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Abstract. Human path planning relies on several more aspects than
only geometric distance between two locations. These additional aspects
mostly relate to the complexity of the traveled path. Accordingly, in
recent years several cognitively motivated path search algorithms have
been developed that try to minimize wayfinding complexity. However,
the calculated paths may result in large detours as geometric properties
of the network wayfinding occurs in are ignored. Simply adding distance
as an additional factor to the cost function is a possible, but insufficient
way of dealing with this problem. Instead, taking a global view on an
environment by accounting for the heterogeneity of its structure allows
for adapting the path search strategy. This heterogeneity can be used
to regionalize the environment; each emerging region may require a dif-
ferent strategy for path planning. This paper presents such an approach
to regionalized path planning. It argues for the advantages of the chosen
approach, develops a measure for calculating wayfinding complexity that
accounts for structural and functional aspects of wayfinding, and states a
generic algorithm for regionalization. Finally, regionalized path planning
is demonstrated in a sample scenario.
Keywords: Path planning, regionalization, wayfinding complexity, cog-
nitive ergonomics

1 Introduction

Wayfinding is defined to be a purposive, directed, motivated activity to follow
a route from origin to destination that reflects the cognitive processes going on
during navigation [1]. It is based on a wayfinder’s mental representation of an
environment or, in case of not well known environments, on external represen-
tations delivered as a means of wayfinding assistance. In urban environments,
planning one’s route through the environment is largely determined by the net-
work of streets [2]. This network is the predominant structure movement occurs
in, i.e., the structure of the environment drives planning and execution of the
wayfinding task—at least on the large-scale, environmental level [3, 4].

Automatically planning a path through such networks classically only ac-
counts for geometric properties of the network, predominantly path length and
the distance between two nodes. In recent years, several approaches have been



presented that instead account for human principles of path planning and the
cognitive complexity of traveling through a network. Their calculated paths may
result in large detours. This is because they focus only on one aspect of path
planning, namely the reduction of cognitive complexity. The approaches ignore
geometric aspects and the overall structure of an environment. They only account
for the neighborhood of the current location for deciding on how to proceed. This
paper presents an approach to regionalized path planning in network environ-
ments where the strategy employed for path search can be adapted to properties
of the part of the environment planning currently occurs in.

In the following section, some background on human wayfinding in urban
environments, wayfinding complexity and cognitively motivated path search is
presented. Section 3 argues for a regionalized approach to path planning that
acknowledges possible heterogeneity of an environment. Section 4, then, develops
a measure for wayfinding complexity and a generic algorithm for performing
regionalization of an environment, followed by an illustration of regionalized path
planning in Section 5. Section 6, finally, concludes the paper with a summary
and an outline of some future work.

2 Wayfinding in Urban Environments

In the following, human path planning and execution (Section 2.1) and its rela-
tion to environmental complexity (Section 2.2) is discussed. Different approaches
allow for measuring environmental complexity (Section 2.3). Finally, different
path search algorithms accounting for these findings are presented in Section 2.4.

2.1 Path Planning in Urban Environments

In their planning, humans often do not take the shortest or fastest path, which
today’s automatic assistance systems (e.g., internet route planners or car navi-
gation systems) usually calculate. Instead, their conceptualization or perception
of the environment determines path choices. Golledge [5] lists a number of fac-
tors that influence human path choice. Next to distance and time these include
number of turns, shortest or longest leg first, many curves or turns, first noticed
and most scenic route. Others (e.g., [6]) have explored how the angle with which
the direction of the current or initial segment deviates from the direction to the
destination influences path choice. Since these factors are based on cognitive and
perceptual aspects and do not rely on distance (or at least just on perceived, not
actual distance), routes may differ between traveling to a place and back from
that place again [5].

In [7], Wiener et al. found that there is a difference between the chosen path
depending on whether it is communicated to others, planned for being traveled
by oneself, or actually traveled along. There have been significant differences be-
tween the routes that participants (who knew the environment well) had chosen
to communicate to others and those they actually traveled themselves. While
this may be due to communication considerations, i.e., selecting a route that is



easier to describe and remember, there are also differences between the route
planned to travel and the actually traveled one. This seems to indicate that
routes are not fully planned ahead in every detail, but some options can only
be verified and, thus, chosen in situ. This supports the concept of hierarchical
planning and execution in wayfinding as argued for by Timpf [2, 3], for instance.

