Divide-and-Conquer Strategies
for Process Mining

J. Carmonal, J. Cortadella!, and M. Kishinevsky?

! Universitat Politécnica de Catalunya, Spain
2 Intel Corporation, USA

Abstract. The main goal of Process Mining is to extract process models
from logs of a system. Among the possible models to represent a process,
Petri nets is an ideal candidate due to its graphical representation, clear
semantics and expressive power. The theory of regions can be used to
transform a log into a Petri net, but unfortunately the transformation
requires algorithms with high complexity. This paper provides techniques
to overcome this limitation. Either by using decomposition techniques, or
by clustering events in the log and working on projections, the proposed
techniques can be used to alleviate the complexity and make the theory
of regions practical for real-life problems.

1 Introduction

Process Mining [20] is an emerging area that has arised in the last decade.
The basic goal is to extract knowledge from event logs recorded in information
systems. Several researchers have provided in the last years algorithms to mine
formal models from logs, most of them included in the ProM framework [19].

The synthesis problem [9] is related to process mining: it consists in building
a Petri net that has a behavior equivalent to a given transition system. The
problem was first addressed by Ehrenfeucht and Rozenberg [10] introducing re-
gions to model the sets of states that characterize marked places. In the area
of synthesis, some approaches have been studied to take the theory of regions
into practice. In [2] polynomial algorithms for the synthesis of bounded nets
were presented. This approach has been recently adapted for the problem of
process mining in [3]. In [6], the theory of regions was applied for the synthesis
of safe Petri nets with bisimilar behavior. Recently, the theory from [6] has been
extended to bounded Petri nets [5].

Process mining differs from synthesis in the knowledge assumption: while
in synthesis one assumes a complete description of the system, only a partial
description of the system is assumed in process mining. Therefore, bisimulation is
no longer a goal to achieve in process mining. Instead, obtaining approximations
that succinctly represent the log under consideration are more valuable [22].
However, synthesis can be adapted for process mining in two ways: either the
log is encoded as a transition system (introducing state information, as described
in [18]) and state-based methods for mining [4] are applied, or language-based
methods are used directly on the log [3,21].



Due to its complexity, it is clear that the region-based approach might be-
come impractical when dealing with large logs. In this paper, we present methods
to alleviate significantly the complexity of the region-based approach. Two ap-
proaches are presented to this end:

— A decomposition approach to find a set of components (conservative Petri
nets), each one describing a partial view of the log. This approach avoids the
exhaustive computation of regions and instead applies local search of regions
(inspired on the notion of allocation from Hack [12]) until a component is
detected. The set of components can either be composed to form a unique
Petri net or presented separately. This approach is described in Section 3.

— A divide-and-conquer approach to split the log into pieces, by means of
projection. The method selects groups of events tightly related in the log
for which the decomposition approach will be applied, projecting the log
on these events. When neither the classical region-based mining nor the
decomposition approach presented in this paper are able to handle a large
log, this aggressive technique has proven to be very successful. The approach
is presented in Section 4.

In both approaches, the goal is to offer a set of partial views of the behavior
observed in the log, by means of a set of Petri nets whose parallel composition
can reproduce any trace observed in the log.

Let us illustrate the idea of the divide-
and-conquer approach (see Figure on the
right): given a log L with set of events
FE, using some ordering relations of the
events appearing in the log, derive a
causal dependency graph of the set of the | 5 ! L|p
events. This graph is then cut into sev-
eral pieces, each piece representing a set

\
of events tightly related by causal depen- .
dencies (in the figure, the sets E; ... E, (o] [ [« (c) (co

are found). Finding a good partitioning is a problem on its own, but several
approaches can be used to this end, including graph cut algorithms [11,14] or
spectral graph theory [7]. Then the log is projected for each one of the sets
of events. The decomposition method presented in this paper is then applied
for each projection, obtaining a set of conservative components that covers the
events in the log that were considered in the projection.

Log L
Events E

2 Basic Theory

2.1 Finite Transition Systems and Petri Nets

Definition 1 (Transition system). A transition system (TS) is a tuple
(S,E, A, sin), where S is a set of states, E is an alphabet of actions, A C
S x E xS is a set of (labelled) transitions, and s;, € S is the initial state.



We will use s 5 s’ as a shortcut for (s,e,s’) € A, and the transitive closure
of this relation will be denoted by —. Let TS = (S, E, A, s;,) be a transition
system. We consider connected TSs that satisfy the following axioms:

— S and FE are finite sets.
— Every event has an occurrence: Ve € E : 3(s,e,s’) € 4;
— Every state is reachable from the initial state: Vs € S : s;,, — s.

The language of a TS, L(TS), is the set of traces feasible from the initial state.
When L(TS;) C L(TS;), we will denote TSy as an over-approximation of TS;.
Given a trace o € L(TS) and a set A C E, 0 |4 is the trace resulting of
removing from o all events in £ — A. Analogously, TS |4 is the TS that arises
after contracting all transitions of events in £ — A.

Definition 2 (Petri net [15]). A Petri net (PN) is a tuple (P, T, F, My) where
P and T represent finite and disjoint sets of places and transitions, respectively,
and F C (P xT)U (T x P) is the flow relation. The initial marking My C P
defines the initial state of the system?>.

The sets of input and output transitions of place p in PN N are denoted by 3 p
and pY;, respectively (we omit the subscript indicating the net if the context is
clear). The set of all markings reachable from the initial marking my is called its
Reachability Set. The Reachability Graph of PN (RG(PN)) is a transition system
in which the set of states is the Reachability Set, the events are the transitions
of the net and a transition (mq,t,mso) exists if and only if m; BN mo. We use
L(PN) as a shortcut for L(RG(PN)).

