
Grouping MPI Processes for Partial Checkpoint
and Co-migration

Rajendra Singh and Peter Graham�

Dept. of Computer Science
University of Manitoba

Winnipeg, MB, Canada, R3T 2N2
{rajendra,pgraham}@cs.umanitoba.ca

Abstract. When trying to use shared resources for parallel computing,
performance guarantees cannot be made. When the load on one node in-
creases, a process running on that node will experience slow down. This
can quickly affect overall application performance. Slow running pro-
cesses can be checkpointed and migrated to more lightly loaded nodes to
sustain application performance. To do this, however, it must be possi-
ble to; 1) identify affected processes and 2) checkpoint and migrate them
independently of other processes which will continue to run.

A problem occurs when a slow running process communicates fre-
quently with other processes. In such cases, migrating the single process
is insufficient. The communicating processes will quickly block waiting to
communicate with the migrating process preventing them from making
progress. Also, if a process is migrated “far” from those it communicates
with frequently, performance will be adversely affected.

To address this problem, we present an approach to identify and group
processes which we expect to be frequent communicators in the near
future. Then, when one or more process is performing poorly, the entire
group is checkpointed and co-migrated. This helps to improve overall
application performance in shared resource environments.

1 Introduction

Using idle compute resources is cost-effective and systems like Condor have suc-
cessfully exploited such resources in limited contexts (e.g. parameters sweep
studies). Increasingly, networks in large organizations are becoming more capa-
ble and, when combined with latency tolerance mechanisms, can now provide
an attractive platform for running message passing parallel programs as long as
the inter-process communication is not intensive.

In environments where machines are shared, however, load guarantees cannot
be made. If one or more machines become overloaded it will decrease applica-
tion performance. This provides a strong motivation to be able to checkpoint and
migrate the affected processes to new machines. Such performance-driven migra-
tion should not involve the entire set of application processes as this would be
wasteful both in terms of lost progress and overhead (from migrating processes).
� Supported by the Natural Sciences and Engineering Research Council of Canada.

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 69–80, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

70 R. Singh and P. Graham

We previously extended LAM/MPI to provide partial checkpoint and migra-
tion [1]. Our system checkpoints only those MPI processes that need to migrate
due to overloading on their host nodes. For such partial checkpoint and co-
migration to be effective, however, inter-process communication patterns must
be considered which is the focus of this paper. Our prototype instruments the
LAM/MPI Request Progression Interface (RPI) to efficiently gather pair-wise
inter-process communication events. This data forms the basis on which pattern
discovery can be done to determine inter-process communication patterns. These
patterns are then used to predict the communication patterns expected in the
near future, following a checkpoint event. The predicted patterns, in turn, pro-
vide the information needed to determine groups of processes that are expected
to communicate frequently with one another. If one process in such a group
needs to be migrated then all the processes in that group are checkpointed and
co-migrated to a new set of lightly-loaded nodes. Thus, we ensure that these
processes will be located near each other and thus continue to run effectively.

The rest of this paper is organized as follows. In Section 2 we briefly overview
our prototype system for partial checkpoint and migrate. We then describe our
approach to discovering communication patterns in Section 3. Section 4 explains
how we predict groups of future frequently communicating processes using the
discovered patterns. Some results of using our prediction algorithms applied to
synthetic communications data are given in Section 5. We then briefly review
related work in Section 6. Finally, in Section 7, we present some conclusions and
discuss our planned directions for future work.

2 Our Partial Checkpoint/Migrate System

We have developed a prototype system for partial checkpoint and migration of
MPI applications in a LAM/MPI environment that builds on LAM/MPI’s SSI
(System Software Interface) plugin architecture and the Berkeley Lab Check-
point and Restart (BLCR) facility [2]. Our system [1] enables checkpoint, migra-
tion and restart of only those processes that have been impacted by overloaded
compute nodes. A fundamental challenge in doing this is to be able to allow
unaffected processes to continue their execution while the affected processes are
being checkpointed, migrated and restarted. We have modified the LAM/MPI
code base slightly to allow this and also to efficiently gather inter-process com-
munication information on a pair-wise basis.