2.2 Environmental Complexity

The structure of an environment has a strong influence on people’s wayfinding
behavior. The complexity of this structure to a large part determines the com-
plexity of wayfinding. In complex environments, people have more difficulties
building up a mental representation, i.e., learning the environment (e.g., [8]).
Wayfinding itself is also more difficult. People take longer and make more mis-
takes [9, 10]. Different factors influence the complexity of an environment’s struc-
ture. Heye and Timpf [11] elicited some of these factors for traveling in public
transport. Here, complexity mostly depends on the structure of the stations and
the paths between places to be traveled there. Generally, structural complexity
of built environments depends on architectural differentiation, the degree of vi-
sual access, and the complexity of the layout [12, 13]. In urban environments, a
layout’s complexity is determined by the types and orientation of streets [14] or
competing spatial reference systems [15], among others.

2.3 Measuring Environmental Complexity

There are different approaches to calculating measures of the structural com-
plexity of an environment. One prominent example is the approach of space
syntax [16], which uses largely topological measures to capture the influence of
a space’s structure on human (social) behavior. A key concept is intelligibility
that describes how predictable (understandable) the global structure of space
is from observations of local properties. The structure of an environment may
further be described using methods of integration or choice, among others.

Others have focused on the structure of the underlying network. O’Neill [17]
introduced interconnection density (ICD) as a measure. The ICD value is the
average number of nodes connected to every node. In that it captures the con-
nectedness of an environment. It relates to measures of integration (as in space
syntax). With increasing ICD, wayfinding performance decreases [17]. This indi-
cates that many possible ways through an environment aggravate constructing
mental representations of that environment (there is more to be stored) and
increase the chance of making errors (there are more options to choose a wrong
turn). In a similar line of thinking, Mark [18] characterized intersections of an
environment according to the number of possible choices at them. For each type
of intersection, different costs are assigned that reflect the difficulty of navigating
it. The simplest action to perform is to go along a straight segment, followed by
turning around a corner, which requires a mental update of one’s heading. Inter-
sections, i.e., points in a network where there are several options to continue the
path, are weighted according to their number of branches. Coming to the dead



end of a T-intersection, which forces a decision on how to continue, is treated as
a special case with lower costs than other intersections.

In his theory of wayfinding choremes, Klippel [4] elicited human conceptu-
alizations of turning actions in networks. One of the main results shows that
humans have prototypical mental representations of the actions performed in
the network, rather than prototypical representations of an intersection’s struc-
ture. Taking this into account, an intersection’s complexity increases if it offers
several turns into the same conceptual direction (cf. also [19]).

2.4 Cognitively Motivated Path Search Algorithms

To capture wayfinding complexity as discussed above in automatically planning
a path through an environment, in recent years different path search algorithms
have been proposed that account for principles of cognitive ergonomics. These
principles are human-centered, in that the optimization criterion used to de-
termine a path is based on aspects that emerge from the conceptualization of
wayfinding situations, for example, the likelihood of going wrong or the ease
of describing the path. The criteria are not directly dependent on geometric
properties of the path network, such as distances between nodes. All the dif-
ferent approaches can be implemented as a variant of Dijkstra’s shortest path
algorithm [20]. In the following, these approaches will be presented.

Duckham and Kulik [21] extend standard shortest path search by a heuris-
tic that reflects the complexity of negotiating the decision point represented by
the two adjacent edges (e.g., turning from one edge onto another). The specific
weighting used is based on an adaptation of Mark’s measure [18]. Duckham and
Kulik term their algorithm simplest path algorithm. In a simulation experiment,
they show that their algorithm generally results in paths that are only slightly
longer than the shortest path. While the costs employed account for structural
differences of intersections, they do not account for functional aspects, for ex-
ample, (possible) ambiguity in the direction to take at an intersection, nor land-
marks or other environmental characteristics that might be exploited in instruc-
tions. Like shortest paths, the simplest path finds the cheapest path according
to a cost function. Unlike shortest paths, the cost function used applies to the
complexity of navigation decisions rather than travel distance or time.