We now define the concept of parallel composition of PNs [23], that will be
used extensivelly along the paper.

Definition 3 (Parallel Composition).
Given PNs Gy and Go, their parallel composition is denoted by G1||Gy =
(B, Tip, £y, moy) ), where:

P :P1X{*}U{*}><P2

Ty ={(tt) |[teThinTy
U{(tl,*) | t1 €Ty —Ts
U{(*,tz) | to € To—1

Fy = {((p1,p2), (t1,t2)) | (p1,t1) € F1 or (p2,t2) € Fa}
U{((t1,2), (p1,p2)) | (t1,p1) € F1 or (t2,p2) € Fa}

. m(n(pl) if pr € Py
mou((pl,m)) = { moz(p2) if pe € Pa

3 For the sake of clarity, we restrict the region theory of this section to the class of
elementary net systems: 1-bounded Petri nets without loops. The theory for the
general case (k-bounded weighted Petri nets) is described in [4,5], and the theory of
the rest of the paper is applicable for the general case.



Regions

r;={sl,s2} a b

r,={sl,s3}

rj: {s2,s4} \c/

r,={s3,s4} ‘

r={s5} d
(b) (d)

Fig. 1. (a) Transition system, (b) regions, (c) Nts, (d) Causal dependency graph.

2.2 Regions and Region-based Synthesis

We now review the classical theory of regions for the synthesis of Petri nets [6,9,
10]. Let S’ be a subset of the states of a TS, S’ C S. If s ¢ S" and s’ € S, then
we say that transition s = s’ enters S’. If s € S’ and s’ ¢ S’, then transition
s %5 ¢ exits S'. Otherwise, transition s — s’ does not cross S'.

The notion of a region is central for the synthesis of PNs. Intuitively, each
region is a set of states that corresponds to a place in the synthesized PN, so
that every state in the region models the marking of the place.

Definition 4 (region). A set of states r C S in TS = (S, E, A, 8i) is called a
region if for each event e € E, exactly one of the three predicates (enters, exits
or does not cross) holds for all its transitions.

Hence, a region is a subset of states in which all transitions labelled with
the same event e have exactly the same “entry/exit” relation. This relation will
become the predecessor/successor relation in the Petri net. Examples of regions
are reported in Figure 1: from the TS of Figure 1(a), some regions are enumerated
in Figure 1(b). For instance, for region 79, event a is an exit event, event d is an
entry event while the rest of events do not cross the region.

Each TS has two trivial regions: the set of all states, .S, and the empty set.
Further on we will always consider only non-trivial regions. The set of non-trivial
regions of TS will be denoted by Rts. A region r is a pre-region of event e if
there is a transition labelled with e which exits r. A region r is a post-region
of event e if there is a transition labelled with e which enters . The sets of all
pre-regions and post-regions of e are denoted with °e and e°, respectively. By
definition it follows that if » € °e, then all transitions labelled with e exit 7.
Similarly, if € e°, then all transitions labelled with e enter r.



Algorithm: PN synthesis on the set of regions R

— For each event e € E generate a transition labelled with e in the PN;
— For each region r; € R generate a place r;;
— Place r; contains a token in the initial marking iff the corresponding
region r; contains the initial state of the TS s;p;
— The flow relation is as follows: e € r;e iff ; is a pre-region of e
and e € eor; iff r; is a post-region of e, i.e.,

Fr ™ {(re)lr€Rrs A e€ E A € °e}
U{(e,r)[re Rts N e€c E AN ree’}

Fig. 2. Algorithm for Petri net synthesis from [10].

r,s,sb,p,ac,ap,c
r,sb,em,p,ac,ap,c
r,sb,p,em,ac,rj, rs,c
r,em, sb,p,ac,ap,c
r,sb,s,p,ac,rj,rs,c
r,sb,p,s,ac,ap,c
r,sb,p,em,ac,ap, c

(a) (b)

~N oUW N

Fig. 3. (a) event log, (b) corresponding transition system.

The algorithm given by [10] to synthesize a PN, Nvs = (R, E, Fg, Rs,, ), from
an elementary transition system* TS = (S, E, A, 5;,) and a set of regions R, is
illustrated in Figure 2. An example of the application of the algorithm is shown
in Figure 1. The initial TS and a set of regions is reported in Figures 1(a) and
(b), respectively. The synthesized PN is show in Figure 1(c). When the TS is
elementary, running algorithm of Figure 2 on the set of non-trivial regions Rts
derives a PN such that L(PN) = L(TS) [10].

Given an event e, ER(e) denote the set of states where event e is enabled
(Excitation Region), and SR(e) the set of states reached when firing e in a state
from ER(e) (Switching Region)®. These sets will be used to compute the ordering
relations between events (see below).

2.3 Deriving transitions systems from logs

For a complete understanding of the approach presented in this paper, it is
necessary to show how to transform a log into a TS, which is the starting point

4 Elementary transition systems are a proper subclass of the TS considered in this
paper, where additional conditions to the ones presented in Section 2.1 are required.

5 Excitation and switching regions are not regions in the terms of Definition 4. The
terms are used due to historical reasons.



of our algorithms. The theory described in [18] presents many variants for solving
this problem. The basic idea to incorporate state information is to look at the
pre/post history of a subtrace in the log. Figure 3 shows an example, where
states are decided by looking at the set of common prefixes.

