
Dynamic Load Balancing of Matrix-Vector

Multiplications on Roadrunner Compute Nodes

José Carlos Sancho and Darren J. Kerbyson

Performance and Architecture Laboratory (PAL),
Los Alamos National Laboratory, NM 87545, USA

{jcsancho,djk}@lanl.gov

Abstract. Hybrid architectures that combine general purpose proces-
sors with accelerators are currently being adopted in several large-scale
systems such as the petaflop Roadrunner supercomputer at Los Alamos.
In this system, dual-core Opteron host processors are tightly coupled
with PowerXCell 8i accelerator processors within each compute node. In
this kind of hybrid architecture, an accelerated mode of operation is typ-
ically used to off-load performance hotspots in the computation to the
accelerators. In this paper we explore the suitability of a variant of this
acceleration mode in which the performance hotspots are actually shared
between the host and the accelerators. To achieve this we have designed
a new load balancing algorithm, which is optimized for the Roadrunner
compute nodes, to dynamically distribute computation and associated
data between the host and the accelerators at runtime. Results are pre-
sented using this approach, for sparse and dense matrix-vector multi-
plications, that show load-balancing can improve performance by up to
24% over solely using the accelerators.

1 Introduction

The unprecedent need for power efficiency has primarily driven the current de-
sign of hybrid computer architectures that combine traditional general purpose
processors with specialized high-performance accelerators. Such a hybrid archi-
tecture has been recently installed at Los Alamos National Laboratory in the
form of the Roadrunner supercomputer [1]. This system was the first to achieve
a sustained performance of over 1 PetaFlop/s on the LINPACK benchmark.

In Roadrunner, dual-core Opteron host processors are tightly coupled with
PowerXCell 8i processors [2]—an implementation of the Cell Broadband-Engine
architecture (Cell BE) with high double-precision floating-point performance—
within each compute node. This hybrid architecture can support several types of
processing modes including: host-centric, accelerator-centric, and an accelerated
mode of operation. The characteristics of an application determines which mode
is most suitable. The host-centric mode can be thought of as the traditional
mode of operation where applications solely use the host Opteron processors.
In the accelerator-centric mode applications solely run on the PowerXCell 8i,
an example that follows this mode can be found in the application VPIC [3],

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 166–177, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Dynamic Load Balancing of Matrix-Vector Multiplications 167

Gordon Bell Prize finalist at SC08. In the accelerated mode, both the Opteron
and PowerXCell 8i are used in such a way that performance-critical sections of
computation are off-loaded to the PowerXCell 8i accelerators leaving the rest of
the code to run on the host Opterons. SPaSM, a molecular dynamics code, is
an example of an application that followed this accelerated approach [4], also
Gordon Bell Prize finalist at SC08.

A variant of the accelerated mode is to share the performance hotspots between
both the accelerator and host processors for simultaneous processing. The bene-
fit of this is a potential gain in performance, since the computation power of both
the host processors and accelerators can be harnessed simultaneously. The com-
putation power of the host processors may be orders of magnitude smaller than
that of the accelerators but at large-scale, including Roadrunner, the performance
gain can be significant and thus should be exploited. However, this kind of accel-
erated mode increases complexity - extra tools are required in order to efficiently
and dynamically load balance between the hosts and accelerators at runtime. Un-
dertaking such a load balance during application execution is desirable in this con-
text as it is difficult to determine costs associated with individual computations at
compile-time, and also there may be changes in the amount of data to compute per
processor during runtime which can result in repartitioning across nodes.

This paper addresses this challenge and presents a load-balancing algorithm
in order to dynamically distribute the computation and associated data between
the host Opterons and the PowerXCell 8i accelerators at runtime in the compute
nodes of Roadrunner. For illustration purposes we address the common operation
of matrix-vector multiplications on the form of yi+1 = yi + Ax, where A is ei-
ther a sparse or dense matrix and x and y are dense vectors. These operations
are commonly found in scientific applications and are prime candidates to offload
to accelerators. Results show that the dynamic load-balancing algorithm can im-
prove the performance of these operations by up to 24% when using both host and
accelerator processors in comparison to solely using the accelerators. In addition,
the determination of the optimal load balance converges quickly taking only 7 it-
erations. Although the results as presented consider a 4-process parallel job (one
compute node of Roadrunner), there is nothing to prevent our technique to being
applied to larger process counts up to a system-wide parallel job because the scope
of our technique is at the process level rather than at the system level.