The landmark spider [22] is an approach that acknowledges landmarks as
crucial elements in wayfinding and performs routing along (point-like) landmarks
located in the environment. For these landmarks, a salience value is assumed
to be known (e.g., [23]). The landmark spider accounts for three parameters
in determining edge weights: the salience of a landmark, its orientation with
respect to the wayfinder and its distance to the edge. To compute orientation,
a simple homogeneous four sector model is used, dividing the plane in “front,”
“left,” “right” and “back” direction. The landmark spider approach calculates
the ‘clearest’ path, i.e., the path that leads a wayfinder along the most suitable
landmarks. The algorithm does not account for any distance information.

The approach to most reliable paths presented by [24] aims at minimizing
the possibility of choosing a wrong turn at an intersection. As in simplest paths,



the structure of an intersection influences path choice. Here, the assumption
is that while instructions, such as “turn left,” are easy to understand, they
may still result in wrong decisions given that there are several options to turn
left at an intersection. Accordingly, paths in this approach are optimized with
respect to the ambiguity of instructions describing the decision to be taken at
intersections. For each turn, i.e., for passing from an edge e to an edge e′ that are
both connected by a middle vertex, the unreliability measure is calculated. This
measure is defined as the number of turns that are instruction equivalent. Two
turns are instruction equivalent if they are described using the same linguistic
variable. Geometrically, both turns head approximately in the same direction.
To compute the linguistic variable, a qualitative direction model is used (cf. [25,
26] for a discussion of the adequacy of different direction models).

In its original implementation, geometric length of edges is used as a sec-
ondary criterion to distinguish equally unreliable paths—the shorter one is se-
lected. Consequently, Haque and coworkers extended this original algorithm to
allow for a weighting between unreliability (r) and path length (w):

op(e, e′) = λdw(e′) + λur(e, e′)

This way, the trade-off between reliability and length can be shifted in one
direction or the other. In simulation experiments, Haque and coworkers have
been able to show that an agent using most reliable paths to navigate through
a street network performs better than an agent relying on shortest paths. This
also holds for the optimized most reliable paths.

Richter and Duckham [27] combine the reasoning behind simplest paths and
context-specific route directions [19]. Just as simplest paths, the algorithm for
simplest instructions paths finds the best route, i.e., the route associated with
the lowest costs in terms of instruction complexity. However, the algorithm uti-
lizes instruction principles and optimization criteria that are related to functional
aspects of human direction giving and avoid ambiguity in instructions. The algo-
rithm makes use of the systematics of route direction elements developed in [28].
Consequently, it allows for multiple alternative instructions (labels) to navigate
a pair of edges. Furthermore, it realizes spatial chunking [29]. When selecting
the node with the currently lowest cost, the algorithm tries to spread all instruc-
tions that node has been reached with forward through the graph. To this end, it
checks whether neighboring nodes are chunkable using these instructions as well.
Using superordinate chunking rules that check for cognitive and structural plau-
sibility, this spreading of instructions allows for traversing several nodes with a
single instruction, thus reducing the travel costs, or, in terms of route directions,
the number of instructions that need to be communicated.

3 Path Planning in Regionalized Environments

An analysis of the different cognitively motivated path search algorithms shows
that compared to the shortest path each approach results in detours in the path
from origin to destination [30]. The length of the detour largely depends on the



structure of the environment. Since the algorithms are designed to account for
complexity in wayfinding and aim at minimizing this complexity one way or
other, all avoid complex parts of the environment by navigating around them.
Depending on the environment, the resulting detours may turn the calculated
paths nearly useless as the increased effort (time and distance) is much greater
than the decreased complexity and, thus, users would not accept this path as
the solution to their wayfinding problem.

As a consequence, cognitively motivated path search algorithms need to coun-
teract these detours somehow in order to render them useful in any given situ-
ation. One way to achieve this is to take the geometric aspects that have been
excluded previously into account again. In most reliable paths [24], for example,
a weighting is possible between unreliability (a cognitive aspect) and path length
(a geometric aspect). Setting the weights is an optimization problem. Favoring
the cognitive aspects too much bears the danger of getting large detours, while
a strong favor of the geometric aspects may counter the original intention of the
algorithms, namely accounting for the complexity of wayfinding.

Introducing this second parameter into the path planning algorithm tries to
mediate between the ease of following a route and the length of paths by weight-
ing the parameters. This has two fundamental drawbacks, which are related.
First, using a weighting between two factors is a bottom-up approach that tries
to fix the detour problem on a uniform level. Everywhere across the environ-
ment the same weighting is used. This ignores that the problem domain at hand
(the environment) may be heterogenous and may require different strategies in
different areas. Second, because of this ignorance of the global structure of an
environment the adaptation of the weights has to be done for each new environ-
ment individually and mostly from scratch in order to find a sensible balance. It
is largely a trial-and-error process that runs until the results “look good.”