2.4 Trigger Relations and its Graph

In this section we present a relation on events, similar to the log-based ordering
relation [20], but which is defined in the TS. It is based on the ER/SR sets.

Definition 5 (Causal Dependency Graph). Given a TS = (S, E, A, s;y),
and two events a,b € E:

1. a triggers b (a —1s b) if SR(a) NER(D) # 0 and ER(a) NSR(b) =0, and
2. a is concurrent to (a ||ts b) b if SR(a) NER(b) # 0 and ER(a) N SR(b) # 0.

The causal dependency graph over TS, denoted CDG(TS), is the undirected
graph (E.M ), with M C E x E such that (a,b) € M iff a —>1s b or b —7s a.

For instance, the causal dependency graph of the transition system of Figure 1(a)
is depicted in Figure 1(d).

3 Computation of Conservative Components

The goal of this section is, given a TS, derive a set of conservative components
whose parallel composition contains all the traces possible in the TS. For the
sake of simplicity, we will restrict the definitions for the case of conservative 1-
bounded nets, known as state machines [15]. At the end of the section we show
how to generalize the theory for arbitrary k-bounded nets.

Let us illustrate the theory of this section revisiting the example of Figure 1.
From the set of regions reported (r; ...75), there are two subsets that correspond
to partitions of the set of states in the transition system of Figure 1(a) (depicted
in Figures 4(a) and (c¢)). For instance, the subset r1, r4 and r5 forms a partition.
The main idea is: when a subset R of regions is a partition, then the synthesis
algorithm from Figure 2 applied on R will derive a conservative Petri net, i.e. a
Petri net where the number of tokens is preserved. Figure 4(b) and (d) show the
two Petri nets corresponding to each partition, respectively.

3.1 State machines and its State-based Representation

We start by defining formally the concept of subnet and state machine compo-
nent:

Definition 6 (Subnet). A triple N' = (P, T',F') is a subnet of a net N =
(P,T,F)if P CP, T'CT and F' = F N ((P' x T') U (T" x P')).



Fig. 4. Example of conservative components decomposition for the example of Figure 1:
(a) Partition of the transition system on regions r1, r4 and r5, and (b) the derived state
machine. Partition (c¢) and derivation (d) for regions 72, rs and 5.

Definition 7 (State Machine Component). A state machine component
(SMC) N' = (P',T',F’") of a net N is a subnet of N such that

1. for everyt € T : |%.t| = |th/| =1, and
2. for everyp € P', (y\pUpk) C T’

An SMC of a PN (N,My) is a pair (N',M{) such that N' is a SMC of N, for
every p € P+ Mg(p) = Mo(p) and 3 . pr Mi(p) = 1.

The following theorem states the main result of this section:

Theorem 1. Let TS = (S,E, A, si,), and consider the net
Nts = (Rvs, E, Frys, Rtss,,) obtained by the algorithm of Figure 2 on Rrs.
Given a set of regions R C Rts, if R forms a partition of S, then algorithm of
Figure 2 on R defines an SMC of Nvs.

Proof. Assume the contrary, i.e. R is a partition of S and there is a transition e
in SMC with at least two predecessor places 7;,7; € R (the case for successor
places is analogous). According to algorithm of Figure 2, r; € ®e iff r; € °e,
and the same applies for r;. If ; € °e (r; € °e), then every state s € S such
that (s,e,s’) € A satisfies s € r; (s € r;), because otherwise r; (r;) will not
be a pre-region of e. This implies that every state s such that (s,e,s’) € A
satisfies s € r; N r;. But then r; Nr; # () and therefore R is not a partition, a
contradiction. (]

3.2 Allocation-based SMC Computation

In Hack’s thesis [12], the idea of allocation was introduced to decompose a Free-
choice Petri net into a set of safe and conservative components (S-components).



Algorithm 1: SMCComputation
Input: Transition system TS = (S, E, A, sin), event ev € E
Output: Set of regions R forming a partition of S
1 begin
2 R—1
3 Evs «— {ev}
4 r; «— PickOneRegion({r|r € °ev})
5 r; «—PickOneRegion({r|r € ev® AT Nr; = 0}
6
7
8
9

PendingRegs «— {ri,r;}
Part «— {ri,r;}

repeat
r «+— RemoveOneRegion(PendingRegs)

10 foralle € E— Evs:e € °rUr° do
11 r; «— PickOneRegion({r|r € e Ar N Part = 0})
12 r; «—— PickOneRegion({r|r € e® A7 N Part = 0})
13 if r; 0V r; #0 then
14 Evs «— Evs U{e}
15 R«— RU{ri,r;}
16 PendingRegs «—— PendingRegs U {r;,r;}
17 Part «—— PartU {r;,r;}
18 end
19 end

20 until PendingRegs = 0V Part = S
21 if Part C S then R «— {S}
22 end

The idea is to select a-priori, among the places in the pre-set of a transition, the
one that will be in the pre-set of the transition in the constructed S-component.