The rest of this paper is organized as follows. Section 2 describes the archi-
tecture of a Roadrunner compute node. Section 3 describes our load-balancing
algorithm. Section 4 includes experimental results from a Roadrunner node.
Section 5 summarizes related work on matrix vector multiplications on hybrid
architectures. And finally, conclusions from this work are given in Section 6.

2 The Roadrunner Compute Node

A compute node of Roadrunner is built using three compute blades (one IBM
LS21 blade and two IBM QS22 blades) and one interconnect blade as shown
in Figure 1. Each IBM LS21 blade contains two 1.8GHz dual-core Opteron

168 J.C. Sancho and D.J. Kerbyson

Fig. 1. The structure of a Roadrunner compute node

processors, and a single IBM QS22 blade contains two 3.2GHz PowerXCell 8i
processors [2]. The fourth blade interconnects the three compute blades using
two Broadcom HT2100 I/O controllers. These controllers convert the Hyper-
Transport x16 connections from the Opterons to PCIe x8 buses — one to each
PowerXCell 8i. In this configuration each Opteron core is uniquely paired with a
different PowerXCell 8i processor when using the accelerated mode of operation.

The PowerXCell 8i processors have approximately 95% of the peak floating-
point performance and 80% of the peak memory bandwidth of a node. Each
PowerXCell 8i consists of eight Synergistic Processing Elements (SPEs) and one
Power Processing Element (PPE). The eight SPEs have an aggregate peak per-
formance of 102.4 GFlops/s (double-precision), or 204.8 Flops/s (single-precision)
whereas dual-core Opteron has a peak performance of 7.2 GFlops/s (double-
precision) or 14.4GFlops/s (single-precision). Therefore, a single PowerXCell 8i
can potentially accelerate a compute-bound code by up to 28× (102.4/3.6) over a
single Opteron core. In addition, each PowerXCell 8i processor has substantially
more memory bandwidth than the Opterons, 25.6 GB/s compared to 10.7GB/s
for a dual-core Opteron.

The PPE is a PowerPC processor core which runs a linux operating system
(one per blade), and manages the SPEs. The SPEs are in-order execution proces-
sors with a two-way SIMD operation that do not have a cache. Instead they can
directly access a 256KB high-speed memory called a local store which is explic-
itly accessed by direct memory access (DMA) transfers from the PPE memory
space. Each compute node has a total of 32GB of memory, 8GB for each Opteron
and 4GB for each PowerXCell 8i.

3 The Dynamic Load Balance Algorithm

In this section we describe our dynamic load-balancing algorithm applied to
matrix-vector multiplication. These operations can be very time-consuming in

Dynamic Load Balancing of Matrix-Vector Multiplications 169

Fig. 2. Breakdown of iteration time (non-overlapping transfers)

codes such as iterative solvers where the matrix-vector multiplication, yi+1 =
yi +Ax, is performed once or more in each iteration of the application. We chose
a single row of the matrix A as the smallest granularity of load balancing the
data between the Opteron and PowerXCell 8i. The goal of the load-balancing
algorithm is to find an optimal partitioning of the matrix rows to minimize
the runtime when this calculation is performed multiple times as in iterative
solvers. Formally, the load-balancing problem can be described as to minimize
the following expression,

n∑

i=1

max

(
Topt

(N

o(i)

)
+ Ttrans

(N

c(i)

)
,Tcell

(N

c(i)

)
+ Ttrans

(N

c(i)

)
)

+ Thouse

(N

c(i)

)

when n is the number of times that the matrix-vector multiplication is performed;
N is the number of matrix rows; o(i) and c(i) are the ratios in the amount
of rows assigned to the Opteron and for the PowerXCell 8i, respectively, so