Instead, since the structure of an environment plays such a crucial role in
wayfinding complexity and the performance of the path search algorithms, an
obvious approach is to directly exploit environmental structure in countering
the detour behavior of cognitively motivated path search algorithms. This is a
top-down approach, acknowledging that the environment at hand may be het-
erogenous with respect to its structure and, as a consequence, its wayfinding
complexity. To enable this approach, the environment needs to be analyzed to
identify crucial differences within its structure. If no such differences exist, the
path search algorithms behave uniformly across the environment. In this case
emerging detours will either be small or the environment is so complex that it
would be hard to find a sensible weighting that counters the detours anyway.

There are different aspects and different methods to identify the structural
differences within an environment (see Section 4). Independent of the chosen
method, the analysis results in the identification of different regions, i.e., a re-
gionalization of the environment. Those parts of a network that are in the same
region share the same properties according to the chosen regionalization method.
They belong to the same class. The number of different classes may vary depend-
ing on both the environment and the chosen method. For example, there may



be just two classes of regions—simple and complex, or the differentiation may
be more elaborate, for example, “highway system,” “major streets,” “suburb,”
“downtown,” and so on. Having a representation of an environment’s network
that contains information about the regionalization, it is possible to use different
path search strategies for each region class. This adapts searching for an opti-
mal path to the environment’s structure at hand. The general algorithm and its
properties are discussed next, Sections 4 and 5 then illustrate this approach with
some examples.

The Regionalized Path Planning Algorithm

The regionalized path planning algorithm takes as its input a graph G represent-
ing the environment’s network of streets and a node o that represents the origin
of the route to be taken. The algorithm works on both the original graph and
the complete linegraph [21]. The original graph reflects the geometry of the envi-
ronment, i.e., each node has a position coordinate. Also, each node is annotated
with the region class it belongs to. The algorithm also takes a list of region-tuples
(class,function); class is a value for the region class at hand, function represents
the cost function to be used for path search for this region class. The algorithm’s
result is a path from origin to destination, represented as a sequence of nodes
that need to be traversed. Since these nodes have a position, this sequence can
be directly mapped back to the geographic data the graph is derived from.

Path planning is performed as it is done in Dijkstra’s shortest path algo-
rithm [20]. To account for the heterogeneous structure of the environment that
is identified by regionalization, the algorithm is adapted to allow for using dif-
ferent cost functions depending on the region a node is in. To this end, when
expanding a new node it is checked to which region class it belongs. According
to this, the costs to reach the neighboring nodes is calculated using the corre-
sponding cost function. Algorithm 1 summarizes the regionalized path planning
algorithm. In this notation, the algorithm works on the linegraph [21], which is
used by most cognitively motivated path search algorithms. Searching on the
original graph can be realized accordingly.

Algorithm 1 is very similar to the well known Dijkstra algorithm. The only
addition is the dependence of the cost function on the region class. This reflects
that regionalized path planning is a top-down approach. Once the representation
of the environment—the graph—is set up with region information, path planning
itself is a matter of correctly adapting to the region of the environment search
currently occurs in. In that, Algorithm 1 can be seen as a kind of meta-level path
search algorithm. It selects the right strategy depending on the current situation.
Note that it is not possible to stop search the first time the destination is reached.
This is because cost functions, such as the one used in simplest instruction
paths [27], might not only depend on local information (the current edge), but
on global information (e.g., previously traversed edges or the current region) as
well. This may result in situations where a path that reaches the destination
later on in the search process may be better than the one that has reached the
destination first.