Following the idea of allocation from Hack’s thesis, we present a method to
derive an SMC from a given TS. Algorithm 1 describes the iterative process
of finding regions until a partition of the states in TS is computed. Due to
Theorem 1, the set of regions R forms an SMC. The idea of the algorithm is:
starting from an initial event ev and two arbitrary regions in °ev and ev® (lines
4-5 of the algorithm), keep growing a partition by iteratively including pre-post
regions of new events until the partition equals the set of states in TS or no more
regions can be found (lines 8-20). In the algorithm, the set PendingRegs contains
all the regions to be explored, and Part represents the partition constructed so
far. Finally, it might be possible that no region is found as a pre/post-region of
a particular event. In this situation the function PickOneRegion will assign the
empty set to the corresponding regions (i.e. to 7; or r;), and therefore the set
PendingRegs will not be increased. If the set of regions found are not enough as
to form a partition of S, the trivial region S is returned and therefore the SMC
will simply be the initial event with a self-loop place (line 21).

The general method to find a set of SMCs that cover every event of the TS is
described in Algorithm 2. At each iteration i, it tries to find a new SMC SMC;



Algorithm 2: SMCDecomposition
Input: Transition system TS = (S, E, A, Sin)
Output: Set of SMCs
SMCy = (R, E1, F1, Mo 1) ...SMC,, = (Rn, En, Fp, Mo,n)

1 begin
2 X—F
3 1+ 1
4 repeat
5 ev «— RemoveOneEvent(X)
6 R; «— SMCComputation(TS,ev)
7 E; — {elee (°rUr°) A r€SMC; N rC S}U{ev}
8 F; — {(r,e)leer®Ar e RiNe€ E;}U{(e,r)le € °rAr € RiANe€ E;}
9 Mo, «—— Vr € R; : Mo,i(r) = r(Sin)
10 X+— X—-E;
11 1e—1i+1
12 until X =0
13 end

that covers one of the events still not covered by any SMCj, for j < i. When a
given event ev can only be found by the trivial region S, the set F; only contains
the event ev and therefore the SMC derived will be a self-loop place on event
ev.

Property 1. Algorithm 1 derives an SMC, and L(TS) C L(SMC(C).

Property 2. Given the set of regions R;...R, found by Algorithm 2,
Uiz1..n Bi C Rrs.

Property 2 ensures that the set of regions needed to cover the events is at
most the set of non-trivial regions. A complexity alleviation (with respect to
classical synthesis methods) can be obtained when the set of regions computed
by Algorithm 2 is a proper subset. Section 5 shows examples of this.

Informally, the parallel composition of n Petri nets is a Petri net where
every transition with the same label in two or more components represents a
synchronization point for the corresponding components [23]. See Definition 3
for a formal definition. The following theorem can be proven:

Theorem 2. Let SMC) = (Ry,Ey,F1,Myq1)...SMCy, = (Ry, Ep, Fr, Mo )
be the set of components found by Algorithm 2 on TS = (S, E, A, sin). Then
L(TS) CL(SMCy || ... || SMC,,).

Proof. First, consider the net Nts as the result of applying algorithm of
Figure 2 on Rts. Second, Property 2 guarantees that the set of regions found
by Algorithm 2 in every SMC; is a subset of Rys. This implies that the set
of predecessor (successor) places of every transition in SMCy || ... || SMC,
is a subset (maybe proper) of the predecessor (successor) set of the transition



in Nts. In other words, the places and arcs in SMCy || ... || SMC, are a
subset of places and arcs in Nts. Finally, provided that the initial marking
of SMCy || ... || SMC, is equal to the one in Ntg for the joint places, we
have that every trace in Nts is also a trace of SMCy || ... || SMC,. This
can be proven by induction on the length of a trace ¢ € LNts: if |o] = 1,
it represents a transition enabled in the initial marking, which will be also
enabled in SMC} || ... || SMC, because the transition has the same or less
predecessor places and therefore are marked according to Definition 3. Assume
true for |o| = n. If |o] = n + 1, using the induction hypothesis we can fire in
SMCy | ... || SMC, the n first transitions, and provided that places and arcs in
SMCy || ... || SMC,, are a subset of places and arcs in Ns, the tokens produced
to enable in Ntg the last transition of o are also produced (maybe a proper
subset) to enable the transition in SMCy || ... || SMC,, after firing the first n
transitions. This proves the trace inclusion L(Nts) C L(SMCy || ... || SMCy).
But provided that L(TS) C L(Nts) [4], then then language of the parallel
composition is also a superset of L(TS). O

Algorithm 2 is nondeterministic: depending on the order of events selected, a
different set of state machines can arise. This has an impact both in the quality
of the overapproximation obtained and complexity of the method, measured in
the number of regions necessary. In the future, more elaborated strategies can
be build on top of the approach presented to address these concerns.

3.3 Covering the Causal Dependency Graph

The causal dependency graph can be used to improve the quality of the generated
parallel composition: if some causal dependency between a pair of events is not
transferred to an SMC with a shared place of the corresponding transitions, one
can try to derive a new SMC that contains this relation.

Let a —Ts b be an ordering relation found in the TS. If the set

{r | SR(a) UER(b) C r AT € Rrs}

is not empty, then any region of this set may be used to try to find an SMC
covering the ordering relation a — s b. Algorithm 1 can be adapted to search
for some region in this set that derives a non-trivial SMC (i.e. different from the
self-loop place SMC) containing the causality relation between a and b. This is
done by adapting the PickOneRegion predicates to search for regions r in the
set above.

3.4 Generalization to Arbitrary Conservative Components

The theory presented in the previous sections can be lifted to the general case.
Informally, in a conservative component the sum of weights in incoming arcs of a
transition is equal to the sum of weights in outgoing arcs. To derive conservative



components for bounds greater than one, the idea is to generalize the notion of
partition, deriving the concept of multipartition. Let us first define the concept
of P/T net to generalize Definition 2:

Definition 8 (P/T net). A P/T net is a tuple (P,T,F,My) where P
and T represent finite sets of places and transitions, respectively, and
F:(PxT)U(T x P)— N is the weighted flow relation. The initial marking
My € NPl defines the initial state of the system.