1
o(i) + 1

c(i) = 1; Topt(x) and Tcell(x) are the times to perform the corresponding
matrix-vector multiplications on x rows on the Opteron and PowerXCell 8i,
respectively; Ttrans(x) is the sum of times for receiving data to compute on
the PowerXCell 8i (Trecv(x)) and for sending back the results to the Opteron
(Tsend(x)); and finally, Thouse(x) is the housekeeping time associated with the
execution of the load-balancing algorithm (described below) and formatting data
for processing on the PowerXCell 8i. This formatting involves setting up of the
various DMA transfers in order to iteratively transfer data in/out to/from SPEs
and the replication of data structures in main memory in order to enforce the
alignment of the DMA transfers. Therefore, the goal of the optimization problem
is to dynamically define the function o(i), ∀i, 1 ≤ i ≤ n that minimizes the above
expression; and hence, function c(i) will be defined as 1

1− 1
o(i)

.

We follow the operation of iterative solvers where the data that is transferred
in and out of the operation in each iteration are the vectors yi and yi+1 re-
spectively. The matrix A is considered constant as in most iterative solvers, and
hence it does not need to be transferred to the PowerXCell 8i each iteration.
Similarly, the vector x also does not need to the transferred each iteration as it
is computed internally based on the residuals.

170 J.C. Sancho and D.J. Kerbyson

The optimization problem can be simplified to the problem of minimizing
max

(
Topt(N

o(i)) + Ttrans(N
c(i)), Tcell(N

c(i)) + Ttrans(N
c(i))

)
when the number of it-

erations is large enough that Thouse(N
c(i)) is negligible. This case is illustrated

in Figure 2 that shows the elapsed times on the Opteron, PowerXCell 8i, and
the intranode-connection network in the particular case when data transfers
are not overlapped with computation. Therefore, we want to minimize both
Topt(N

o(i)) + Ttrans(N
c(i)) and Tcell(N

c(i)) + Ttrans(N
c(i)) at the same time. By dis-

tributing the data carefully between processors (defining the function o(x)) it
is possible to achieve the optimal balance that minimizes the above expres-
sion. For example, in the case that the PowerXCell 8i has too much to com-
pute, we can move some data to the Opteron which reduces both Tcell(N

c(i))
and Ttrans(N

c(i)) at expense of increasing Topt(N
o(i)). Careful attention should be

taken to prevent the case that the Opteron has too much data to compute,
Topt(N

o(i)) > Tcell(N
c(i)), which will also increase the iteration time. In the con-

verse case, that the Opteron has too much data, some data can be moved from
the Opteron to the PowerXCell 8i. Note again that assigning more data to the
PowerXCell 8i in the next iteration, i+ 1, means that both the Tcell(N

c(i+1)) and
Ttrans(N

c(i+1)) will be increased. And therefore, the iteration time may be larger
because the Ttrans(N

c(i+1)) might be too high to offset the reduction in time on
the Opteron, Ttrans(N

c(i+1))− Ttrans(N
c(i)) > Topt(N

o(i))− Topt(N
o(i+1)). It can also

occur that the cell has to much data to compute with respect to the Opteron,
Tcell(N

c(i+1)) > Topt(N
o(i+1)).

On the other hand, when data transfers can be fully overlapped with compu-
tation, the load balancing is simplified to the case of making the compute-times
on both the Opteron and PowerXCell 8i equal, Topt(N

o(i)) � Tcell(N
c(i)), in order

to minimize the following expression max(Topt(N
o(i)), Tcell(N

c(i))). This is an ideal
case that might be difficult to achieve in a real scenario because it depends on
the application’s data dependencies— data is not available yet because it needs
to be combined with other data such as in the case of iterative solvers—, and
the support of asynchronous operations on the communication system. Hence,
the common scenario is that communications are only partially overlapped and
the optimization problem described in Figure 2 applies.

The load-balancing algorithm proposed is based on combining the following
three basic approaches: accelerator-centric, performance-based, and trial-
and-error in order to converge at the optimal state as quickly as possible. This
algorithm is comprised of five states as depicted in Figure 3. In the first state, we
take an accelerator-centric approach where o(1) is initialized to be Peakcell

Peakopt
,

where Peakopt and Peakcell are the peak flop performance of the PowerXCell
8i and Opteron, respectively. In Roadrunner, this is initialized to be 28, see
Section 2. We use the peak performance of the processors as an starting point
as this is available a priori. In principle, we do not know anything about the
characteristics of the code and the peak flop performance is a safe alternative in

Dynamic Load Balancing of Matrix-Vector Multiplications 171

Fig. 3. States of the load-balance algorithm for n iterations

this architecture with respect to the peak memory bandwidth because most of
the work will be performed on the PowerXCell 8i rather than the Opteron.