Algorithm 1: The path planning algorithm for regionalized environments.
Data: G = (V, E) is a connected, simple, directed graph; G′ = (E′, E) is the

complete linegraph; o ∈ E is the origin (starting) edge; w : R× E → R+

is the edge weighting function, which depends on the region class R.
Result: Function p : E → E that stores for each edge the preceding edge in the

least cost path.
// Initialize values;1

forall e ∈ E do2

Initialize c : E → R+ such that c(e)←∞;3

Set S ← {}, a set of visited edges;4

Set p(o)← o;5

Set c(o) = 0;6

// Process lowest cost edge until all edges are visited
while |E\S| > 0 do7

Find e ∈ E\S such that c(e) is minimized;8

Add e to S;9

forall e′ ∈ E\S such that (e, e′) ∈ E do10

// Update costs to e′ based on region’s cost functon
Set r ← region(e), the region class of e;11

if c(e′) > c(e) + w(r, e′) then12

Set c(e′)← c(e) + w(r, e′);13

Set p(e′)← e;14

4 Regionalization of Environments

As pointed out in Section 3, there are different aspects and methods that may
cause a regionalization of an environment. It may be possible to use existing
regions, for example, districts of a city to structure the environment. However,
this does not tell anything about differences in environmental complexity since
these districts are just administrative boundaries that are drawn for historical
or census reasons. Another approach could be to divide the streets represented
in the network in different classes according to their road status hierarchy. It can
be assumed that traveling along highways is less complex than traveling through
small streets in a downtown area. However, this default assumption does not
always hold. Further, using this simple approach there is no distinction possible
within hierarchy levels, i.e., the actual complexity of the configurations of streets
on the same hierarchy level cannot be judged.

Thus, for the purpose of path planning that accounts for environmental com-
plexity, regionalization must be performed on the network based on (some of)
its properties. For example, it is possible to use the measures explained in Sec-
tion 2.3 or those underlying the cognitively motivated path search algorithms
(Section 2.4). Both ICD [17] and Mark’s complexity measure [18] can be used to
determine the complexity of the nodes in the network. These two measures, as
well as the derived measure used in simplest paths [21], rely on topological and



ordering information only. And they account for local information only. They are
restricted to information concerning the number of branches at a given node.

In the following, regionalization is performed by, first, calculating a complex-
ity value for every node of the network and, second, clustering these nodes based
on their values to form region classes. Based on the discussion in Section 2, three
parameters that are derived from the network are used in the process:

1. Number of branches: according to ICD and Mark’s measure, the more branches
there are at a node, the more difficult it is to correctly navigate the corre-
sponding intersection. While this parameter ignores function in wayfinding
(cf. [4]), it reflects the fact that a high number of branches provides more
opportunity to take the wrong turn, i.e., increases the chances for wayfinding
errors. Further, intersections with many streets meeting there become more
complex as there is more information to parse before taking a decision.

2. Average deviation from prototypical angles: people have prototypical concep-
tualizations of turning actions in wayfinding [4]. Street configurations that
do not adhere to the prototypical angles are hard to conceptualize and to
correctly integrate in the environment’s mental representation [14]. Thus,
covering a functional aspect of wayfinding, intersections with oblique turns
are deemed more complex than those following the prototypical angles of 90
and/or 45 degree turns. As wayfinding complexity is calculated for individual
nodes (not the edges), the average deviation for all combinations between
two of the node’s branches needs to be calculated.

3. Average segment length: decision points are the crucial parts of route fol-
lowing [31]. In street networks, decision points correspond to intersections.
These are the spots along a route a wayfinder needs to decide on the further
way to take. They are the spots where wayfinding errors occur. Therefore,
along long segments there are fewer possibilities to make errors since there
are fewer decision points. Areas with short segments, on the other hand, have
a higher density of decision points. Thus, longer segments indicate an area
that is less complex for wayfinding, simply because there are fewer options
to decide from. Again, since complexity is calculated for nodes, the average
segment length over all branches of a node is used.

These parameters capture both structural and functional aspects of wayfinding.
They aim for reflecting human assessment of wayfinding complexity.

4.1 The Combined Wayfinding Complexity Measure

Using the three parameters number of branches, average deviation, and aver-
age segment length we can define a combined wayfinding complexity measure
CWC. The complexity cwc of an individual node nk is the sum of the values
for the three parameters. The individual parameters can be weighted to account
for differences in the relevance of each parameter. The order of magnitude of
the different parameters depends on the environment’s structure and the geo-
graphic data at hand. The number of nodes can be expected to be in the range



of lower positive integers—there will hardly be intersections with more than 8
branches. The length of street segments, however, may range from a few meters
to several kilometers. Further, when calculating distances, the values depend on
the coordinate system’s representation. For Gauss-Krüger, for example, coordi-
nates are represented as 7 digit numbers. Therefore, values of the parameters
are normalized to be in the range [0, 1] first before adding them up. To this
end, the maximum value for each parameter needs to be known, i.e., the max-
imum number of branches nbmax, the maximum average deviation admax, and
the maximum average segment length almax. As discussed above, for number of
branches and deviation, small values denote low complexity, for segment length,
however, high values correspond to low complexity. Therefore, the length value
is subtracted from 1 to account for this difference in the value’s semantics.