We can generalize the notion of state machine from Definition 7 to derive the
concept of conservative component:

Definition 9 (Conservative Component). A conservative component (CC)
N’ =(P',T',F’") of a net N is a connected subnet of N such that:

1. For everyt €T, ZPE;\/'It F'(p,t) = Zpet;\,, F'(t,p)

2. For everyp e P', (ypUp%) C T’
A CC of a PN (N,My) is a pair (N',M{) such that N’ is a CC and for every
p € P": My(p) = Mo(p)-

And assuming the notion of k-bounded region [5] where a region r assigns a
cardinality 0...k to every state s (i.e. 0 < r(s) < k), we can define the concept
of multipartition:

Definition 10 (Multipartition). A set R = {r;} of nonempty multisets forms
a multi-partition of a set S if there is a constant k € NV such that:

1.VseS:3 cpri(s) =k,
2. VZ#‘]TZ#TJ

The case k = 1 corresponds to a partition.

Figure on the right il-
lustrates a multipartition for
k = 2 in an abstract way.
It shows three regions rq, 7o
and r3 by labelling cardinal-
ity zones with the names of
the regions in the whole set of
states. For instance, region r¢
has cardinality 2 for states in
the top-left corner, whereas |
it has cardinality 1 for the set of states surrounding its cardinality-2 states.
On these states, part of it intersects with cardinality-1 states of ro, and part of
it intersects with cardinality-1 states of r3. It is easy to show that it is a multi-
partition since for each state the sum of the cardinalities assigned by r1, ro and
r3 equals 2.




Fig. 5. Transition system.

Theorem 3. Let TS = (S,E, A, si,), and consider the net
Nts = (Rys, E, Frys, Rtss,,) obtained by the Algorithm of Figure 2 on
Rts. Given a set of regions R C Rrs, if

— R forms a multi-partition of S, then it defines a CC of Nts,
— R forms a partition of S, then it defines an SMC of Nvs.

Proof. The proof is a generalization of the proof provided for Theorem 1. O

4 A Divide-and-Conquer Approach for Petri Net Mining

This section presents the second contribution of this paper: to face the complexity
required for dealing with large TSs, an approach is presented to project the
TS into tightly related events, dealing smaller TSs. Then the decomposition
approach presented in the previous section can be applied on these smaller TSs.

4.1 Introductory Example

Let us illustrate the idea with the toy example from Figure 5, representing the
behavior (A; ((B; E) || (C;F) | (D;G)); H), in a TS having 28 states. In Fig-
ure 6(a), we illustrate the causal dependency graph. Our goal is to find balanced
partitions of the causal dependency graph by means of cuts.

Figure 6(b,top) reports a minimal cut obtained from the graph of Figure 6(a),
namely {C,F}. Notice that, provided that we are interested in conservative
components that are synchronized with common events, when projecting the
behavior of the initial TS into the set of events found in the cut we include the
events outside of the cut which are adjacent to vertices in the cut, e.g. events A
and H in the figure (these events are called border events). The same happens
when the second cut {B, E'} is reported on the reduced graph (Figure 6(c)).
From each one of the sets of events found, the TS from Figure 5 is projected
onto them and a conservative component covering the events in the projection
is found (this is shown in the bottom part of each cut).



B/ 2\]) B/ Z\D Hs/ A\D A\D
LD G
VNN

O O={z]
[i-O~r O [i-O~Le-O [i-O{s]
(a) (b) (©) (d)

Fig.6. (a) Causal dependency graph, (b)-(d) (Top) Consecutive cuts of the causal
dependency graph, (Bottom) State machines covering each cut.

4.2 Causal Dependency Graph Partitioning

There exist several techniques for the partitioning of a graph into a set of clus-
ters [11,14]. In this section we show one of these techniques, that does not have
to be the most efficient nor the optimal, but it was easy to implement. It consists
on iteratively finding bi-partitions until some halting criterion is reached.

In order to find a balanced partition of CDG(TS) = (E, M) into two sets,
let us use the well known RatioCut [13] metric. Given a partition E ... E, of
the set E, the metric is defined as:

" cut(E;, E;
RatioCut(Ey ... E,) =Y cut(Ey, i)

where E; denotes the complement of set E;, and
cut(A, B) = |{(i,7)|(¢,5) e M Ni € A,j € B}|.

If only two sets (i.e. a bi-partition) are used in the previous formula, the
following optimization problem can be considered:

min RatioCut(A, A)
ACE

i.e. finding the best bi-partition for the given graph. A way to approximate the
optimal solution to this optimization problem is by using the Fielder vector,
which is the eigenvector corresponding to the second smallest eigenvalue of the
(unnormalized) Laplacian matrix L = D — A, where D is the degree matriz of
the nodes in the causal dependency graph, and A its adjacency matrix [7].

