Γ ` A ∧B → Γ ` B
intro⇒ : Γ ;A ` B → Γ ` A⇒ B
elim⇒ : Γ ` A⇒ B → Γ ` A→ Γ ` B
elim= : Γ ` e1 = e2 → Γ ` A[e1/r]→ Γ ` A[e2/r]

weak∆ : Γ ` A→ Γ ;∆ ` A
intro∀ : Γ ` A→ Γ ` ∀r.A if r is not in Γ

elim∀ : Γ ` ∀r.A→ Γ ` A[e/r]

intro∃ : Γ ` A[e1/x]⇒ B[e2/y]→ Γ ` ∃x.A⇒ ∃y.B

Fig. 13. Proof Algebra

propagate, through the invariants, the information returned by the analysis, in
order to eventually enforce the preservation of the original semantics. That is the
case, for instance, of optimizations that simplify the evaluation of expressions,
such as constant propagation, common sub-expression elimination, copy propa-
gation and redundant conditional elimination. In such cases, the transformation
of the original certificates entails representing the result of the analysis in the
underlying verification logic, and generating a certificate for this specification.
A certificate transformation process then integrates this certified analysis result
with the original certificate in order to generate a certificate for the optimized
program. However, it is not always the case that invariants must be strengthened.
Other optimizations, e.g. dead-variable elimination, may require loop invariants
to be weakened.

In this section, we study several standard compiler optimizations, applied
to our particular running example. Even though some optimizations preserve
the verification conditions for our particular example, we give a short expla-
nation of the general technique to transform the certificate. For instance, dead
register elimination does not alter verification conditions and thus no certificate
translation is needed. In other cases, an ad-hoc transformation may seem more
convenient in terms of the final annotation and certificate size, but we prefer to
formulate the transformation of the certificate as generally as possible.

5.1 Non-optimizing Compilation

Description. The first compiler transformation translates the high-level rep-
resentation of the source program into the intermediate RTL representation de-
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fined in Section 4. The compilation of a procedure p with body c is defined as
C(lin,lout)(c), where the function C can be found in Figure 14.

The compilation of expressions, Ce, takes a variable v and an expression
e and returns a subgraph of RTL instructions that computes the value of the
expression e and stores it on the variable v. In the figure, the union of two
graphs 〈N1, E1, G1〉 and 〈N2, E2, G2〉 is defined as 〈N1 ∪ N2, E1 ∪ E2, G1 ∪ G2〉.
The function Cb compiles the evaluation of a boolean expression, and takes two
additional parameters: the labels lt and lf into which the execution must jump
depending on whether the boolean condition is satisfied. The function C takes,
in addition to a source statement c, a label that points to the code that must be
executed after the execution of c.

Cb(l,lt,lf )(v1 on v2) = 〈{l, lt, lf}, {〈l, lt〉, 〈l, lf 〉}, G〉
where: G[〈l, lt〉] = (v1 on v2)

G[〈l, lf 〉] = ¬(v1 on v2)

Cb(l,lt,lf )(e1 on e2) = C(l,l1)(v1 := e1) ∪ C(l1,l2)(v2 := e2) ∪ Cb(l2,lt,lf )(v1 on v2)

Cb(l,lt,lf )(¬b) = Cb(l,lf ,lt)(b)
Cb(l,lt,lf )(b1 ∧ b2) = Cb(l,l′t,lf )(b1) ∪ Cb(l,lt,lf )

C(l,l′)(v := v1 ⊕ v2) = 〈{l, l′}, {〈l, l′〉}, [〈l, l′〉 7→ v := v1 ⊕ v2]〉
C(l,l′)(v := a[v′]) = 〈{l, l′}, {〈l, l′〉}, [〈l, l′〉 7→ v := a[v′]]〉
C(l,l′)(v := e1 ⊕ e2) = C(l,l1)(v1 := e1) ∪ C(l1,l2)(v2 := e2) ∪ C(l2,l′)(v := v1 ⊕ v2)
C(l,l′)(v := a[e]) = C(l,l′′)(v′ := e) ∪ C(l′′,l′)(v := a[v′])

C(l,l′)(if b then c1 else c2) = Cb(l,lt,lf )(b) ∪ C(lt,l′)(c1) ∪ C(lf ,l′)(c2)

C(l,l′)(while b do c) = Cb(l,lt,l′)(b) ∪ C(lt,l)(c)
C(l,l′)(v := invoke p(e1, .., ek)) = C(v1 := e1) ∪ .. ∪ C(vk := ek)∪

C(v := invoke f(v1, .., vk))
C(l,l′)(c1; c2) = C(l,l′′)(c1) ∪ C(l′′,l′)(c2)
C(l,l′)(return e) = Cl,l′′(v := e) ∪ 〈{l′′, l′}, {〈l′′, l′〉}, [〈l′′, l′〉 7→ return v]〉

Fig. 14. Compiler Definition

Lemma 3. A well-formed source program is compiled into a well-formed deter-
ministic RTL program.

After this compilation step, we do not need to modify the original procedure
specifications:

Definition 6 (Compilation of Specifications). Let (Pre, annot,Post) be a
specification for a source level procedure p. We define the specification for the
compilation of the procedure p as (Pre, annot,Post).
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pivot,i,j:=vec[start],start,end

i<j?¬i<j?
vi:=vec[i]

vi ≤ pivot?
¬vi ≤ pivot?

i<j?¬i<j?

i:=i+1

vj:=vec[j]

¬ pivot< vj?

i<j?¬i<j?

j:=j-1

i<j?

¬i<j?
invoke swap(i,j)

i’:=i-1

invoke swap(start,i’)

return i’

pivot< vj?

lin

lout

la lb

lc

Fig. 15. Intermediate Representation of the procedure partition.

Lemma 4. The result of compiling a well-annotated source program is a well-
annotated RTL program.

Transformed running example. The code in Figure 15 is the result of com-
piling the source program procedure partition into an RTL representation.

To simplify the graphical representation, we merge consecutive edges repre-
senting assignments into a single edge. The definition of the semantics and the
computation of the wp function are easily extended to these edges.

Comparison of verification conditions. Consider the first proof obligation
of the source version of the procedure partition, i.e. Pre ⇒ φ[vec/vec? ] where
〈φ, ξ〉 = WP(c,Post), for some ξ, and c is the body of the procedure partition
and Post its postcondition. If we compute the proof obligation we get the fol-
lowing formula:

Pre⇒ start + 1 ≤ start + 1 ≤ end <|vec| ∧
smaller(vec[start], start + 1, start + 1)∧
greater(vec[start], end.end)∧
vec[start] = vec[start]∧
inBound(i) ∧ inBound(j)
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If we unfold the definition of the predicates above we can see that the proof
obligation is valid. Computing the corresponding verification condition at the
compiled RTL version shows that it is syntactically preserved by non-optimizing
compilation.

However, minor transformations of the verification conditions are introduced
when considering a fragment of code that evaluates non-trivial conditional ex-
pressions. Then, certificates must be adapted accordingly. Consider, for instance,
the verification condition related to the loop invariant annot(lb). At source level,
the VCgen returns the proof obligation annot(lb)⇒ (b⇒ annot(lb)[i+1/i])∧(¬b⇒
annot(lc)), where b stands for vec[i] ≤ pivot∧i < j. Computing the verification
condition at label lb of the compiled code returns

annot(lb)⇒ (vec[i] ≤ pivot⇒ i < j⇒ annot(lb)[i+1/i])∧
(vec[i] ≤ pivot⇒ ¬i < j⇒ annot(lc))∧
(¬vec[i] ≤ pivot⇒ annot(lc))

A proof for the verification condition above can be generated from the original
one. In the rest of this section we generalize this result to any certified program.

Transformation of the certificate. The following generic results state that
it is possible to reconstruct the original certificates in the presence of non-
optimizing compilation.

The first lemma states that the application of the predicate transformer wpi at
RTL level decompiles the code that results from the compilation of assignments.