In our earlier work, we sampled communication information periodically and
maintained summary information over multiple time scales (e.g. 1, 10 and 100
time units). This information was then weighted in various ways to try to deter-
mine the frequently communicating process groups. In our initial implementa-
tion we naively weighted recent information over older information and defined a
simple threshold for deciding whether or not two processes were communicating
frequently enough that they should be checkpointed together. Not surprisingly,
the effectiveness of this simple grouping strategy was limited. In this paper we
present new approaches to predicting future communication patterns that allow

Grouping MPI Processes for Partial Checkpoint and Co-migration 71

us to better group frequently communicating processes for checkpointing and
co-migration and we assess the effectiveness of the groupings.

3 Discovering Communication Patterns

MPI applications exhibit varying communication patterns over time. For exam-
ple, processes in an FFT computation will communicate with other processes
as determined by the “butterfly” exchange pattern inherent in the algorithm.
A process Pi will communicate with different processes depending on the phase
of the computation. We need to be able to discover and group frequently com-
municating processes accordingly. Naturally, applications where all processes
communicate frequently will be unable to benefit from our work.

We predict future communication patterns based on previously observed
patterns. Using the predicted patterns, we identify groups of processes that
communicate frequently so that, when necessary, they can be checkpointed and
co-migrate together. The basis of any prediction scheme relies on our ability
to detect communication patterns using the data on pair-wise communication
events collected by our system. We considered three possible approaches to iden-
tifying recurring patterns in the data: machine learning (e.g. the construction
and use of Hidden Markov Models [3]), data mining techniques (e.g. sequential
mining [4,5]) and various partial match algorithms.

Knowing that communication patterns between parallel processes sometimes
vary and wanting to be able to reason about the pattern matching that is done so
we could “tune” our approach, we decided to explore partial match algorithms.
The TEIRESIAS [6] pattern matching algorithm is used for a number of bioin-
formatics problems related to sequence similarity – how “close” one sequence is
to another. Of interest to us, TEIRESIAS is able to find long recurring patterns
in sequences and is also able to do this subject to slight differences in the pat-
terns. Identifying these types of patterns is important to determining groups of
communicating processes. Relatively long, repeating patterns of nearly identical
pair-wise communication events form the basis for determining which groups of
processes can be reliably expected to communicate with each other.

When applied to DNA nucleotide sequences, the input alphabet, Σ, used by
TEIRESIAS would simply be: { A,C,T,G } and the recurring patterns discovered
would be sequences of these symbols interspersed with some, relatively small,
number of “don’t care” symbols representing minor variations in the repeating
patterns. To use TEIRESIAS to discover patterns in inter-process communi-
cation we must define an alphabet based on the communications data. Each
pair of processes is mapped to a unique symbol using the mapping function:
Θ < p1, p2 >= (p1 × NumProcs) + p2, where p1 and p2 are the process ranks,
and NumProcs is the number of MPI processes. TEIRESIAS can support up to
231 − 1 symbols and its running time is independent of the number of symbols.

The output from our implementation of TEIRESIAS is a list ordered by length
of commonly occurring patterns in an input sequence of communication events.
Each such pattern is accompanied by a list of offsets identifying where they

72 R. Singh and P. Graham

occur in the input sequence. This offset information is used to identify patterns
immediately preceding where a checkpoint occurs. It is also useful for identifying
points at which communication patterns change.

4 Predicting Communicating Groups of Processes

Given the frequently occurring patterns discovered by TEIRESIAS in the inter-
process communication data we collect in our modified version of LAM/MPI,
our goal is to be able to respond to a need to checkpoint and migrate by accu-
rately predicting which processes should be grouped together based on expected
inter-communication. This can be done in a number of ways, subject to certain
characteristics of our proposed environment.

4.1 The Prediction Environment

TEIRESIAS, while efficient, like other pattern discovery techniques, can be
computationally expensive for complex patterns and long sequences. The com-
munication data collected by our instrumented LAM/MPI implementation is
periodically copied asynchronously to the TEIRESIAS-based pattern discovery
process which runs in parallel with the MPIRUN process that starts and coor-
dinates the processes forming each running MPI application. Ideally, and not
unrealistically, these two “control” processes will run on a very capable host
system.

The collection, transfer and analysis of communication patterns occurs on a
regular basis, defining fixed length “sampling periods”. The need to checkpoint
processes due to low performance occurs at unpredictable times and therefore
asynchronously with respect to the sampling periods. Predictions about commu-
nicating process groups in the current sampling period must be made based on
patterns extracted from preceding sampling periods.