More concretely, if f € RIZ! is the Fiedler vector, then a bipartition (E1, Es)
can be obtained as follows:

ec Fhif fo >0
e € Fy otherwise



Algorithm 3: DivideAndConquerMining
Input: TS = (S, E, A, sin), MaxSize
Output: Set of SMCs
SMC1 = (R, Er, F1,Mo1) ... SMCpn = (Rn, En, Frn, Mon)

1 begin

2 Compute —s, ||Ts event relations

3 (E1...E,) «— GraphPartition(CDG(TS),MaxSize)
4 forall E; do

5 E; «— AddBorderEvents(TS,E;,E)

6 SMCDecomposition(TS |z;)

7 end

8

By iteratively finding bi-partitions, one can derive n partitions of the set of
events of the causal dependency graph, as it has been done for the causal depen-
dency graph from the example of Section 4.1. This iteration can be terminated
using a halting criterion: number of events in the projection, size of the log, CPU
time-limit for the region computation, among others. In our approach, provided
that we are interested in the mining of conservative components, the degree of
concurrency between the events and the maximal size allowed has been used to
decide if further partitioning is required.

4.3 Divide-and-Conquer Approach

Algorithm 3 presents the approach. First it computes the causal and concurrent
relations (see Definition 5) present in the TS (line 2). Then the causal depen-
dency graph is partitioned into n sets (n is an output of the method, and is
dependant on the MaxSize parameter). Finally, the computation of SMCs cov-
ering each projection is applied (lines 4-7). Notice that in order to avoid the
derivation of independent SMCs, i.e. SMCs without common events, each set
FE; is augmented with border events, i.e. events in £ — F; that are adjacent in
the causal dependency graph to some event in E; (line 5). The following lemma
is crucial into providing a relation between the initial TS and the set of nets
derived:

Lemma 1. Let TS = (S,E, A, $in), PNy and PNy such that L(TS |g,) C
L(PN;), fori=1,2. Then L(TS |g,ur,) € L(PNy || PN3).

Proof. (We show the case 1N Ey # (), because the other is trivial): by induction
on the length of traces in L(TS |g,um,). For traces of length one, it is easy
to see that events enabled in s;, correspond to transitions in PN; || PNy that
are initially enabled. Assume it holds for traces of length at most n. Induction
step: let oa € L(TS |g,uE,), with |o| = n, and assume a € E; N Ey (the other
cases are particular instances of this one). By definition, ¢ |g, a € L(TS |g,).
Hence o |, @ € L(PNy), i.e. every event that puts a token in a place from *a



is fired in o |g,. The same reasoning can be done for PNg, and given that the
only predecessor places of a in PNy || PNy are the union of predecessor places
of a in PNy and PNz (see Definition 3), and o is possible in PNy || PNy due the
induction hypothesis, a is enabled in PN; || PNy after firing o. O

The following theorem provides the main result of this section:

Theorem 4. Let SMCl = (RlaElaFlaMO,l) e SMCn = (RnaEnaFnaMO,n)
be the set of components found by Algorithm 3 on TS = (S, E, A, sin). Then
L(TS) CL(SMCy || ... || SMC,,).

Proof. Tt can be shown by successive applications of Lemma 1 on sets of events
until £h1 U Ey = F. O

5 Experiments

The theory described in Sections 3 and 4 has been incorporated into the tool
Genet [4,5]. The first experiments were conducted to test the ability to redis-
cover conservative components from well-structured descriptions, i.e. to apply
Algorithms 1 and 2, and its corresponding generalizations (as described in Sec-
tion 3.4). To this end, the TS of the following k-bounded Petri nets was used:

1. A model for n processes competing for m shared resources, where n > m.
Figure 7(a) describes the Petri net,

2. A model for m producers and n consumers, where m > n. Figure 7(b)
describes the Petri net.

3. A 2-bounded pipeline of n processes. Figure 7(c) describes the Petri net.

Table 1 reports the first experiment: comparing mining (-pm) versus conser-
vative components derivation (-cc). For each benchmark, the size of the transi-
tion system considered (states and arcs), together with the number of places and
transitions derived by the k-bounded mining method described in [4] is given. Fi-
nally, the number of conservative components found by Algorithm 2 and the sum
of all the places found in the components is reported (the number of transitions
in the conservative components derivation is equal to the number of transitions
in the mining approach and is not reported). The CPU time is provided for each
one of the approaches. For each example, Figure 7 provides gray boxes with the
conservative components found (some of the boxes share transitions, i.e. they
will synchronize on the firing of the transition in the parallel composition of the
components). In conclusion, the derivation of conservative components might
overcome the complexity problems of the region-based method, sometimes with-
out the inclusion of extra behavior in the resulting Petri net.

The second experiment was to have some confidence on the quality of the
approach presented in Section 3. For that end, we used the fitness factor, de-
scribed in [17]. Fitness evaluates whether the mined net complies with the log,



P| ™ P
- n
n 2 2
P » Pn
P, Pn
(a) (b) ()

Fig. 7. Parameterized benchmarks: (a) n processes competing for m shared resources,
(b) m producers and n consumers, (c) a 2-bounded pipeline of n processes. Each box
represents a conservative component found.

and it is one of the main measures provided [ .[" 4 Tat+ [Parikh|Heuristic|Genet-cc
by the Conformance checker within ProM. |70 ssl 080l Unb 0sd  oss
Numerically, fitness ranges from 1 (good) to |5 o84l 081 Unb ossl 086
0 (bad). The table on the right reports the || 4 |y
fitness of some miners within ProM, and
the fitness of the net corresponding the parallel composition of the SMCs com-
puted by Algorithm 2. The three logs used are the illustrative logs described
in [17]. We report Unb when the net obtained is unbounded and therefore no
conformance checking can be done. In summary, numbers in the table are promis-
ing for our approach, and we believe they can improve if techniques like the ones
presented in Section 3.3 are additionally applied.