In the second state, we take a performance-based approach since we can
collect actual timing information from the previous iteration. The principle of a
performance-based approach is to distribute data based on how well the different
processors perform, and thus allowing the algorithm to quickly converge to the
optimal ratio. This is achieved by collecting the times, Topt and Tcell, in order to
calculate the processing rates, Processingopt and Processingcell, for both the
Opteron and PowerXCell 8i, thus o(2) = Processingcell

Processingopt
. Note that Tcell and Ttrans

are measured independently instead of combining them into a single metric. This
distinction is more efficient than the typical combination approach of as will be
shown in the next section.

Finally, the third and fourth state are performed using a trial-and-error
load-balancing strategy until the optimal balance is achieved. This is done by
carefully assigning more or less data on the Opteron in order to not increase the
Titeration for the next iteration. In particular, the third state is reached from
the second state when the Opterons have not enough data to compute, case of
Topt2 < Tcell2 ; and the forth state is reached from also the second state when the
Opterons have too much data to compute, case of Topt2 ≥ Tcell2 . Note that these
additional steps are not included in a typical performance-based load-balancing
strategy, but they were necessary for the case of this particular architecture. In
particular, the third state gradually decreases o(i) by one assigning more data to
the Opteron. Similarly, the fourth state gradually increases o(i) by one assigning
less data to the Opteron. Convergence is achieved when the current Titerationi is
higher than the previous Titerationi−1 time stopping the algorithm in state stop.
In this state, we set up o(j), ∀j, i ≤ j ≤ n to the value used two iterations
previously, o(i − 2). Note again, that for the case of fully overlapping transfers
these additional states might not lead to the optimal balance as the second
state should already give a good balance due to the fact that it is based on the

172 J.C. Sancho and D.J. Kerbyson

Table 1. Description of the matrices used in the evaluation

Name Dimensions Non-zeros Description

Dense matrix 2K×2K 4M Regular dense matrix
Sparse Harbor 47K×47K 2.37M 3D CFD of Charleston harbor
Sparse Dense 2K×2K 4M Matrix in sparse format
Sparse Fluid 20.7K×20.7K 1.41M Fluid structure interaction turbulence
Sparse QCD 49K×49K 1.90M Quark propagators (QCD/LGT)
Sparse Ship 141K×141K 3.98M FEM ship section/detail production

Sparse Cantiveler 62K×62K 4M FEM cantiveler
Sparse Spheres 83K×83K 6M FEM concentric spheres

achieved processing rate and the transfer time does not impact on the iteration
time. However, these states are necessary in the case of partially overlapping
and non-overlapping transfers where the transfer time does actually impact the
iteration time.

4 Evaluation

We evaluate our load-balancing technique on a Roadrunner compute node as
described in Section 2. A four-process parallel job— one process per each of the
four Opteron cores in the Roadrunner node— was executed in the accelerated
mode of operation. Each process performed the same double-precision floating-
point matrix-vector multiplication several times. At the end of the calculation
all the processes synchronize in order to account for the worst time. Timing
data presented below are averages over multiple runs. We use the DaCS com-
munication library [5] for communicating between Opteron and PowerXCell 8i
processors, and OpenMPI version 1.3b [6] message passing library for the syn-
chronization across Opteron cores. The Cell BE SDK version 3.1 was used to
compile the code for the PowerXCell 8i processors.