Lemma 5. Let 〈N , E , G〉 be the subgraph that results from computing the as-
signment x := e, i.e. , C(l,l′)(x := e). Then, by structural induction on e, one
can proof that wp(l) is syntactically equal to wp(l′)[e/v].

Then, the following lemma states a correspondence between a boolean con-
dition and the code that results from its compilation.

Lemma 6. Let 〈N , E , G〉 be the subgraph that results from compiling the boolean
condition b, i.e., Cb(l,lt,lf )(b). Then, one can generate a certificate c : (b ⇒
wp(lt)) ∧ (¬b⇒ wp(lf )) ` wp(l).

Proof. The proof follows by structural induction on b, from Lemma 5 and by
using the operations on Figure 13. Consider, for instance, the base case, i.e.
that b is equal to v1 on v2. Then one can show that wp(l) is syntactically equal
to (b ⇒ wp(lt)) ∧ (¬b ⇒ wp(lf )), and thus axiom is a certificate for the goal we
want to prove. Consider now the case b = b1 ∧ b2 and thus 〈N , E , G〉 is equal to
Cbl,l′t,lf (b1)∪Cbl,lt,lf (b2). By inductive hypothesis, we know that we can generate a
certificate for the goals

c1 : (b1 ⇒ wp(l′t)) ∧ (¬b1 ⇒ wp(lf )) ` wp(l)

and
c2 : (b2 ⇒ wp(lt)) ∧ (¬b2 ⇒ wp(lf )) ` wp(l′t)
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Let ϕ stands for the formula

(b1 ∧ b2 ⇒ wp(lt)) ∧ (¬(b1 ∧ b2)⇒ wp(lf ))

The following derivation steps define the certificate c for the goal we want to
prove in this case (we assume ¬ϕ is a syntax sugar for ϕ⇒ false):

p1 =elim∧,r(axiom(b1 ∧ b2)) : ϕ, b1,¬b2, b1 ∧ b2 ` b2
p2 =elim⇒(axiom(¬b2), p1) : ϕ, b1,¬b2, b1 ∧ b2 ` false
p3 =intro⇒(p2) : ϕ, b1,¬b2 ` ¬(b1 ∧ b2)
p4 =axiom(ϕ) : ϕ, b1,¬b2 ` ϕ
p5 =elim∧,l(p4) : ϕ, b1,¬b2 ` ¬(b1 ∧ b2)⇒ wp(lf )
p6 =elim⇒(p3, p5) : ϕ, b1,¬b2 ` wp(lf )
p7 =intro⇒(p6) : ϕ, b1 ` ¬b2 ⇒ wp(lf )
p8 =intro∧(axiom(b1), axiom(b2)) : ϕ, b1, b2 ` b1 ∧ b2
p9 =elim∧,r(axiom(ϕ)) : ϕ, b1, b2 ` b1 ∧ b2 ⇒ wp(lt)
p10=elim⇒(p8, p9) : ϕ, b1, b2 ` wp(lt)
p11=intro⇒(p10) : ϕ, b1 ` b2 ⇒ wp(lt)
p12=intro∧(p7, p11) : ϕ, b1 ` b2 ⇒ wp(lt) ∧ ¬b2 ⇒ wp(lf )
p13=elim⇒(weak(intro⇒(c2)), p12) : ϕ, b1 ` wp(l′t)
p14=intro⇒(p13) : ϕ ` b1 ⇒ wp(l′t)
p15=axiom(¬b1) : ϕ,¬b1, b1 ∧ b2 ` ¬b1
p16=elim∧,l(axiom(b1 ∧ b2)) : ϕ,¬b1, b1 ∧ b2 ` b1
p17=elim⇒(p15, p16) : ϕ,¬b1, b1 ∧ b2 ` false
p18=intro⇒(p17) : ϕ,¬b1 ` ¬(b1 ∧ b2)
p19=elim∧,r(axiom(ϕ)) : ϕ,¬b1 ` ¬(b1 ∧ b2)⇒ wp(lf )
p20=elim⇒(p18, p19) : ϕ,¬b1 ` wp(lf )
p21=: ϕ,¬b1 ` wp(lf )
p22=intro⇒(p21) : ϕ ` ¬b1 ⇒ wp(lf )
p23=intro∧(p14, p23) : ϕ ` (b1 ⇒ wp(l′t)) ∧ (¬b1 ⇒ wp(lf ))
c =elim⇒(p23, intro⇒(c1)) : ϕ ` wp(l)

Based on these previous results, the following lemma relates the computation
of verification conditions between a source program and its RTL representation.

Lemma 7. Let c be a statement of a procedure p and (Pre, annot,Post) its
specification. Let 〈N , E , G〉 be defined as C(l,l′)(c), and (ϕ, θ) = WP(c,wp(l′)).
Then, one can generate, for every program label l ∈ N , certificates for the goal
` ϕ⇒ wp(l).

Proof. The proof proceeds by structural induction on the statement c. Consider
for instance the case of a conditional statement, i.e., c = if b then c1 else c2.
Then, 〈N , E , G〉 is defined as Cbl,lt,lf (b) ∪ Clt,l′(c1) ∪ Clf ,l′(c2). By I.H., we have
the certificates

q1 : ` ϕ1 ⇒ wp(lt)

and
q2 : ` ϕ2 ⇒ wp(lf )
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where WP(c1,wp(l′)) = (ϕ1, θ1) and WP(c2,wp(l′)) = (ϕ2, θ2) for some sets θ1

and θ2. By definition we have ϕ equal to b ⇒ ϕ1 ∧ ¬b ⇒ ϕ2. From Lemma 6,
we have a certificate q : b ⇒ wp(lt) ∧ ¬b ⇒ wp(lf ) ` wp(l). The following steps
constructs the certificate:

p1 =axiom(b) : ϕ, b ` b
p2 =elim∧,l(axiom(ϕ)) : ϕ, b ` b⇒ ϕ1

p3 =elim⇒(p1, p2) : ϕ, b ` ϕ1

p4 =weak(q1) : ϕ, b ` ϕ1 ⇒ wp(lt)
p5 =elim⇒(p3, p4) : ϕ, b ` wp(lt)
p6 =intro⇒(p5) : ϕ ` b⇒ wp(lt)
p7 =axiom(¬b) : ϕ,¬b ` ¬b
p8 =elim∧,r(axiom(ϕ)) : ϕ,¬b ` ¬b⇒ ϕ2

p9 =elim⇒(p7, p8) : ϕ,¬b ` ϕ2

p10=weak(elim∧,r(q2)) : ϕ,¬b ` ϕ2 ⇒ wp(lf )
p11=elim⇒(p9, p10) : ϕ,¬b ` wp(lf )
p12=intro⇒(p11) : ϕ ` ¬b⇒ wp(lf )
p13=intro∧(p6, p12) : ϕ ` b⇒ wp(lt) ∧ ¬b⇒ wp(lf )
p14=elim⇒(intro⇒(weakϕ(q)), p13) : ϕ ` wp(l)
p15=intro⇒(p14) :` ϕ⇒ wp(l)

Theorem 1 (Equivalence of Proof Obligations). Let p be a high-level pro-
cedure with specification (Pre, annot,Post). Let p̄ be an RTL procedure defined as
the compilation of p, i.e., 〈N , E , G〉 is equal to C(lin,lout)(c) where c is the body of
p. Then, from Lemma 7, one can generate a certificate for the proof obligations
in po(p̂) from the original certificate for the proof obligations in PO(p).