0.55| Unb 0.62 0.58

The third experiment was to test the divide-and-conquer mining approach
described in Section 4. We have used two types of examples: logs from [1], and a
real-life system modelling a complex module that controls the operation of opti-
cal lithography process for mass chip production [16]. Both types of benchmarks
are difficult to mine using the region-based mining approach described in [4]. Ta~
ble 2 compares the classical region-based mining and divide-and-conquer mining
for these benchmarks. We report the size of the transition system, and columns
|P|, |[S]| report the number of places and size of the corresponding reachability
graph of the mined Petri net. For the divide-and-conquer mining, columns |Bis],
k, |CC|, |P| and |Ty| report the number of bisections performed on the causal
dependency graph (see Section 4.3), the bound used in the conservative compo-
nent generation, the total number of conservative components found, the total
number of places found and the number of events not covered by any place (the
less events uncovered, the better), respectively. We use mem to report that the
approach aborted due to memory problems.



Genet-pm Genet-cc [
benchmark |S] |E|||P| |T| CPU|||CC]| |P] CPU
SHAREDRESOURCE(5,2) 918  4320| 21 20 0Os 5 20 0Os
SHAREDRESOURCE(4,3) 255 1016| 17 16 0Os 4 16 0Os
SHAREDRESOURCE(6,4) 4077 24372| 25 24 18s 5 24 5s
SHAREDRESOURCE(7,5) 16362 114408| 29 28 25m 7 28 47s
PrRODUCERCONSUMER(3,3) 32 92| 8 7 0Os 4 8 0Os
PrRODUCERCONSUMER(4,3) 64 240( 10 9 0Os 5 10 0Os
PrRODUCERCONSUMER(6,3)| 256  1408| 14 13 0Os 7 14 0Os
PrRODUCERCONSUMER(8,3)| 1024  7424| 18 17 2s 9 18 0Os
PrRODUCERCONSUMER(8,5)| 1536 11520| 18 17 1h10m 9 18 25m
BOUNDEDPIPELINE(6) 729 153912 7 6s 6 12 4s
BOUNDEDPIPELINE(7) 2187 5103| 14 8 48s 7 14 40s
BOUNDEDPIPELINE(8) 6561 16767| 16 9 12m 8 16 1lm
BOUNDEDPIPELINE(9) 19683 54765| 18 10 1h50m 9 18 1h30m

Table 1. Synthesis versus derivation of conservative components

Genet-pm Genet-pm Genet-rec

safe 2-bounded k-bounded
benchmark ‘ |S] |A| |E|||P] |[S]| CPU||P| |[S]| CPU||Bis| k |CC| |P| |Tu| CPU
pn_ex_10 233 479 11| 13 281 Os| 16 145 4s 32 3 9 0 Os
al2f0n50_-1 78 77 11| 17 80 Os| 39 63 52s 32 4 23 0 Os
al2f0n50_2 151 150 11|21 92 0.5s|119 96 15m 32 8 19 0 5s
al2f0n50-3 188 187 11| 21 92 0.5s[178 102 21m 12 4 13 0 5s
a22f0n00-1 1209 1208 20| 16 78 9m| — — mem 01 4 30 0 5s
a22f0n00_2 3380 3379 20| 16 78 15m| - — mem 31 6 24 1 4s
a22f0n00-3 5334 5333 20| 16 78 32m| - — mem 31 7 32 1 s
WaferStepper[55043 289443 27] -~ -~ mem| - -~ mem[ 36 9 28 5 5m

Table 2. Mining versus divide-and-conquer mining.

The conclusion from Table 2 is the ability to handle large systems for the
divide-and-conquer approach. For instance, the mining of 2-bounded Petri nets
applied to the al2fOn50 examples needs two orders of magnitude more CPU
time than the divide-and-conquer approach. Moreover, the Petri nets resulting
from mining are sometimes very complex (e.g. the 2-bounded Petri net mined
for the bench al2f0n50_3 contains 178 places) and will not be very useful as
visualization objects. Instead, the divide-and-conquer approach provides simple
views of the complex behavior considered.

The WaferStepper benchmark requires a comment: it represents a large and
complex system. It needs a 6-bounded Petri net to be modelled. Of course, the
region-based mining method can not deal with systems of such size for the given
bound, and therefore, partitioning methods like the divide-and-conquer method
presented in this paper might be the only option for systems like this.



6 Related Work

The approach presented in this paper can be seen as hierarchical method: the
initial problem is partitioned into small pieces for which a solution is more likely
to exist, due to the size reduction obtained. Together with the approach pre-
sented in [8], to the best of our knowledge there is no other approach for Petri
net mining that uses this strategy.

The approach presented in this paper differs from the clustering approach
presented in [8] in the following:

1. In this approach we give a special emphasis into the mining of conservative
components, i.e. Petri nets that describe sequential and conflict dependencies
between events.

2. In [8] the partition is on the set of instances (traces) of the log, i.e. the log
is horizontally partitioned, whereas in our approach the separation is done
on the set of events hence the log is vertically partitioned.

3. The partition approach presented in this paper is related to the Petri net
derivation applied afterwards, in the sense that events tightly related by
causal dependencies are likely to become in the same conservative compo-
nent. In contrast, the partition approach presented in [8] uses a different
principle: each trace is projected into the most relevant features (computed
previously) and associated with a vector of values. Then the k-means algo-
rithm is used to partition the vectorial space defined by the traces.

Nevertheless, given that both approaches are orthogonal, they can be applied
together to improve the individual application of each one.