4.2 Inter-Process Communication Characteristics

Message passing parallel applications can exhibit very different communications
behaviour and resulting inter-process communication patterns. Application com-
munication behaviour may depend on the parallel programming style used,
the characteristics of the data being processed or on specifics of the selected
algorithm(s). In many cases, however, there is a good deal of regularity in com-
munications that can be exploited to identify groups of communicating processes.

For example, in Master/Slave parallel programming, the pattern of commu-
nication between the master and slaves, and among slaves is normally recurring
over time. A typical Master/Slave approach involves three phases: data distri-
bution, computation and data collection. The master distributes data to the
slaves/workers in equal chunks. The workers then work on the data and, if re-
quired, communicate with other worker processes to exchange information. After
computing, the workers send results to the master. This entire process repeats.

Grouping MPI Processes for Partial Checkpoint and Co-migration 73

The use of Finite Element Methods (FEMs) for heat transfer problems is a
good example of a calculation leading to recurring communication based on the
structure of the data being processed. In such problems, modeling of the phys-
ical state of the entire system is partitioned and solved in parts across parallel
processors. To calculate the temperature in one partition, the computing process
needs to know the temperature in its neighboring partitions. The structure of the
data partitioning thus determines the pattern of inter-process communication.
In this kind of computation, the pattern of communication recurs for each time
step that the application is executing.

Communication patterns may also be algorithm induced. An example of such
an application is the computation of the Fast Fourier Transform (FFT) using
the well known butterfly approach. This example results in changing but regular
patterns of inter-process communication.

4.3 Possible Types of Predictors

The space of possible predictors can be divided into three major types as shown
at the top of Fig. 1. A general, application-independent predictor will be simple
but may be unlikely to give consistently good results for a range of applications.
Custom, application specific predictors offer the best potential for accuracy but
will require significant effort from application programmers who will likely have
to create the predictors themselves. Instead, the use of a small number of gen-
erally useful predictors for a range of application types may be possible. These
“specific” predictors will, in some sense, be application dependent but in a very
general way, based on an application’s inter-process communication character-
istics (such as those described previously). Using such an approach, application
developers will be able to easily pick from a small set of available predictors
based on the high-level characteristics of their applications. In this paper, we ex-
plore some possible predictors for what are perceived as some typical application
types and then assess their performance.

4.4 Our Initial Predictors

We began by implementing two experimental predictors: a basic predictor that
attempted to predict process groups based only on very recent communication

Predictors for Communication

Specific Predictor
(application dependent)

Custom Predictor
(application dependent)

General Predictor
(application independent)

Programming Style
(master/slave)

Data Induced
(FEM)

(Dynamic but Regular)

Algorithm Induced
(FFT)

(Dynamic and Varying)

Fig. 1. Predictor Space

74 R. Singh and P. Graham

patterns, and a historical predictor which exploits information about communi-
cation patterns from earlier sampling periods, if available.

Our basic predictor selects the longest possible frequently occurring pattern
in the most recent sampling period that has occurred at-least twice before the
checkpoint arrival time and which is closest (in terms of time) to the time of
checkpoint request. This is determined using the offset list and length of each
pattern discovered by TEIRESIAS in that sampling period. If we are able to find
a pattern meeting the criteria we designate it to be the basic prediction. This
makes intuitive sense since it is the pattern of communication that appears to
be on-going and is therefore, hopefully, likely to continue. If we don’t find any
pattern that meets these criteria then we simply pick the last pattern found from
the previous sampling period and designate it as the basic prediction. This basic
predictor serves as a baseline for the other predictors and is also used whenever
the historical predictor cannot be used.

Our historical predictor was intended to address possible shortcomings of the
basic predictor based on the fact that it only uses recent communication patterns
to make a prediction. In the case where the application communication pattern
is changing at the time of checkpoint, the immediately preceding patterns may
not be the basis of a sound prediction. Our historical predictors identify patterns
in the recent behaviour of the application and attempt to match these patterns
against, possibly, older patterns stored from previous sampling periods. In this
way, if the application is starting a new pattern of communication that has been
seen earlier, we can make a more appropriate prediction based on the patterns
from the earlier sampling period(s). This can be very effective for applications,
like FFT, with varying but recurring communication patterns.