5.2 Compilation of the Array Representation

Description. One particular difference between high and low level representa-
tions is how memory addressing, i.e. array access, is implemented. This compiler
step models abstractly the typical distinction between addressing byte and inte-
ger array representations, by multiplying the value used to access an array cell
by 4 (assuming an integer value is represented exactly with 4 byte values). Every
array a of the source program is then compiled to a corresponding lower-level
array â such that |â|= 4∗ |a| and for every integer number n s.t. 0 ≤ n <|a|,
we have â[4 ∗ n] = a[n]. The transformation of an RTL function 〈N , E , G〉 into
〈N , E , Ḡ〉 is shown in Figure 16. Every assignment that contains an array access
is replaced by two consecutive assignments. For simplicity, we abuse notation
and do not make explicit the introduction of a fresh intermediate node.

Example 4. The code in Figure 17 is the result of transforming the array repre-
sentation from the RTL code of Figure 15.

Since every array variable a is compiled into a lower-level array variable â,
we need to modify the original specification accordingly. To that end, we cannot
simply substitute the occurrences of a by â. Instead, we need to define a more
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Ḡ[〈l, l′〉] .= v′ := 4 ∗ v;x := â[v′] if G[〈l, l′〉] .= x := a[v]
Ḡ[〈l, l′〉] .= v′ := 4 ∗ v; â[v′] := x if G[〈l, l′〉] .= a[v] := x
Ḡ[e]

.
= G[e] otherwise

Fig. 16. Compiler Definition

complex renaming function. Let θa stand for the proposition ∀i. a[i] = â[4 ∗ i].
For every assertion ϕ, we denote αa(ϕ) the assertion ∃a. (ϕ∧θa), i.e. a renaming,
in ϕ, of the array variable a into its corresponding lower-level array variable â.

Definition 7 (Compilation of Specifications). Let (Pre, annot,Post) be the
original specification of a procedure p. We define the specification for the compi-
lation of the procedure p as (αa(Pre), αa ◦ annot, αa(Post)).

Comparison of verification conditions. Computing the verification condi-
tion at label l2 returns:

annot(lb)⇒ (vec[i] ≤ pivot⇒ i < j⇒ annot(lb)[i+1/i])∧
(vec[i] ≤ pivot⇒ ¬i < j⇒ annot(lc))∧
(¬vec[i] ≤ pivot⇒ annot(lc))

Computing the verification condition at the same label from the transformed
program returns:

αvec(annot(lb))⇒ ( ˆvec[4 ∗ i] ≤ pivot⇒ i < j⇒ αvec(annot(lb))[i+1/i])∧
( ˆvec[4 ∗ i] ≤ pivot⇒ ¬i < j⇒ αvec(annot(lc)))∧
(¬ ˆvec[4 ∗ i] ≤ pivot⇒ αvec(annot(lc)))

Notice that they are equivalent up to renaming of the array variable vec.
Then, it should be clear that one can prove the former from the latter. In the
rest of this section we show how we can systematically construct certificates for
the transformed proof obligations from the original program certificates.

Transformation of the certificate. The following generic results state that
its is possible to reconstruct a certificate for the final code from the original
certificate.

Lemma 8. Let f be the original procedure, and f̄ the result of transforming
the representation of arrays. Then, one can generate, for every program label
l ∈ dom(annot), certificates for the goal: ` αvec(wpf (l))⇒ wpf̄ (l).

Proof. The proof proceeds by the induction principle associated to the defini-
tion of well-annotated programs. The base cases, i.e. the labels l such that l ∈
dom(annot) or l = lout, are trivial since by definition wpf̄ (l) = αvec(wpf (l)).
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i<j?¬i<j?

vi ≤ pivot?
¬vi ≤ pivot?

i<j?¬i<j?

i:=i+1

¬ pivot< vj?

i<j?¬i<j?

j:=j-1

i<j?

¬i<j?

invoke swap(i,j)

i’:=i-1

invoke swap(start,i’)

return i’

pivot< vj?

lin

lout

la lb

lc

pivot,i,j:= ˆvec[d],start,end
d:=4*start

vi:= ˆvec[di]

vj:= ˆvec[dj]

dj:=4*j

di:=4*i

Fig. 17. RTL procedure partition after array compilation.

Consider the case Gf [〈l, l′〉] = x := a[v]. Then wpf (l) = wpf (l′)[vec[v]/x] and
wpf̄ (l) = wpf̄ (l′)[ ˆvec[4∗v]/x]. Let c′ stand for the certificate generated as induc-
tive hypothesis, i.e, c′ : αvec(wpf (l)) ` wpf̄ (l). The following derivation steps
construct the certificate we need for this proof case:

p1=elim∧,r(axiom) : wpf (l′)[vec[v]/x] ∧ θ ` θ
p2=elim∧,l(axiom) : wpf (l′)[vec[v]/x] ∧ θ ` wpf (l′)[a[v]/x]
p3=elim∀(p1) : wpf (l′)[vec[v]/x] ∧ θ ` vec[v] = ˆvec[v]
p4=elim=(p3, p2) : wpf (l′)[vec[v]/x] ∧ θ ` wpf (l′)[ ˆvec[v]/x]
p5=intro∧(p4, p1) : wpf (l′)[vec[v]/x] ∧ θ ` wpf (l′)[ ˆvec[v]/x] ∧ θ
p6=intro∃(intro⇒(p5)) :` ∃vec. wpf (l′)[vec[v]/x] ∧ θ ⇒ ∃vec. wpf (l′)[ ˆvec[v]/x] ∧ θ
p7=intro⇒(elim⇒(axiom,weak(p6))) :

` ∃vec. wpf (l′)[vec[v]/x] ∧ θ ⇒ ∃vec. wpf (l′)[ ˆvec[v]/x] ∧ θ

Theorem 2 (Certificate Translation). Let p be an RTL procedure with spec-
ification (Pre, annot,Post). Let p̂ stand for the result of compiling the array ex-
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pressions in the procedure p. Then, one can generate certificates for the proof
obligations of p̂ from the certificates for the original procedure p.

5.3 Loop Induction Variable Strength Reduction

Description. Loop induction strength reduction is an optimization that reduces
the complexity of the arithmetic operations executed inside a loop. Basically, an
induction variable of a loop is a variable that is incremented (or decremented)
inside the loop by a constant value. A derived induction variable of the loop is a
variable that is defined as a linear function on an induction variable of the loop.
For instance, in the following code fragment:

i := 0;
while (i < N) do
...
j := a ∗ i + c
i := i + 1;

the program variable i is a loop induction variable (with an increment of 1), and
j is a derived induction variable defined as the linear function a ∗ i + c. In the
example above, one can see an optimization opportunity if the multiplication
operation is replaced by a less costly addition operation. The following code
shows an optimized version of the example above:

i := 0;
j := c;
while (i < N) do
...
j := j + a
i := i + 1;

It should be clear that the transformation preserves the original semantics.

Transformed running example. Consider the optimization of the running
example of Figure 15. For convenience in explaining the certificate translation
process, we have split the transformation in two independent steps. In the first
one, for each derived induction variable j we introduce a corresponding fresh
variable j′ and a set of assignments to j′ in order to make j′ hold the same value
as j. We require these new assignments to be less costly than those updating j,
and that they do not read the value of j.

In the procedure partition of the quicksort example, we are interested on
reducing the strength of the derived induction variables di and dj , defined as
linear functions 4∗i and 4∗j, respectively. To that end, we introduce assignments
immediately after each assignment of i and j. This first transformation step of
the procedure partition can be found in Figure 18.
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Fig. 18. Strength Reduction - First Step

In a second transformation step, we take advantage of the fresh variables d′i
and d′j that has been introduced, replacing in the code the assignments di := 4∗i
and dj := 4∗j by di := d′i and dj := d′j . The transformation is shown in Figure 19.

In the following sections, we apply copy propagation and dead variable elim-
ination in order to remove the occurrences of variables di and dj .