We evaluated the performance of our load-balance technique, Optimized bal-
ance, as well as for the case of using our load-balance algorithm but considering
Ttrans in combination with Tcell, Balance transfer. Also for comparison pur-
poses we evaluated the performance of using no load balancing in two cases:
using only Opterons and using only PowerXCell 8i processors. In addition, we
show results for a Greedy strategy that searches for the optimal load balance by
exploring a wide range of distributions: it starts with the default distribution
(o(1) = Peakcell

Peakopt
) and gradually decrements it in steps of one every iteration to

when all work is performed by the Opterons. The experiments were conducted on
a dense matrix and on seven sparse matrices from a wide variety of actual appli-
cations as listed in Table 1 where Sparse Dense is a dense matrix, but formatted
in the sparse format. We used the Compressed Storage Row (CSR) format [7] for
defining the sparse matrices.

Dynamic Load Balancing of Matrix-Vector Multiplications 173

4.1 Results

Figure 4 shows the iteration time for the Greedy, Optimized balance, and the
Balance transfer techniques on the sparse matrix Harbor. As can be seen, the
minimum execution time is found at iteration 24 for the Greedy technique, where
o(24) = 5. At this point the optimal load balance is achieved and the execution
time is improved by 15% with respect to using the performance-based ratio
(o(2) = Processingcell

Processingopt
), and 3.4× with respect to o(28) = 1 where all the work

is performed by the Opterons. The Greedy technique can easily find the optimal
balance, but at the expense of a longer converge time (28 iterations) which is
undesirable. In contrast, the Optimized balance technique converges faster and is
able to find the optimal balance after only 5 iterations for this matrix. Converging
faster is desirable as there is extra overhead due to housekeeping per iteration
which could be significant, see Section 3. In the case of the Roadrunner compute
node this time is around 60ms per iteration (results not shown). For the case of
the Balance transfer technique we can see that the load-balance algorithm does
not converge to the optimal solution. This is because including the Ttrans in the
Tcell makes the performance-based ratio too low (o(2) = 2) for this architecture
due to Ttrans being high. This forces the load-balancing search to stop too early
as the next ratio tried in state 3 of the algorithm, unfortunately, does not use the
accelerators at all (o(3) = 1), and hence Titeration is higher than the previous one.

Figure 5 illustrates how the Optimized balance technique converges to the
optimal balance during the first 5 iterations by showing the corresponding times
Topt, Tcell, Ttrans, and Titeration for each iteration. On the first iteration, Topt is
too small compared with the Tcell because o(1) = Peakcell

Peakopt
, o(1) = 28 yields too

little work for the Opterons compared with the PowerXCell 8i. On the second

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Ti
m

e
(m

ic
ro

se
co

nd
s)

Iterations

Greedy
Balance transfer
Optimized balance

Fig. 4. Iteration time for the Greedy, Optimized balance, and Balance transfer tech-
niques on the sparse matrix Harbor

174 J.C. Sancho and D.J. Kerbyson

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1
2

3
4

5

Ti
m

e
(m

ic
ro

se
co

nd
s)

Iterations

Titeration
Tcell

Topt
Ttrans

Fig. 5. Iteration time breakdown for the Optimized balance technique on the sparse
matrix Harbor (first five iterations)

iteration, the ratio is already fixed to the current performance of the processors
(o(2) = Processingcell

Processingopt
, o(2) = 4), but actually results in too much work for the

Opterons. On the third and fourth iterations, the load-balance algorithm is in
state 4 gradually increasing the ratio (o(3) = 5, o(4) = 6) in order to reduce the
work on the Opterons. During this, it is found that the third iteration results in a
better Titeration time than the fourth iteration, and so the algorithm stops on the
fifth iteration taking the best tested ratio, o(3) = 5, for subsequent iterations,
∀i, 5 ≤ i ≤ n. At the optimal balance, 65%, 60%, and 35% of the iteration time
is spent on the Topt, Tcell, and Ttrans, respectively.