7 Conclusions and Future Work

High-level and decomposition approaches are usually required to solve large
problems. This paper shows that the region-based technique for process min-
ing can also be solved using these type of approaches. First, the decomposition
approach enables the search for sequential views of the process that might be
more useful than the complete process itself. Second, when the size of the log for-
bids the application of classical or decomposition mining, the divide-and-conquer
method presented in this paper alleviates the complexity of computing regions
by projecting the TS into the events that are likely to be related, thus decreasing
considerably its size.

This paper shows the empirical evidence that the approach can significantly
reduce the complexity of the region-based mining approaches. What remains to
be studied is the quality of the derived results. We plan to evaluate different
variants of the approach presented in this paper, to learn heuristics that can
help into reducing the undeterminism of the algorithms presented. The goal is
to obtain similar quality measures as the ones that can be obtained with the
classical region-based approach for process mining.



Acknowledgements

We would like to thank E. Verbeek for providing the WaferStepper exam-
ple. This work has been supported by the CICYT project FORMALISM
(TIN2007-66523), and a grant by Intel Corporation.

References

10.

11.

12.

13.

14.

15.

Process mining. www.processmining.org.

E. Badouel, L. Bernardinello, and P. Darondeau. Polynomial algorithms for the
synthesis of bounded nets. Lecture Notes in Computer Science, 915:364—-383, 1995.
R. Bergenthum, J. Desel, R. Lorenz, and S.Mauser. Process mining based on
regions of languages. In Proc. 5th Int. Conf. on Business Process Management,
pages 375-383, Sept. 2007.

J. Carmona, J. Cortadella, and M. Kishinevsky. A region-based algorithm for
discovering Petri nets from event logs. In M. Dumas, M. Reichert, and M. C.
Shan, editors, BPM, volume 5240 of Lecture Notes in Computer Science, pages
358-373. Springer, 2008.

J. Carmona, J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. A symbolic algorithm for the synthesis of bounded Petri nets. In
29th International Conference on Application and Theory of Petri Nets and Other
Models of Concurrency, June 2008.

J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri nets
from finite transition systems. IEEE Transactions on Computers, 47(8):859-882,
Aug. 1998.

D. Cvetkovié, P. Rowlinson, and S. Simié. Figenspaces of Graphs. Cambridge
University Press, 1997.

A. A. de Medeiros, A. Guzzo, G. Greco, W. van der Aalst, A. Weijters, B. van
Dongen, and D. Sacca. Process mining based on clustering: A quest for precision.
In B. B. A. ter Hofstede and H. Paik, editors, BPM 2007 International Workshops
(BPI, BPD, CBP, ProHealth, RefMod, Semantics4ws), volume 4928 of Lecture
Notes in Computer Science, pages 17-29. Springer, 2008.

J. Desel and W. Reisig. The synthesis problem of Petri nets. Acta Inf., 33(4):297—
315, 1996.

A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures. Part I, II. Acta
Informatica, 27:315-368, 1990.

C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving net-
work partitions. In DAC ’82: Proceedings of the 19th conference on Design au-
tomation, pages 175-181, Piscataway, NJ, USA, 1982. IEEE Press.

M. Hack. Analysis of production schemata by Petri nets. M.s. thesis, MIT, Feb.
1972.

L. W. Hagen and A. B. Kahng. New spectral methods for ratio cut partitioning and
clustering. IEEE Trans. on CAD of Integrated Circuits and Systems, 11(9):1074—
1085, 1992.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell system technical journal, 49(1):291-307, 1970.

T. Murata. Petri Nets: Properties, analysis and applications. Proceedings of the
IEEE, pages 541-580, Apr. 1989.



16

17.

18.

19.

20.

21.

22.

23.

A. J. Pretorius. Visualization of State Transition Graphs. PhD thesis, Technical
University of Eindhoven, 2008.

A. Rozinat and W. M. P. van der Aalst. Conformance checking of processes based
on monitoring real behavior. Inf. Syst., 33(1):64-95, 2008.

W. van der Aalst, V. Rubin, H. Verbeek, B. van Dongen, E. Kindler, and
C. Glinther. Process mining: A two-step approach to balance between underfitting
and overfitting. Technical Report BPM-08-01, BPM Center, 2008.

W. M. P. van der Aalst, B. F. van Dongen, C. W. Giinther, R. S. Mans, A. K. A.
de Medeiros, A. Rozinat, V. Rubin, M. Song, H. M. W. E. Verbeek, and A. J. M. M.
Weijters. ProM 4.0: Comprehensive support for eal process analysis. In J. Kleijn
and A. Yakovlev, editors, I[CATPN, volume 4546 of Lecture Notes in Computer
Science, pages 484-494. Springer, 2007.

W. M. P. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discover-
ing process models from event logs. IEEE Trans. Knowl. Data Eng., 16(9):1128—
1142, 2004.

J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, and A. Serebrenik.
Process discovery using integer linear programming. In K. M. van Hee and R. Valk,
editors, Petri Nets, volume 5062 of Lecture Notes in Computer Science, pages 368—
387. Springer, 2008.

H. Verbeek, A. Pretorius, W.M.P. van der Aalst, and J.J. van Wijk. On Petri-net
synthesis and attribute-based visualization. In Proc. Workshop on Petri Nets and
Software Engineering (PNSE’07), pages 127-141, June 2007.

W. Vogler. Modular construction and partial order semantics of Petri nets. In
LNCS 625. Springer-Verlag, 1992.