Comparison of verification conditions. One can see that the first trans-
formation step does not alter the verification conditions. Indeed, an affectation
of a fresh variable, i.e., a variable that appears neither in the program nor in
the specification, does not affect the computation of verification conditions. For-
mally, from the definition of the function wpi, if x does not occur in ϕ, then
wpi(x := e, ϕ) = ϕ. In addition, one can see that if x does not occur in the
program, then it is never introduced by the wpi function. That is, for very ϕ,
if x does not occur in ϕ nor in ins, then x does not occur in wpi(ins, ϕ). Let
f and f̄ denote the original and transformed procedure, respectively, the argu-
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Fig. 19. Strength Reduction - Second Step

ment above implies that wpf (l) and wpf̄ (l) coincide syntactically for every label
l. Therefore, proof obligations are preserved by this transformation step, and no
transformation, neither of the specification nor the certificate, is needed.

However, one can see that certificates cannot be reused after the second
transformation step, by simple comparison between the original and transformed
program. Consider for instance the case of the verification of a simpler invariant
at the loop headers pointed by labels lb and lc. Let φ stand for the invariant ∀k ∈
N. (start ≤ k < i ⇒ ˆvec[4 ∗ i] ≤ pivot), and let annot(l1) = annot(l4) = φ.
Computing the proof obligation for label lb for the program shown in Figure 18
returns the proof goal:

φ⇒ ( ˆvec[4 ∗ i] ≤ pivot⇒ i < j⇒ φ[i+1/i])

In the other hand, computing the same proof obligation for the program shown
in Figure 19 returns

φ⇒ ( ˆvec[d′i] ≤ pivot⇒ i < j⇒ φ[i+1/i])
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which is unprovable unless we assume as hypothesis the result of the analysis,
i.e. the condition d′i = 4 ∗ i.

Transformation of the specification. In order to overcome the transforma-
tion of proof obligations, we propose first to strengthen the original specification
to incorporate the result of the analysis that justifies the optimization. To sim-
plify the exposition of this procedure, we split it in two steps. To that end, we
first represent and certify the result of the static analysis in the underlying veri-
fication framework. Then, we merge this certified specification with the original
procedure specification.

Consider (true, annotA, true) a procedure specification that represents the re-
sults of the analysis. One would like to generate a certificate for the specification
(Pre, annot ∧ annotA,Post) where annot ∧ annotA stands for the partial function
such that (annot ∧ annotA)(l) .= annot(l) ∧ annotA(l).

After providing a certificate for the specification (true, annota, true) of the
analysis result, we can integrate it with the certificate for the current specification
(Pre, annot,Post), as follows from the next result:

Lemma 9. Let s1 = (Pre1, annot1,Post1) and s2 = (Pre2, annot2,Post2) be cer-
tified specifications of a procedure p. Then, both certificates can be merged to gen-
erate a certificate for the specification s = (Pre1 ∧ Pre2, annot1 ∧ annot2,Post1 ∧
Post2).

Proof. Let wpf1 , wpf2 and wpf correspond to the weakest-precondition computa-
tion with specification s1, s2 and s, respectively. One can generate, by the induc-
tion principle induced by the definition of well-annotated programs, a certificate
for the following goals:

` wpf1(l) ∧ wpf2(l)⇒ wpf (l)

and
` wpif1(l) ∧ wpif2(l)⇒ wpif (l)

for every label l. This result follows from a proof of the distributivity of the pred-
icate transformer wp w.r.t. conjunction. It should be clear, from the definition
of annot1 ∧ annot2, that this is sufficient to certify the proof obligations corre-
sponding to the result of merging the two specifications.

Certification of analysis results. In the example, for the second transfor-
mation step, we implicitly assume that the compiler has run a static analysis
that determined that the condition d′i = 4 ∗ i is valid at program label l1. And
similarly for the condition d′j = 4 ∗ j at the program label l4. Therefore, we
assume the invariant specification annotA(l) defined as d′i = 4 ∗ i∧ d′j = 4 ∗ j, for
l ∈ {la, lb, lc}. The first goal is to certify the specification (true, annotA, true) in
the partition procedure. If we compute the verification conditions in order to



27

certify the result of the analysis we get verification goals such as:

annotA(lb)⇒
( ˆvec[4 ∗ i] ≤ pivot⇒ i < j⇒ d′i + 4 = 4 ∗ (i + 1))∧
( ˆvec[4 ∗ i] ≤ pivot⇒ ¬i < j⇒ annotA(lc))∧
(¬ ˆvec[4 ∗ i] ≤ pivot⇒ annotA(lc))

One can see that to prove this goal is enough to perform arithmetic simplification
and rewriting of equalities.

Transformation of the certificate. An essential requirement to translate the
certificate is to provide a formal proof that states that predicate transformers
of the replaced instructions are consistent with the original ones assuming valid
the result of the analysis. More precisely, in the running example, we are in-
terested in providing a formal proof, for every assertion φ, of the conditions
wpi(di := 4 ∗ i, φ) ⇒ wpi(di := d′i, φ) and wpi(dj := 4 ∗ j, φ) ⇒ wpi(dj := d′j , φ)
assuming as hypotheses the conditions d′i = 4 ∗ i and d′j = 4 ∗ j, respectively.
In our setting, this corresponds to an application of the operation elim= of the
proof algebra. The following result states that this, together with the certificate
of the analysis, is sufficient to generate a new certificate corresponding to the
transformed program.

Lemma 10. Let f and f̄ stand for the original and transformed program, re-
spectively. Suppose that (Pre, annot,Post) is a certified specification for f and that
the result of the analysis (true, annotA, true) is certified. Assume, the Nf = Nf̄ ,
Ef = Ef̄ and for every edge 〈l, l′〉 ∈ Ef s.t. Gf [〈l, l′〉] 6= Gf̄ [〈l, l′〉], and any
assertion ϕ, that we have a certificate justif for the following goal:

` wpi(G[〈l, l′〉], ϕ) ∧ annotA(l)⇒ wpi(Gf̄ [〈l, l′〉], ϕ)

Then, one can generate a certificate for the transformed program f̄ with specifi-
cation (Pre, annot ∧ annotA,Post).

Proof. Assume for simplicity that annotA is a total function. From the certificate
justif, and by the induction principle associated to well-annotated programs, one
can generate certificates for the following goals:

` wpf (l) ∧ annotA(l)⇒ wpf̄ (l)

and
` wpi(Gf [〈l, l′〉],wpf (l′)) ∧ annotA(l)⇒ wpi(Gf̄ [〈l, l′〉],wpf̄ (l′))

for every program label l and edge 〈l, l′〉. Recall that proof obligations have the
form wpf̄ (l) ⇒ ∧

l′∈succ(l) wpi(Gf̄ [〈l, l′〉],wpf̄ (l′)), and that wpf̄ (l) .= wpf (l) ∧
annotA(l). It is sufficient then to provide certificates for

` wpf (l)⇒ wpi(Gf [〈l, l′〉],wpf (l′))
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and
` wpA(l)⇒ wpi(Gf [〈l, l′〉],wpA(l′))

where wpA(l) is computed with the result of the analysis as specification. The
certificates required above correspond exactly to the original certificates and the
certificates of the result of the analysis.

5.4 Copy Propagation

Description. Copy propagation is a simple compiler optimization that consists
in replacing some occurrences of a program variable by a variable that holds the
same value. In general, for a sequence of statements of the form

x := y ; c1 ; c2

the transformation replaces any occurrence of the variable x by y in c2, as long
as neither x nor y gets modified by one of the instructions in c1. This is a cleanup
transformation, intended to reduce the set of used registers and simplifying the
transformed code resulting from a previous optimization. In addition, it is an
enabling transformation, that opens the door to further optimization opportu-
nities.

Transformed running example. In the previous transformation, we have
reduced the operation strength of assignments of the form di := 4 ∗ i by a
substitution for a copy operation. In principle, there is no reason to preserve
both variables di and d′i, nor both of variables dj and d′j . We proceed then by
substituting the occurrences of the variables di and dj by d′i and d′j , respectively,
as shown in Figure 20.

Comparison of verification conditions In this particular example, after
computing the verification conditions, one can easily see that they are preserved.
Hence, no certificate translation is needed in this case.