0

10000

20000

30000

40000

50000

60000

Dense
matrix

Sparse
Harbor

Sparse
Dense

Sparse
Fluid

Sparse
QCD

Sparse
Ship

Sparse
Cantiveler

Sparse
Spheres

Ti
m

e
(m

ic
ro

se
co

nd
s)

Matrices

Only Opteron

Only PowerXCell 8i

Optimized balance

Fig. 6. Execution time for each matrix when using: only the Opteron, only the Pow-
erXCell 8i, and the Optimized balancing technique

Dynamic Load Balancing of Matrix-Vector Multiplications 175

Figure 6 summarizes the execution iteration time for the suite of matrices
evaluated when using Optimized balance (once the algorithm converged), when
using the Opterons only and when using the PowerXCell 8is only. As can be
seen, the Optimized balance achieves the best runtimes for all the matrices eval-
uated. In particular, for the dense matrix the performance improvement is 14%
for the Optimized balance in comparison to using only the PowerXCell 8i. For the
sparse matrices the improvements are 19%, 18%, 19%, 23%, 23%, 24%, 22% for
the sparse matrices Harbor, Dense, Fluid, QCD, Ship, Cantiveler, and Spheres
respectively. These improvements are mostly due to the fact that the computa-
tion of the sparse matrices is actually memory bound and thus take advantage of
the relatively better memory performance of the Opterons rather than their flop
performance. As expected, the improvements with respect to the Opteron are
more noticeable, ranging from 4× on the sparse Fluid up to 6× for the dense ma-
trix. Also, the number of iterations for the load-balancing algorithm to converge
for these matrices is small— for the sparse matrices 5 iterations are required for
convergence whereas the dense matrix required 7 iterations (results not shown).

5 Related Work

Matrix operations including sparse matrix-vector multiplications (SpMV) are
key computational kernels in many scientific applications, and thus have been
extensively studied. Today most work is focused on implementing these opera-
tions on emerging accelerator architectures including the Cell BE [8], FPGAs [9],
and GPUs [10], as well as multi-core processors [8]. Although our SpMV imple-
mentation might not be so highly tuned for a particular processor in comparison
to other implementations, they could be incorporated into our accelerator and
host load-balancing method in order to improve overall performance.

On the other hand, there has been very little work on load-balancing ma-
trix operations on hybrid (host-accelerator) architectures since typically they
are fully offloaded to the accelerators. However, there is a significant work on
load-balancing matrix operations like the SpMV on heterogeneous network of
workstations (HNOWs) [11,12,13]. These systems are composed of non-uniform
processors, network, and memory resources which partially resemble the hybrid
platform studied in this work. For HNOWs most of the algorithms are optimized
based on the characteristics of the target system. In fact as stated in [11] there
is not a unique general solution for all platforms but rather different schemes are
best for different applications and system configurations. This result is interest-
ing because it suggests that there should be an efficient load balancing technique
as well for our target platform. In particular, our platform is quite different from
HNOWs. The processors are tightly attached to each other, so communications
are much faster than in HNOWs. Also, there is a huge difference in the comput-
ing power of the processor types. These two features open new considerations in
the design of load-balancing algorithms that they were not previously important.
For example, in this new environment with fast communications it makes more
sense to explore fine-grain load balancing algorithms, such as the one proposed
in this paper, based on a trial-and-error strategies.

176 J.C. Sancho and D.J. Kerbyson

Additionally, in most of the load-balancing strategies for HNOWs distributing
the load in proportion to the computing speed of the processors always leads to
a perfectly balanced distribution [11,12]. However, we found that this strategy
was not enough to achieve an optimal solution for the hybrid, host-accelerator
architecture of Roadrunner.

Notwithstanding, it would be interesting to evaluate as future work the suit-
ability of our proposed load-balancing algorithm to other hybrid platforms. In
that regard, we could apply our dynamic load balancing technique into exe-
cution environments such as StarPU [14]—an unified execution model various
accelerators— in order to dynamically determine the granularity of the tasks on
different accelerators.

6 Conclusions

An optimized load-balancing algorithm has been presented in this paper to sub-
stantially increase the performance of a Roadrunner compute node. We have
demonstrated that the proposed load-balance algorithm achieves a significant
performance improvement, up to 24%, when simultaneously using both host
(Opteron) and accelerator (PowerXCell 8i) processors in comparison to solely
using the PowerXCell 8i processors in a traditional accelerated mode of opera-
tion. The load balancing was evaluated for matrix-vector multiplications which
are commonly found in scientific applications.