We implemented two versions of the historical predictor, one which makes a
historical prediction only if there is an exact prefix match with a pattern from a
previous period and the other which may accept a “close” historical match based
on Levenshtein distance [7]. These are referred to as the specific and Levenshtein
historical predictors, respectively.

Using the specific historical predictor, the pattern from the basic predictor is
used as input and checked for an exact match against stored patterns seen in
the past. If we find an exact match against patterns from one or more preceding
sampling periods, then the pattern that occurred in the past immediately after
the matched historical pattern becomes the predicted pattern. In the special case
where the basic prediction exactly matches a pattern that occurred previously
at the end of a sampling period, then we pick the first pattern that occurred in
the next historical sampling period to be the predicted pattern. This process,
naturally, chooses the communication pattern we expect to see next as the pre-
dicted pattern. If there is no match found then the specific historical predictor
fails and the basic prediction is used.

The Levenshtein historical predictor is based on the concept of Levenshtein
distance which simply reflects the number of mismatches between two compared
patterns. The Levenshtein predictor works much as the specific predictor does
except that it can make predictions when no exact match is found. We start with

Grouping MPI Processes for Partial Checkpoint and Co-migration 75

the basic prediction and go through the stored historical patterns and compute
the Levenshtein distance between the base prediction and each pattern. We select
the pattern with the minimum Levenshtein distance (beneath an acceptability
threshold) and designate its historical successor to be the predicted pattern.

4.5 Our Enhanced Predictors

We conducted a preliminary series of experiments (described in Section 5) using
our initial prediction strategies. While the predictors generally performed rea-
sonably well across a range of synthetically generated communication data, some
aberrant behaviour was noted. We determined that the unexpected behaviour
arose because TEIRESIAS was matching long patterns consisting of multiple
repetitions of the same “fundamental” pattern. For example, given a frequently
repeated inter-process communication pattern, A, TEIRESIAS was generating
patterns such as AA, AAA, AAAA, etc. This was because the fundamental pat-
tern (A in this case) occurred multiple times in immediate succession within a
single sampling period. By favouring longer patterns, the fundamental pattern
was ignored. Instead, a pattern close in size to the sampling period consisting of
many repetitions of the fundamental pattern was selected. Unfortunately, this
excessively long pattern did not reoccur frequently until the application had been
running for some time. This resulted in poor performance when checkpoints were
requested relatively early in an application’s execution.

To solve this problem, an enhanced prediction algorithm was created that
explicitly checks for such repeated sequences, allowing it to identify the under-
lying fundamental patterns that are best used for prediction purposes. We use
the Knuth-Morris-Pratt (KMP) pattern matching algorithm [8] to identify fun-
damental patterns by finding adjacent repeated patterns in the long patterns
discovered by TEIRESIAS which consist solely of repetitions of a shorter pat-
tern discovered by TEIRESIAS. The fundamental patterns identified in this way
are then used in place of the original set of patterns found by TEIRESIAS.

5 Results

To assess the effectiveness of our predictors in a controlled environment, we chose
to experiment using synthetically generated communications data. To ensure
meaningful results, our synthetic data was created to reflect well-known com-
munication patterns. This allowed us to start with clean and consistent patterns
where we could more easily understand the behaviour of our predictors. We use
the Levenshtein distance between our predicted pattern and the sequence seen
in the synthetic data as our measure of goodness. We experimented with data
reflecting the key communications characteristics of the three different sample
application types discussed earlier: master/slave, FEM-like and FFT-like. Know-
ing that patterns in real communications data will vary, we introduced noise into
and between the regular communications patterns for the FEM-like data to en-
sure that TEIRESIAS would still discover the necessary patterns. We created

76 R. Singh and P. Graham

hand-crafted data for a variety of “application sizes” and found consistent re-
sults independent of the number of processes. We also found that TEIRESIAS
does tolerate slight differences in and between recurring patterns. We describe
a subset of our experiments highlighting key results. In the figures that follow,
‘basic’ refers to predictions made using only recent communications behaviour,
‘historic’ refers to predictions using the exact match historic predictor and ‘lev-
enshtein’ refers to predictions made using the approximate match (Levenshtein
distance) historic predictor. Results for our enhanced predictors which use the
KMP algorithm to identify fundamental patterns have a ‘(kmp)’ suffix. Result
graphs are presented in 3D only where it improves feature identification.