In general, verification conditions do not coincide after the transformation.
However, one can prove that they only differ on some variable renaming. Then,
depending on the underlying notion of certificates, it is possible that no transfor-
mation is needed at all, or with a minor variable renaming in the representation
of the certificate.

5.5 Dead Variable Elimination

Description. Dead variable elimination is a compiler transformation that re-
moves assignments to variables that are never used. The occurrence of such as-
signments are mainly the result of earlier program optimizations. For instance,
in the following transformations

y := 0
x := y ∗ z
r := f(x)

−→
y := 0
x := 0
r := f(0)

−→
nop
nop
r := f(0)
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Fig. 20. Copy Propagation Transformation

the second sequence of instructions is the result of propagating the constant
values held by the variables y and x. Since neither x nor y is used in the rest
of the program, the second transformation performs dead variable elimination
removing the assignments to x and y.

There are two main improvements as a consequence of dead variable elim-
ination. First, the unnecessary computation of the right hand side expression
is removed, reducing execution time and program size. Second, it reduces the
number of pseudo-variables that are used, which facilitates register allocation in
the last compilation steps.

Commonly, the notion of variable liveness formalizes the situation in which
the value of a variable is not needed in the future. We say that a variable is
read at a program edge l if it appears at an edge 〈l, l′〉 in the right hand side
of an assignment, as parameter in a function call, in a return statement or in
a conditional expression. We say that a variable x is live at a certain program
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Fig. 21. Dead Variable Elimination

label l if there is a program path from label l to a program point that reads x
and in which x is not updated.

Dead variable elimination consists in removing every assignment to a variable
that is not live at the following program point.

Transformed running example. In the code at the right of Figure 20, the
values assigned to the variables di and dj are never used. The transformation,
shown in Figure 21, takes the result of the previous optimization and removes
the assignments to di and dj .

Comparison of verification conditions. As can be seen after computing the
verification conditions over the original and transformed program, they are pre-
served. Hence, there is no need to transform the specification nor the certificates.

However, it is not always the case that verification conditions are preserved.
In fact, in general, they can become unprovable due to the occurrence of dead
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variables in the loop invariants. After some instructions are sliced-out of the
program, even though the input/output semantics is preserved, the conditions
over dead variables at the intermediate program points may not be satisfied.
The following example illustrates this situation:

x := z
{x = z}
y := f(x)

−→
nop
{x = z}
y := f(z)

After propagating the variable z to the function call, the assignment x := z is not
needed anymore and then it can be removed. The problem is that after removing
the assignment to the dead variable, the condition x = z becomes invalid. As
a second example, consider the tuple (true, annot, true) as a specification for
the procedure partition, where annot(la) = annot(lb) = annot(lc) = ϕ and
ϕ
.= di = d′i ∧ d′i = 4 ∗ i. After introduction of logical implication, a fragment of

the proof obligation at label lb for the program before the optimization is:

Γ ` annot(lb)[d
′
i+4/d′

i
][i+1/i][d

′
i/di

]

where Γ
.= {annot(lb), ˆvec[d′i] ≤ pivot, i < j}. The proof obligation, at the

same label lb, computed after performing dead variable elimination becomes:

Γ ` annot(lb)[d
′
i+4/d′

i
][i+1/i]

which is clearly unprovable because of the removal of the instruction di := d′i.
A solution for this problem consists in weakening the original specification

to remove the occurrences of dead variables at the intermediate assertions. More
precisely, one can show that it is feasible to quantify existentially the dead vari-
ables that occurs at the intermediate annotations, removing dead assignments,
and transforming the original certificates. We have developed this method in the
context of an abstract interpretation framework [4].

An alternative approach consists in renaming each dead variable that appears
in an assertion to its corresponding ghost variable. In this case, assignments to
dead variables are not removed but replaced by assignments to ghost variables
(namely ghost assignments). Proof obligations coincide up to renaming of dead
variables to ghost variables. Since ghost assignments are part of the specification
and thus never executed, they can be sliced out by the code client after the
verification process and prior to its execution. A more detailed account of this
technique can be found in a previous work by Barthe et al. [3].

5.6 Loop Unrolling

Description. Loop unrolling is a compiler transformation that duplicates code
by unfolding the execution of a loop body. The transformation does not neces-
sarily improve the code execution performance, it is rather an enabling transfor-
mation, i.e., it prepares the code for further compiler opportunities.

There are several variants of this transformation. In this section, we consider
a transformation that prefixes a loop with a single sequential execution of its
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body (under the guard of the loop, in order to preserve the program semantics).
Consider for instance a program of the form while b do c, the result of unrolling
the loop in this program is if b then c; while b do c. We define the loop un-
rolling transformation as a particular instance of a more general notion of node
duplication, formalized by the following definition:

Definition 8 (Node replication). A program 〈N ∪N+, E+, G+〉 is the result
of replicating nodes of program 〈N , E , G〉 if

– N+ ⊆ {l+ | l ∈ N};
– for every l1, l2 ∈ N , if 〈l+1 , l2〉, 〈l1, l+2 〉, or 〈l+1 , l+2 〉 is in E+ then 〈l1, l2〉 is in
E, i.e., subgraph duplication preserves the structure; and

– for every l1, l2 ∈ N , if e ∈ {〈l+1 , l2〉, 〈l1, l+2 〉, 〈l+1 , l+2 〉} then G+[e] = G[〈l1, l2〉].

Transformed running example. Consider the procedure partition in the
context of the whole running example. Assuming that the procedure partition is
not called from any program point outside the body of the procedure quicksort,
we know that the condition i < j always holds just before the execution of the
body. Consequently, the loop is executed at least once, for every initial execution
state, and one can take advantage of this fact to search for further optimizations.
In this section, we unroll one step of the execution of the outer loop statement.
In the following section, we optimize the duplicated instance of the loop body.

Figure 22 shows the result of unrolling the outer loop of the procedure
partition. In the figure, the subgraph corresponding to the loop body is du-
plicated and placed immediately before the loop header. The evaluation of the
loop guard is included in the duplicated code, in order to ensure preservation of
the program semantics. Notice that the last duplicated node jumps to the orig-
inal loop header (i.e., node la), instead of jumping backwards to the duplicated
evaluation of the guard (i.e., node l′a), and thus avoiding the re-entrance inside
the duplicated code.

Transformation of the certificate. In general, as one can see, dealing with
this transformation is simple since proof obligations are not modified, but du-
plicated.

Let (Pre, annot,Post) stand for the procedure specification previous to the
application of loop unrolling. Consider an invariant specification annot′ that
extends annot in the set of duplicated labels. That is, annot′(l) = annot(l) for
l ∈ dom(annot), and annot′(l′a), annot′(l′b) and annot′(l′c) equal to annot(la),
annot(lb) and annot(lc), respectively.

One can see that the original verification conditions, i.e., those at program
points in dom(annot), are not modified. However, new verification conditions are
introduced at the annotated program points that are duplicated: l′a, l′b ad l′c.
Since the code involved in the computation of the proof obligations at labels l′b
and l′c preserves the same structure of the original code, then, as one can see,
proof obligations are equal to the original proof obligations at lb and lc. The proof
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Fig. 22. Loop Unrolling
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obligation at label l′a do not coincide with the original proof obligation at label
la. The proof obligation at label la, after the application of the optimizations is:

` annot(la)⇒ (i < j⇒ annot(lb)) ∧ (¬i < j⇒ wp(ld))

If we compute the proof obligation at label l′a we get

` annot(l′a)⇒ (i < j⇒ annot(l′b)) ∧ (¬i < j⇒ annot(la))

which by definition is equal to

` annot(la)⇒ (i < j⇒ annot(lb)) ∧ (¬i < j⇒ annot(la))

Although the new proof obligation at label l′a is clearly different, it is still trivial
to discharge.

The following result generalizes certificate translation after the application
of a loop unrolling transformation.