Equation 1 states how to calculate the wayfinding complexity value of an
individual node. Here, nbk is the number of branches of the node nk (its degree),
the different λ’s are the weighting factors, d(γ) is the deviation of an angle γ
from 90 (45) degrees, γ(b1, b2) is the angle between two branches b1 and b2, and
l(b) gives the length of a branch b.

cwc(nk) = λnb
nbk
nbmax

+ λd

Pnbk
j=0

Pnbk
i=0,i 6=j d(γ(bi,bj))

nbk

admax
+ λl(1−

Pnbk
i=0 l(bi)

nbk

almax
) (1)

A low CWC value for a node corresponds to an intersection that can be expected
to be easy to navigate, a high value to a complex intersection.

4.2 Regionalization by Clustering

Applying Equation 1 to all nodes, i.e., calculating the CWC value for each node,
results in a distribution of complexity values across the environment. This can
now be used to form region classes and, based on the classes, to perform region-
alization of an environment.

It can be assumed that the distribution of complexity values is not random,
i.e., that there are clusters of nodes which have similar complexity values. How-
ever, the values will not necessarily change gradually between neighboring nodes.
While this will often be the case, there will also be leaps in values, for example,
at those points where local, dense parts of the network connect to main streets
that define the global structure of an environment. These considerations can be
exploited in the regionalization process.

As a first step, region classes need to be defined based on the CWC values. In
principle, there can be an arbitrary number of classes. Usually, a small number
of classes will suffice to reflect the environment’s structure, though. Each class
corresponds to a mutual exclusive interval in the range of [0, 1], i.e. the interval
[0, 1] is divided into sub-intervals to form the region classes. According to these
intervals, each node belongs to a region class. In order to form regions from
the individual nodes, nodes of the same class that are spatially near need to be
subsumed into clusters.



In general, neighboring nodes that are in the same region class are subsumed.
This way, all nodes that are connected by at least one path that contains only
nodes of the same region class form a cluster of that region class. Two further
aspects need to be considered: 1) the size of clusters; 2) nodes surrounded by
nodes of a different region class. The first aspect relates to the willingness of
calling a collection of nodes a “region.” Clusters should have a minimum size in
order to count as a region. Having two neighbored nodes belonging to the same
class hardly can be considered a region. Nodes correspond to intersections in
the real world (or to streets when looking at the linegraph). Even if two neigh-
bored intersections are much more complex than their neighbors, they may be
remarkable for humans, but most probably are not considered to be a region in
their own right. Rather, they will be considered to be special in their neighbor-
hood. Further, the path search algorithms presented in Section 2.4 will avoid
such small clusters without much of a detour.

Regarding nodes surrounded by nodes of another class the reverse argument
holds. Even though they belong to a different region class, these nodes should be
subsumed within the same cluster. They can be considered to be outliers within
a cluster. Often, these outliers will belong to a neighboring region class. They
will have a range value one below or above the cluster’s class and, thus, can be
considered to be similar to the other nodes. Using the same reasoning as above,
such a node would correspond to a single intersection that differs in complexity
to its surrounding intersections within a part of the street network. While being
remarkable, conceptually the node will still belong to this part of the network.

The regionalization process consists of two steps. In a first step, connected
nodes belonging to the same region class are subsumed (this may also be done
using a minimum spanning tree of the street network with similarity of CWC
values as edge weight [32]). This results in a set of potential clusters. Each of
these clusters is checked against the size threshold for forming a region. If they
are smaller the cluster is disbanded again. In a second step, for each node that
does not belong to a cluster (anymore), it is checked whether it can be subsumed
with a neighboring cluster of a different region class (see Figure 1). To this end,
for all neighbors of the node it is checked which cluster they belong to. If two or
more of these neighbors belong to the same cluster, the node is added to that
cluster. This threshold of two neighbors is used to avoid meandering clusters
that consist of a single line of nodes. At the same time clusters are less likely
to occur that show large differences in CWC values across the cluster. Using
only a single neighbor that needs to belong to a cluster, it becomes more likely
that a chain of nodes with slowly increasing (or decreasing) CWC values will be
added to that cluster. If a node has more than three neighbors and there are
two or more potential clusters a node can be subsumed in, the cluster with the
most connections to the node is chosen. The second step is repeated until no
more nodes can be subsumed to neighboring clusters. Algorithm 2 summarizes
the regionalization by clustering process.