Figure 2 shows the results using our initial prediction schemes (i.e. no iden-
tification of fundamental patterns) for an application with master/slave style
communication pattern. The basic predictor, not unexpectedly, performs poorly,
failing to correctly handle changes in communications patterns while the Lev-
enshtein predictor performs surprisingly well. Of particular interest, however, is
the drastic misprediction made by the historic predictor at, approximately, time
900 in this example run. This was caused because TEIRESIAS discovered a long
pattern consisting of consecutive “fundamental” patterns which did not occur
in the sampling period around time 900. This was the aberrant behaviour, de-
scribed earlier, that lead us to develop our enhanced prediction schemes. Similar
behaviour was also seen for other communication patterns (e.g. FFT-like).

As expected, our enhanced predictors perform significantly better than our
initial ones, consistently providing high-quality prediction results for both mas-
ter/slave and FFT-like communication patterns as can be seen in Fig. 3 and
Fig. 4, respectively. Although graphs are only shown for the 8 process case,
these results generalize to other problem sizes using more or less processes. They
also are consistent with results for FEM-like communications with “noise”. The
unexpectedly good performance of our original Levenshtein predictor can be ex-
plained by the closeness of the patterns seen in each sampling period to those

Fig. 2. Master/Slave Results for Original Predictors

Grouping MPI Processes for Partial Checkpoint and Co-migration 77

Fig. 3. Master/Slave Results for 8 Processes

Fig. 4. FFT Results for 8 Processes

discovered by TEIRESIAS. We do not expect this performance to generalize well
to real data and more complex communications patterns.

We also ran experiments to test the sensitivity of our predictors to the sam-
pling period size. The results for the start of a four process master/slave commu-
nication pattern are shown in Fig. 51. Not surprisingly, our original predictors
perform very poorly. It is also noteworthy that our enhanced predictors also
show some variation. Choosing an appropriate sampling period size will likely
be important to successful prediction for some patterns of communication.

Finally, we did some experiments where the large-scale characteristics of the
various communication patterns were varied. For example, we increased the

1 We use ribbon graphs for clarity. This is not intended to suggest continuous data.

78 R. Singh and P. Graham

Fig. 5. Master/Slave Results with small sampling period for 4 Processes

Fig. 6. Master/Slave Results with prolonged distribution phase for 8 Processes

duration of the data distribution phase for master/slave communications (re-
fer to Fig. 6). In general, we found our enhanced predictors to be much more
tolerant of a range of changes. This enforces our belief that there is value in
determining fundamental patterns and using them for prediction.

6 Related Work

A number of systems have been built to add checkpointing to PVM, another
message passing parallel programming system. These include Migratable PVM
(MPVM) [9], and DynamicPVM [10] both of which support only full check-
pointing. Vadhiyar et al [11] presented a migration framework designed for grid

Grouping MPI Processes for Partial Checkpoint and Co-migration 79

environments and Huang, et al [12] described Adaptive MPI (AMPI) which pro-
vides “process” migration on top of and tightly coupled with Charm++. Most
recently Wang, et al [13] have also developed a LAM/MPI partial checkpoint sys-
tem. Unlike our system, theirs is focused on reliability rather than performance
and does not permit any MPI processes to continue running during checkpoint
and migration. In a large dedicated cluster environment (the focus of their work)
this is not an issue since migrate and restart is fast and inter-process communica-
tion is uniform and efficient. In a shared environment such as the ones motivating
our work, however, this is inefficient.

7 Conclusions and Future Work

We have developed a family of predictors that can be used to group frequently
communicating MPI processes for checkpointing and co-migration to improve
their performance on shared processors. Our predictors are based on (possibly
refined) inter-process communication patterns discovered by the TEIRESIAS
pattern discovery algorithm run against a sequence of pair-wise communication
events captured by our LAM/MPI code enhancements. Our initial results us-
ing synthetic data that mimics known communication patterns are promising.
Somewhat surprisingly, we saw relatively little difference between the various
algorithms for different application types. This suggests that it may be possible
to create a reasonably good “default” predictor that could be used where little
is known about an application’s communications characteristics or where novice
programmers cannot pick a specific predictor. Even if the consistent performance
is partially an artifact of the synthetic data, we now have confidence that a range
of message passing applications can be supported by only a few predictors.