Lemma 11. Let p+ = 〈N ∪ N+, E+, G+〉 be the result of duplicating some of
the nodes of the procedure p = 〈N , E , G〉. Let l+ denote a label in N+, i.e., a
label such that l ∈ N . Let 〈Pre, annot+,Post〉 be the specification of p+, where
〈Pre, annot,Post〉 is the specification of p, and annot+ extends annot to N+, defin-
ing annot+(l+) as annot(l). Then, one can construct, for l̄ ∈ {l, l+} a certificate
for the following goal:

c : ` wpp(l)⇒ wpp+(l̄)

Since wpp(l) coincides with wpp+(l̄) for every l ∈ dom(annot), it follows that one
can generate a certificate for the transformed program from the certificate of the
goal above and the original certificates.

A more general result is part of a development of certificate translation in
the context of an abstract interpretation setting [4].

5.7 Redundant Conditional Elimination

Description. Redundant conditional elimination is a program optimization
that removes conditional branching that can be predicted statically. First, an
automated analysis gathers information about the program variables along the
control flow paths of the program. Then, in the basis of the result of the analysis,
a transformation step removes the evaluation of conditional expressions that
are inferred to be always valid (or always invalid), and conditional jumps are
modified in accordance. In addition, the instructions that become unreachable,
and then non-executable, may also be removed. In the following example

y := z ∗ z;
while (x < y) do c1;
if (x < 0) then c2;

if the statement c1 does not modify the variable y, the analysis may infer that
the condition x ≥ 0 holds right after the execution of the body of the loop. In
that case, we know it is safe to remove the statement if (x < 0) then c2, since it
will never be executed. In the rest of the section we assume the static analysis is
capable of discovering relational properties on the values of program variables.



35

Transformed running example. Consider the code in Figure 22, i.e., after
unrolling one execution of the loop body in the running example, executing in
the context of the procedure quicksort. Notice from Figure 1 that the only invo-
cation of the procedure partition is performed with parameters start and end,
and under the guard start < end. One would expect thus an inter-procedural
analysis to statically infer that the condition i < j always holds at the program
point with label l′. Consequently, one of the branches at l′a is always taken and
then it is safe to remove one of the conditional edges. The transformation then
removes the branch ¬(i < j) at node l′a to jump unconditionally to l′b. The
transformed RTL code for the procedure partition can be found in Figure 23.

Comparison of verification conditions. Inspecting the transformed code in
Figure 23, one can see that the proof obligation at label l′a is the only one that
is affected by the transformation. The original proof obligation at label l′a is

` annot(l′a)⇒ (i < j⇒ annot(l′b)) ∧ (¬i < j⇒ annot(la))

whereas, after the transformation, the proof obligation becomes

` annot(l′a)⇒ annot(l′b)

In this particular example, the new proof obligation can be still discharged,
since by definition both annot(l′a) and annot(l′b) are equal to annot(la). However,
that is not generally the case, since annot(l′b) may be distinct to annot(la) and
thus the condition i < j may be needed as hypothesis to prove the implica-
tion annot(la) ⇒ annot(l′b). In the rest of this section, we generalize certificate
transformation in the presence of redundant conditional elimination.

Transformation of the specification. To deal with this transformation, we
proceed by incorporating the result of the analysis as a strengthening of the
original invariants. As explained in Section 5.3, this process entails first providing
a certificate of the result of the analysis represented in the logic of the verification
setting. To that end, we must rely on the existence of certifying analyzers, an
extension of standard analyses that provide, in addition of an analysis result, a
certificate of its validity.

Certification of analysis results. In Section 5.3, we have considered an intra-
procedural analysis and, thus, it was sufficient to consider a specification of the
result of the analysis at intermediate program points of the procedure partition.
However, in this case, since we are considering an inter-procedural analysis, we
need to extend the scope of the certifying analyzer. More precisely, we also need
to transform (strengthen) the precondition of the procedure partition. Since
this affects the computation of verification conditions on the code that invokes
this procedure, we need to consider the verification on the result of the analysis
in this code as well. In our running example, we must provide a specification
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Fig. 23. Redundant Conditional Elimination
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for the result of the analysis for all the procedures. Let (true, ∅, true) be the
specification of the result of the analysis for the procedures quicksort and swap.
Let (start < end, annota, true) the specification of the result of the analysis for
the procedure partition, where annota(l′a) .= i < j and annota(k) .= true for
any other label k.

As in Section 5.3, providing a certificate for the result of the analysis is
straightforward due to the simplicity of verification conditions. To illustrate this,
consider for instance the proof obligation that is computed for the procedure
quicksort:

true⇒ start < end⇒ (start < end ∧ ∀res.(true⇒ ϕ))

where ϕ stands for true ∧ ∀res(true ⇒ true ∧ ∀res(true ⇒ true)). It is clearly
easy to discharge. The proof obligations computed at the starting point of the
procedure partition and at the label in which the program is transformed are:

` start < end⇒ start < end

and

` i < j⇒ i < j⇒ true

respectively.

Transformation of the certificate. The transformation of the certificate can
be performed by the general technique shown in Section 5.3. Once the result of
the analysis is certified, we can incorporate it to the current specification and
generate a certificate for this new specification. Let (Pre, annot,Post) stand for
the current specification of the procedure partition, we define the transformed
specification as (Pre∧ start < end, annot′,Post), where annot′(l′a) .= annot(l′)∧
i < j and annot′(k) = annot(k) for any other label k. We know that we can
generate a certificate for the extended specification from Lemma 9. Let p and
p̂ stand for the original and transformed program, and notice that succp̂(l′a) ⊆
succp(l′a). As in Section 5.3, in order to generate a certificate for the transformed
program, we need to provide a formal proof of the following goal:

`
∧

li∈succp(l′a)

wpip(Gp[〈l′a, li〉], ϕi) ∧ annot′(l′a)⇒
∧

li∈succp̂(l′a)

wpip̂(Gp̂[〈l′a, li〉], ϕi)

for any ϕ, which in this case is defined as

` (i < j⇒ ϕt) ∧ (¬i < j⇒ ϕf ) ∧ i < j⇒ ϕt

From Lemma 10, a certificate for the goal above is sufficient to provide a certifi-
cate for the transformed program in the general case.
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5.8 Stack-based Code Generation

In this section we consider the last compilation phase, in which the intermediate
program representation is transformed into the final interpretable stack-based
code. We introduce briefly the programming language, its semantics and the
underlying verification framework. We provide a definition of the compiler, that
transforms an RTL graph to a sequence of labeled stack-based instructions. Fi-
nally, we show that verification conditions are preserved, and thus no transfor-
mation of the certificate is needed.

The transformation not only produces a linearized version of an RTL graph,
but replaces RTL with stack-based instructions. Stack-based computation relies
on instructions that put, remove and modify values stored in the stack. As
with RTL programs, a stack-based program is composed of a set of procedures.
Each procedure p consists of a set of formal parameters and a list of labeled
instructions from the set described in Figure 24. In the figure, sig is the signature
of the invoked procedure, consisting of a procedure identifier and the number of
arguments it takes from the stack. For notational convenience, we let a partial
function Gp map program labels to instructions. For every instruction with only
one predecessor, we omit its label. For an instruction at label l with a single
successor we let l + 1 stand for the label of the next instruction. For a label l
such that G[l] = cjmp on lt, lf , succ(l) is defined as {lt, lf}, for G[l] = jmp l′,
succ(l) = {l′} and if G[l] = return then succ = ∅. For any other case, succ(l) =
{l + 1}.

ins ::= prim ⊕
| push n
| load x
| store x
| aload a
| astore a
| nop
| jmp l
| cjmp on l, l
| invoke sig
| return

Fig. 24. Stack-based Instruction Set

A stack-based program is well-formed if the control-flow representation of
every procedure is a closed graph. Formally, for every procedure p, and l ∈
dom(Gp), we have that succ(l) ⊆ dom(Gp). As with RTL programs we assume the
existence of an initial label lin. As in previous sections, an execution environment
is composed of a global array state in ΣA and a local scalar state in ΣV . The



39

semantics of well-formed programs is defined in Figure 25 by a relation  ⊆
L × Stack ×Σ → Stack ×Σ. It differs from the semantics of RTL programs in
the computation of expressions, argument passing and value returning.