These improvements come from the concurrent exploitation of the computa-
tion power of the host Opteron processors at the same time as the PowerXCell 8i
accelerators for processing hotspot computations rather than uniquely offloading
to the accelerators. These results suggest that the traditional accelerated mode
of operation is not efficient enough to exploit the full potential of hybrid archi-
tectures including Roadrunner. With effective load-balancing techniques a more
complex, but better accelerated mode of operation, can be enabled exploiting
concurrently the full potential of all the available processors. In addition, the
load-balance algorithm was carefully optimized to provide fast convergence time
(7 iterations) making it sufficiently efficient to run during the execution of an
application. This feature is desirable in order to dynamically adapt to the charac-
teristics of the code, and thus it can potentially serve as a general load-balancing
algorithm on this platform for other hotspot computations.

Acknowledgments

This work was funded in part by the Advanced Simulation and Computing
program and the Office of Science of the Department of Energy. Los Alamos
is operated by the Los Alamos National Security, LLC for the US Department
of Energy under contract No. DE-AC52-06NA25396.

Dynamic Load Balancing of Matrix-Vector Multiplications 177

References

1. Barker, K.J., Davis, K., Hoisie, A., Kerbyson, D.J., Lang, M., Pakin, S., Sancho,
J.C.: Entering the Petaflop Era: The Architecture and Performance of Roadrunner.
In: SC 2008, Austin, TX (2008)

2. Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., Shippy, D.:
Introduction to the cell multiprocessor. IBM Journal of Research and Develop-
ment 49(4), 589–604 (2005)

3. Bowers, K.J., Albright, B.J., Bergen, B.K., Yin, L., Barker, K.J., Kerbyson, D.J.:
0.374 Pflop/s Trillion-particle Particle-in-cell Modeling of Laser Plasma Inter-
actions on Roadrunner. In: ACM Gordon Bell Prize finalist, Supercomputing
Conference (SC 2008), Austin, TX (2008)

4. Swaminarayan, S., Kadau, K., Germanm, T.C.: 350-450 tflops molec-
ular dynamics simulations on the roadrunner general-purpose heteroge-
neous supercomputer. In: ACM Gordon Bell Prize finalist, Supercomputing
Conference (SC 2008), Austin, TX (2008)

5. IBM: Data Communication and Synchronization Library for Hybrid-x86: Program-
mer’s Guide and API Reference. IBM Technical document SC33-8408-00, IBM
SDK for Multicore Acceleration version 3, release 0 (2007)

6. Indiana University: Open-MPI (2009), http://www.open-mpi.org
7. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J.M., Dongarra, J.,

Eijkhout, V., Pozo, R., Romine, C., der Vorst, H.V.: Templates for the Solu-
tion of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM,
Philadelphia (1994)

8. Williams, S., Oliker, L., Vuduc, R., Demmel, J., Yelick, K.: Optimization of sparse
matrix-vector multiplication on emerging multicore platforms. In: Supercomputing
Conference (SC 2007), Reno, NV (2007)

9. Morris, G.R., Prasanna, V.K.: Sparse matrix computations on reconfigurable hard-
ware. IEEE Computer 40(3), 58–64 (2007)

10. Garland, M.: Sparse matrix computations on manycore GPU’s. In: Annual ACM
IEEE Design Automation Conference (DAC 2008), Anaheim, CA (2008)

11. Zaki, M.J., Li, W., Parthasarathy, S.: Customized dynamic load balancing for a
network of workstations. Parallel and Distributed Computing 43(2), 156–162 (1997)

12. Pineau, J.F., Robert, Y., Vivie, F.: Revisiting matrix product on master-worker
platforms. In: Workshop on Advances in Parallel and Distributed Computational
Models (APDCM 2007), IEEE International Parallel and Distributed Processing
Symposium, Long Beach, CA (2007)

13. Xu, C., Lau, F.: Load Balancing in Parallel Computers: Theory and Practice.
Kluwer Academic Publishers, Norwell (1996)

14. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.: StarPU: A Unified Plat-
form for Task Scheduling on Heterogeneous Multicore Architectures. In: Euro-Par
Conference, Delft, The Netherlands (2009)

http://www.open-mpi.org

	Dynamic Load Balancing of Matrix-Vector Multiplications on Roadrunner Compute Nodes
	Introduction
	The Roadrunner Compute Node
	The Dynamic Load Balance Algorithm
	Evaluation
	Results

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