In principle, using this algorithm nodes may end up belonging to two or
more regions at the same time. This reflects the fuzziness of many real world’s



Algorithm 2: The regionalization by clustering algorithm
Data: G(V, E) is the graph representing the street network; for each node v ∈ V

the CWC value cwc(v) has been calculated using Equation 1; a list of
tuples (regioninterval,regionclass) that defines which sub-interval of [0, 1]
corresponds to which region class; cts is the threshold size of clusters.

Result: regions, a set of regions
Set regions← ∅;1

Set tempclusters← ∅;2

Set unclustered← ∅;3

// Set the region class for each node.
forall v ∈ V do4

forall ( regioninterval,regionclass) do5

if cwc(v) ∈ regioninterval then6

Set rc(v)← regionclass;7

// Construct potential clusters.
forall v ∈ V do8

forall n ∈ neighbors(v) do9

if rc(v) = rc(n) then10

if ∃c : c ∈ tempclusters ∧ n ∈ c then11

Add v to n’s cluster;12

else13

// Add {v,n} as new cluster.
Set tempclusters← tempclusters ∪ {v, n};14

// Check for size threshold.
forall cluster ∈ tempclusters do15

if size(cluster) < cts then16

Set unclustered← unclustered ∪ cluster;17

Set tempclusters← tempclusters\cluster;18

// Add unclustered nodes.
repeat19

forall v ∈ unclustered do20

if ∃n0, .., nk−1 : n0.., nk−1 ∈ neighbors(v) ∧ n0, ., nk−1 ∈ cluster,21

k ≥ 2, cluster ∈ tempclusters then
Add v to cluster;22

Set unclustered← unclustered\{v};23

until no node has been added to any cluster ;24

// Setting regions to the set of clusters joined with the set of remaining
unclustered nodes as default region.

Set regions← tempclusters ∪ unclustered;25
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Fig. 1. The clustering process: a) each node is assigned to a region class; b) nodes of
the same class are clustered if they are all on the same path; c) clusters smaller than
the region threshold (here 3) are removed; d) nodes not belonging to a cluster may
be assigned to a neighboring cluster if two or more of their neighbors are within this
cluster.

regions [33]. For the application of the regionalized path planning algorithm
(Algorithm 1) this would result in ambiguous situations. Therefore, only one of
the clusters is kept. Different strategies can be used to decide this: the first cluster
the node has been added to may be kept, or the largest or smallest it belongs to.
Likewise, some nodes may end up not belonging to any region. Therefore, there
always needs to be a default “region” that subsumes all these nodes.

4.3 Discussion

The wayfinding complexity measure CWC has three factors λnb, λd, and λl,
which are used for weighting the three measure’s components. At a first glance,
this seems to result in the same effect discussed above for most reliable paths [24].
Setting different weights changes the outcome of the regionalization algorithm.
In most reliable paths, setting different weights changes the ratio between ac-
counting for geometric and for cognitive aspects. As argued above, this has
drawbacks related to the need to adapt the weights to each environment indi-
vidually. However, in Equation 1 the weights are used to determine the influence
each parameter has on wayfinding complexity. It reflects the influence each pa-
rameter has in general; it is not bound to a specific environmental setting. The
weights used do not influence the path search strategies employed, but rather
determine the regionalized structure path search is performed on.



5 Example

The approach to regionalized path planning as discussed above has been tested
using different scenarios. Here, one scenario is used for illustration: path planning
in the inner-city area of Bremen. A map of that area can be seen in Figure 2a.
The area comprises of some big streets connecting different districts of the city,
some parts with regular street patterns, and some dense, old parts of the city,
which are especially located along the river.

a) b)

Fig. 2. a) Part of Bremen, the test environment; b) the complex (dark colored) and
simple (light) regions identified for this environment.