Verification setting. The specification language is slightly modified in order
to reason about stack expressions. We use the special variable s to denote the
operand stack. The expression s[0] denotes the top element of the stack s and
the expression ↑ s denotes the stack after removing the top element from s.
We assume these expressions to be immediately reduced when introduced by
variable substitution, according to the rules (e :: s)[0] = e and ↑ (e :: s) = s.
A specification for a stack-based procedure is a tuple (Pre, annot,Post), where
annot is a partial mapping from labels to assertions that may contain stack
expressions. Pre and Post do not contain stack expressions.

For the proof obligations to be computable, we require the sequence of in-
structions to be well-annotated, i.e., that every cycle of the control-flow graph
contains at least one annotated label.

From a well-annotated stack-based program a VCgen extracts a set of proof
obligations from each of its procedures, by using the functions wp and wpi defined
in Figure 26:

po(p) = {Prep ⇒ wpp(lin)[A/A? ]}∪
{annotp(l)⇒ wpip(l) | l ∈ dom(annotp)}

where A represents the set of array variables that may get modified by p. For
simplicity, we overload the predicate transformers wp and wpi to be defined over
both RTL and stack-based instructions. When a label l has only one successor,
this is denoted l + 1.

The following result states that the verification framework above is sound
with respect to the program semantics.

Lemma 12 (VCgen Soundness). Consider a well-annotated stack-based pro-
gram P . Assume that for every procedure p, po(p) is a valid set of proof obli-
gations. Then, for every procedure p, if 〈lin, [], σ〉  p 〈n :: s, σ′〉 then |= [σ′ :
res 7→ n] : Post.

Compilation. In this section, we define a simple compiler that transforms
an RTL program representation into the stack-based code described above. The
transformation can be seen as the last step of a compiler from a simple imperative
language described in Section 3, to the final executable code. The compilation is
defined by a function C that maps an RTL graph into a semantically equivalent
sequence of instructions that manipulates the values stored in the execution
stack. The definition of this compilation function can be found in Figure 27.

Since the structure of the code is preserved it follows that a well-formed RTL
program is compiled into a well-formed stack-based program. Furthermore, if
the specification is preserved, a well-annotated RTL program is compiled into a
well-annotated stack-based program.
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Gp[l] = return

〈l, n :: s, σ〉 p 〈n, σA〉
Gp[l] = nop 〈l + 1, s, σ〉 p s s ∈ ΣF

〈l, s, σ〉 p s

Gp[l] = v := invoke q k 〈lin, [], 〈[~xq 7→ ~n], σA〉〉 q 〈m :: s′, 〈σ′V , σ′A〉〉
〈l + 1,m :: s, 〈σV , σ′A〉〉 p s s ∈ ΣF

〈l, ~n :: s, σ〉 p s

Gp[l] = jmp l′ 〈l′, s, σ〉 p s s ∈ ΣF
〈l, s, σ〉 p s

Gp[l] = cjmp on lt, lf n1 on n2 〈lt, s, σ〉 p s s ∈ ΣF
〈l, n1 :: n2 :: s, σ〉 p s

Gp[l] = cjmp on lt, lf ¬(n1 on n2) 〈lf , s, σ〉 p s s ∈ ΣF
〈l, n1 :: n2 :: s, σ〉 p s

Gp[l] = prim ⊕ 〈l + 1, n1 ⊕ n2 :: s, σ〉 p s s ∈ ΣF
〈l, n1 :: n2 :: s, σ〉 p s

Gp[l] = push n 〈l + 1, n :: s, σ〉 p s s ∈ ΣF
〈l, s, σ〉 p s

Gp[l] = load x 〈l + 1, σV x :: s, σ〉 p s s ∈ ΣF
〈l, s, σ〉 p s

Gp[l] = store x 〈l + 1, s, [σ : x 7→ n]〉 p s s ∈ ΣF
〈l, n :: s, σ〉 p s

Gp[l] = aload a 0 ≤ i <|a| 〈l + 1, σA a i :: s, σ〉 p s s ∈ ΣF
〈l, i :: s, σ〉 p s

Gp[l] = astore a 0 ≤ i <|a| 〈l + 1, s, [σ : a 7→ [a : i 7→ n]]〉 p s s ∈ ΣF
〈l, i :: n :: s, σ〉 p s

Fig. 25. Semantics of Stack-based Programs
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G[l] = nop wpi(l) = wp(l + 1)

G[l] = prim ⊕ wpi(l) = wp(l + 1)[s[0]⊕s[1] :: ↑2s/s]

G[l] = push n wpi(l) = wp(l + 1)[n :: s/s]

G[l] = load x wpi(l) = wp(l + 1)[x :: s/s]

G[l] = store x wpi(l) = wp(l + 1)[s[0],↑s/x,s]

G[l] = aload x wpi(l) = wp(l + 1)[a[s[0]] :: ↑s/s]

G[l] = astore x wpi(l) = wp(l + 1)[[a:s[0] 7→↑s[0]],↑
2s/a,s]

G[l] = jmp l′ wpi(l) = wp(l + 1)

G[l] = cjmp on lt, lf wpi(l) = (s[0] on↑ os[0])⇒ wp(lt))∧
(¬(s[0] on↑ os[0])⇒ wp(lf ))

G[l] = invoke f n wpi(l) = Pre[s[0],↑s[0],..,..↑s[0]/̂xf ]∧
∀res,V ′Post[V

′,V/V,V ? ][xf
?

/x]⇒ wp(l + 1)[V
′
/V ]

G[l] = return v wpi(l) = Postp[
s[0]/res]

wp(l) =


annot(l) if l ∈ dom(annot)
wpi(l) otherwise

Fig. 26. VCgen rules for Stack-based Code

Example 5. Figure 28 shows the result of compiling the RTL representation of
Figure 23 into the stack-based representation.

Preservation of Proof Obligations. In this section we formalize the main
result of this compilation step: assuming, for the result of the transformation,
the same specification as the original code, verification conditions are preserved.

Then, if (Pre, annot,Post) is the specification of an RTL procedure p, we de-
fine the specification for the compilation of the procedure p as (Pre, annot,Post).
Notice that it follows that intermediate invariants do not refer to stack expres-
sions.

We first prove, in the following lemma, that predicate transformers are pre-
served by the compiler transformation defined in this section. More precisely,
the computation of the wp function coincides at every program point up to the
evaluation of stack expressions.