We plan to explore several directions for future work. So far, we have only
tested our predictors using synthetic data but we are now collecting actual inter-
process communication data and will use this to verify the results obtained and
to increase our confidence in our ability to handle small changes in communi-
cations behaviour that occur in real programs. With a sufficiently large set of
test applications we should also be able to identify optimizations that will better
suit particular application communications characteristics. We will explore this
in an attempt to ensure consistent prediction accuracy. While TEIRESIAS out-
performs other partial match algorithms using its “convolution” approach [6],
its worst-case running time is still exponential for complex patterns with many
variations. Therefore, it is not practical to run TEIRESIAS too frequently. Fur-
ther, our predictor performance is sensitive to the size of the sampling periods.
For the synthetic data used and for dozens of processes, our predictor runtimes
were all sub-second but as the number of communication events increases so too
will the runtime. We are interested in how to balance computational overhead
and prediction accuracy and will do experiments to determine how few pattern
discoveries we can do before missing important changes in inter-process commu-
nications for different types of applications. We will then attempt to create a
mechanism to adapt the sampling period dynamically. We are also interested in

80 R. Singh and P. Graham

finding ways to predict when communication pattern changes are about to oc-
cur to avoid occasional mispredictions. Finally, while TEIRESIAS has performed
well on the synthetic data, we are prepared to explore other algorithms to deal
with any unanticipated problems as we move to real data.

References

1. Singh, R., Graham, P.: Performance Driven Partial Checkpoint/Migrate for LAM-
MPI. In: 22nd International Symposium on High Performance Computing Systems
and Applications (HPCS), June 2008, pp. 110–116 (2008)

2. Duall, J., Hargrove, P., Roman, E.: The design and implementation of berkley lab’s
linux checkpoint/restart. Technical report, Berkley Labs LBNL-54941 (2002)

3. Brejova, B., Vinar, T., Li, M.: Pattern discovery: Methods and software. In:
Krawetz, S.A., Womble, D.D. (eds.) Introduction to Bioinformatics, ch. 29, pp.
491–522. Humana Press (2003)

4. Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalization and Perfor-
mance Improvement. In: Int’l Conf. Extending Database Technology, pp. 3–17
(1996)

5. Pei, J., Han, J.e.a.: PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-
Projected Pattern Growth. In: Int’l Conf. Data Engineering, pp. 215– 226 (2001)

6. Rigoutsos, I., Floratos, A.: Combinatorial pattern discovery in biological sequences:
The teiresias algorithm. Bioinformatics 14(1), 55–67 (1998)

7. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. Soviet Physics 10, 707–710 (1966)

8. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast Pattern Matching in Strings. SIAM
Journal on Computing 6(2), 323–350 (1977)

9. Casas, J., Clark, D., Konuru, R., Otto, S., Prouty, R., Walpole, J.: MPVM: A
Migration Transparent Version of PVM. Technical report, CSE-95-002, 1 (1995)

10. Dikken, L., Linden, F.v.d., Vesseur, J., Sloot, P.: Dynamic PVM – Dynamic Load
Balancing on Parallel Systems. In: Proceedings Volume II: Networking and Tools,
pp. 273–277. Springer, Munich (1994)

11. Vadhiyar, S.S., Dongarra, J.J.: A Performance Oriented Migration Framework for
the Grid. In: 3rd International Symposium on Cluster Computing and the Grid,
Tokyo, Japan, May 12-15, 2003, pp. 130–137 (2003)

12. Huang, C., Lawlor, O., Kalé, L.V.: Adaptive MPI. In: Rauchwerger, L. (ed.) LCPC
2003. LNCS, vol. 2958, pp. 306–322. Springer, Heidelberg (2004)

13. Wang, C., Mueller, F., Engelmann, C., Scott, S.: A Job Pause Service under
LAM/MPI+BLCR for Transparent Fault Tolerance. In: Proc. of the Parallel and
Distributed Processing Symposium, pp. 1–10 (2007)

	Grouping MPI Processes for Partial Checkpoint and Co-migration
	Introduction
	Our Partial Checkpoint/Migrate System
	Discovering Communication Patterns
	Predicting Communicating Groups of Processes
	The Prediction Environment
	Inter-Process Communication Characteristics
	Possible Types of Predictors
	Our Initial Predictors
	Our Enhanced Predictors

	Results
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