Figure 2b shows a regionalization of the environment. In this example, only
two kinds of regions are distinguished: those regions with complex intersections
and regions that are easy to navigate. The region threshold in Algorithm 2 is
set to 5. This threshold is chosen for illustration purposes to ensure that regions
emerge which will result in a clear detour if circumvented by a path search
algorithm. Any node that is not part of a region after clustering is assigned to
the “easy” region, which is used as default region. A complex region is a region
with nodes having a CWC value greater than 0.6 (this value is chosen ad hoc for
illustration purposes only—the CWC value which actually delineates easy and
complex intersections would need to be determined empirically; cf. Section 6).
As can be seen, the ‘complex’ regions are mostly located along the river in the
dense old-town parts where streets meet at odd angles.

To illustrate regionalized path planning in this environment, for the ‘simple’
regions the chosen path search strategy is ‘shortest path,’ for the ‘complex’ re-
gions the ‘simplest paths’ [21] is chosen as strategy. The reasoning behind this
combination is that in those parts with low wayfinding complexity people will
have few problems in understanding the shortest path. Often, shortest and sim-
plest path do not differ much here anyway. It is in the complex parts of the
environment that people need instructions that take away the complexity of the



environment. Forcing the simplest path algorithm to find a path through complex
parts of the environment achieves just that. The resulting paths get wayfinders
out of these parts in the simplest way available without resulting in large devia-
tions from the course to the destination. In an actual assistance scenario, where
verbal or graphical instructions are provided to wayfinders, understanding these
paths can be made easier by employing strategies for generating cognitively er-
gonomic route instructions (cf. [34, 29, 28]).

Figure 3 shows an example of the shortest, simplest and regionalized path
between the same origin / destination pair. As can be seen, the shortest path
runs through complex and simple parts of the environment as it only relies on
distances between nodes as a geometric property of the network. The simplest
path avoids the complex parts, thus, taking a large detour to reach the desti-
nation in this example. The regionalized path, finally, lowers complexity in the
complex parts of the environment according to the simplest path approach and
gets through simple parts of the environment as fast as possible, as predicted.

Fig. 3. Planning a path between a sample origin / destination pair. Illustrated are the
differences between the shortest path (light colored line), the simplest path (medium
colored line taking the bow to the right), and the regionalized path (dark line).

6 Conclusions

Human path planning relies on several more aspects than only geometric prop-
erties of an environment, i.e., the shortest distance between two locations. For
wayfinding and path planning in network environments, such as urban street sys-
tems, in recent years several cognitively motivated path search algorithms have
been presented. These approaches cover different aspects of principles of human



path planning. Essentially, all the approaches are extensions of Dijkstra’s clas-
sical shortest path algorithm. By taking into account cognitive aspects of path
planning, the approaches largely ignore geometric aspects. They try to minimize
wayfinding complexity, not the length of the traveled path. Accordingly, they
avoid complex parts of an environment and, thus, may result in large detours.
This renders the calculated paths unacceptable.

In this paper, an approach to regionalized path planning has been presented
that acknowledges that environments may be heterogeneous, i.e., that environ-
mental complexity usually is not uniformly distributed across an environment,
which is an assumption other cognitively motivated approaches implicitly make.
This approach employs adaptable strategies depending on the region path search
currently occurs in. This way, the strategy that allows for optimal assistance in a
given region of the environment may be chosen. The paper presented the overall
approach to regionalized path planning arguing for its advantages, developed a
measure for an intersection’s wayfinding complexity and a generic algorithm that
allows for regionalizing an environment based on this measure, and presented an
example applying regionalized path planning to adequately cope with changing
complexity in an environment’s structure.

Regionalized path planning takes a global approach when it comes to ac-
counting for complexity of an environment. This is different to other approaches
to cognitively ergonomic path planning that in each step only account for the
immediate surrounding of a single node. These approaches never leave their local
perspective and, thus, can only take local decisions in their planning. However,
path planning is known to be hierarchic [3] and to be based on regions as well [35].
Accordingly, future work on regionalized path planning comprises path search on
different levels—the level of regions and the level of individual nodes—and the
implementation of more global path search strategies, for example, region-based
ones. The global view will also be more strongly reflected in the complexity anal-
ysis where aspects of monotony of an environment and similarity of neighboring
intersections will be integrated, in line with [36]. Further, both for the weighting
of the different factors in calculating the CWC values and for setting a threshold
value for complex intersections future (empirical) work is required to elicit values
that reflect human conceptualization and behavior.
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