Lemma 13. Let 〈N , E , G〉 be the graph of an RTL procedure p and seq the
result of its compilation into the stack-based procedure p̄. Then, assuming the
same specification for p and p̄, we have that for every program label l in N ,
wpp(l) = wpp̄(l), and wpip(l) = wpip̄(l).
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Cl(〈N , E , G〉, S) = ( if l ∈ S −→ jmp l
� if l 6∈ S and G[〈l, lt〉] = v1 on v2? −→

let (seqt, St) = Clt(〈N , E , G〉, {l} ∪ S)
let (seqf , Sf ) = Clf (〈N , E , G〉, St)
in (l : load v2 :: load v1 :: cjmp on lt, lf :: seqt :: seqf , Sf )

� if l 6∈ S and G[〈l, l′〉] = v := v1 ⊕ v2 −→
let (seq, S′) = Cl′(〈N , E , G〉, {l} ∪ S)
in (l : load v2 :: load v1 :: prim ⊕ :: store v :: seq, S′)

� if l 6∈ S and G[〈l, l′〉] = v := a[v′] −→
let (seq, S′) = Cl′(〈N , E , G〉, {l} ∪ S)
in (l : load v′ :: aload a :: store v :: seq, S′)

� if l 6∈ S and G[〈l, l′〉] = a[v] := v′ −→
let (seq, S′) = Cl′(〈N , E , G〉, {l} ∪ S)
in (l : load v′ :: load v :: astore a :: seq, S′)

� if l 6∈ S and G[〈l, l′〉] = invoke f(~x) −→
let (seq, S′) = Cl′(〈N , E , G〉, {l} ∪ S)
in (l : load x1 :: .. :: load xk :: invoke f k :: seq, S′)

� if l 6∈ S and G[〈l, l′〉] = return v −→
let (seq, S′) = Cl′(〈N , E , G〉, {l} ∪ S)
in (l : load v :: return :: seq, S′)

� if l 6∈ S and G[〈l, l′〉] = nop −→
let (seq, S′) = Cl′(〈N , E , G〉, {l} ∪ S)
in (l : nop :: seq, S′)

)

Fig. 27. Compiler to Stack-based Code (Excerpt)

Proof. The proof proceeds by the induction principle associated to well-annotated
procedures. The base case, e.g., l ∈ dom(annot), is trivial since it follows by
definition of wpp and wpp̄. Consider the case where G[〈l, l′〉] .= x := y⊕n. From
the definition of the function C, the instruction is compiled into a sequence of
instructions l : load y :: push n :: prim ⊕ :: store x. The computation of
wpp(l) returns wpp(l + 1)[y⊕n/x], whereas wpp̄(l) is defined as

wpp̄(l + 1)[x,s/s[0],↑s][s/s[0]⊕s[1] :: ↑2s][s/n :: s][s/y :: s]

Since by I.H. wpp(l + 1) = wpp̄(l + 1), by reducing the stack expressions intro-
duced by the substitutions in the latter formula, we prove the coincidence of both
formulae.

Hence, it follows from the definition of the set of proof obligations for RTL and
stack-based code, and the fact that the compiler preserves the code structure,
that proof obligations are syntactically preserved.

Lemma 14 (Preservation of Proof Obligations). Let p be an RTL program
and p̄ the result of its compilation into the stack-based language. Assume p is
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load start

push 4
prim ∗
store d
load d
aload ˆvec
store pivot

load start

store i
load end

store j
load i
push 4
prim ∗
store d′i
load j
push 4
prim ∗
store d′j

l′a, l
′
b : load d′i

aload ˆvec

store vi
load pivot

load vi
cjmp ≤ l1, l′c

l1 : load j

load i

cjmp < l2, l
′
c

push 1
load i

prim+
store i

push 4
load d′i
prim+
store d′i
jmp l′b

l′c : load d′j
aload ˆvec
store vj
load pivot

load vj

cjmp < l3, l4
l3 : load j

load i

cjmp < l5, l4
l5 : push 1

load j

prim −
store j

push 4
load d′j
prim −
store d′j
jmp l′c

l4 : load j

load i

cjmp l6, la
l6 : load j

load i

invoke swap 2
la : . . .

Fig. 28. Stack-based representation of the final code (Excerpt)

certified w.r.t. the specification (Pre, annot,Post). Then, p̄ is certified w.r.t. the
specification (Pre, annot,Post).

6 Conclusion

Certificate translation is a general method to transform certificates from source
programs into certificates of compiled programs. In this tutorial, we have exem-
plified the underlying mechanisms of certificate translation on a running exam-
ple. While representative, the example of the quicksort function fails to highlight
some important aspects in certificate translation; these are briefly described in
the next paragraph. For completeness, we conclude with a brief presentation of
existing alternatives to certificate translation. Further discussion and pointers
to the literature can be found in [3].

6.1 Other Topics in Certificate Translation

Important issues not covered by this tutorial include:

Certifying analyzers: optimizations that perform arithmetic reasoning require
strengthening the loop invariants so that programs remain provable. These
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strengthened invariants should assert the correctness of the results of the
analysis, and should be proved automatically—and weaved together with
the original proof of the program. This requires extending standard analyz-
ers into certifying analyzers, that justify analyses upon which the optimiza-
tions rely by expressing their results in the logic of the PCC architecture,
and produce a certificate of the analysis for each program. The existence
of certifying analyzers for transformations such as constant propagation or
common subexpression elimination is shown in [2] in the context of a RTL
language, and in a more general setting in [4].

Certificate translation in abstract interpretation: It is possible to take a
more general approach to certificate translation by embedding the problem in
the framework of abstract interpretation [8, 9]. One can then give sufficient
conditions for transforming a certificate of a program G into a certificate
of a program G′, where G′ is derived from G by a semantically justified
program transformation, typically a program optimization. In [4], we provide
substantial leverage w.r.t. [2], allowing to consider strongest post-condition
calculi as well as weakest precondition calculi as done in this paper, and to
some extent concurrent programs.

Hybrid certificates: in order to reduce the verification effort, verification en-
vironments increasingly rely on combining static analyses and verification
condition generation. The verification condition generator exploits the in-
formation of the analysis in two useful ways: on the one hand, verification
conditions that originate from spurious edges in the control-flow graph are
discarded. This leads to fewer and smaller proof obligations. Furthermore,
the verification condition generator adds the results of the analysis as addi-
tional assumptions to help prove the verification conditions. In [5], we initi-
ate the study of certificate translation for hybrid verification, and we show
preservation of proof obligations between hybrid verification frameworks for
source code and a stack-based language similar to that of Section 4.

6.2 Alternatives to certificate translation

There are several mechanisms to certify a compiled code from a certificate of the
source program:

Certifying compilers: They extend traditional compilers with a mechanism
to automatically generate certificates for sufficiently simple safety properties,
exploiting the information available about a program during its compilation.
Certifying compilation [18] is by design restricted to a specific class of prop-
erties and programs— in order to achieve automatic generation of certificates
and, thus, to reduce the burden of verification on the code producer side. The
counterpart of this approach is that the properties under consideration are
restricted to simple properties, namely typing predicates. An early example
of certifying compiler is the Touchstone compiler [18], which was intended to
explore the feasibility of PCC. This compiler generates, for programs writ-
ten in a type-safe fragment of C, a formal proof for type-based safety and
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memory safety of the resulting program in DEC Alpha assembly language.
The Touchstone compiler automatically inserts the loops invariants in the
resulting program and generates the correctness proofs.

Certified Compilers: The goal of certified compilers is to provide a formal
guarantee of its correctness. It is a general result that proves that for every
input program the results of the compilation have an equivalent semantics,
for a particular definition of equivalence. A notable example of a certified
compiler is provided by the CompCert [14] project. CompCert is a compiler,
formalized in the Coq proof assistant, from a subset of C into PowerPC
assembly code. A formal proof stating the equivalence between the source
and the compiled code is formalized in the Coq proof assistant. There are two
drawbacks to this approach, from the perspective of certificate translation.
First, a formal definition of the compiler can be extremely large and, thus,
the certificate of its correctness can be prohibitively expensive to check.
Second, one must assume that the source code is available to the code user, in
order to be inspected and compared with the compiled code. However, most
commonly, one cannot expect code producers to release the corresponding
source code.

Translation Validation: Translation validation [20, 17] is an alternative tech-
nique to formally verifying the correctness of compiler transformations. In-
stead of providing a full definition of the compiler and proving that it is
correct in the sense that any compiled code is observably equivalent to the
original one, it certifies correct every run of the compiler. That is, for ev-
ery particular input program, and each transformation step, the infrastruc-
ture compares the semantics of the transformed code to the original seman-
tics. For every transformation step, proof obligations, expressed in first-order
logic, stating the semantics equivalence are fed into a prover to be discharged.
The main advantage of this approach with respect to the previous one, is
that the full definition of the compiler is not needed and, since proofs are
specialized to a given particular program, certificates become significantly
smaller. However, as with certified compilers, there is also the inconvenience
of requiring the availability of the source program.
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