
Active Optimistic Message Logging for Reliable

Execution of MPI Applications

Thomas Ropars1 and Christine Morin2

1 Université de Rennes 1, IRISA, Rennes, France
Thomas.Ropars@irisa.fr

2 INRIA Centre Rennes - Bretagne Atlantique, Rennes, France
Christine.Morin@inria.fr

Abstract. To execute MPI applications reliably, fault tolerance mech-
anisms are needed. Message logging is a well known solution to provide
fault tolerance for MPI applications. It as been proved that it can tol-
erate higher failure rate than coordinated checkpointing. However pes-
simistic and causal message logging can induce high overhead on failure
free execution. In this paper, we present O2P, a new optimistic message
logging protocol, based on active optimistic message logging. Contrary
to existing optimistic message logging protocols that saves dependency
information on reliable storage periodically, O2P logs dependency infor-
mation as soon as possible to reduce the amount of data piggybacked on
application messages. Thus it reduces the overhead of the protocol on
failure free execution, making it more scalable and simplifying recovery.
O2P is implemented as a module of the Open MPI library. Experiments
show that active message logging is promising to improve scalability and
performance of optimistic message logging.

1 Introduction

The Mean Time Between Failures of High Performance Computing (HPC) sys-
tems is continuously decreasing as the scale of such systems keeps on growing.
Efficient fault tolerance mechanisms are needed to enable applications to finish
their execution despite frequent failures.

MPI is a widely used paradigm for HPC applications. Transparent fault tol-
erance solutions are attractive because all the mechanisms needed to handle
failures are provided by the library. Thus the application programmer can focus
on implementing her application without wasting time with the complex task of
failure management. Rollback-recovery techniques are well known techniques to
provide transparent fault tolerance for MPI applications [8].

Coordinated checkpointing is the most widely used rollback-recovery tech-
nique. Its main drawback is that the failure of one process implies a rollback
of all the application processes. Furthermore with coordinated checkpointing all
processes are checkpointed and restarted almost at the same time. When stable
storage is implemented as a central server, issues due to concurrent access may
occur. Message logging has the advantage over coordinated checkpointing pro-
tocols to minimize the impact of a failure since they do not require all processes

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 615–626, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

616 T. Ropars and C. Morin

to rollback in the event of one failure. It can be combined with uncoordinated
checkpointing without the risk of domino effect. Additionally message logging is
more suitable for applications communicating with the outside world [7]. Pre-
vious evaluations of rollback-recovery techniques in an MPI library [14, 3] have
shown that message logging protocols, and especially causal message logging
protocols, are more scalable than coordinated checkpointing. Furthermore it
has been demonstrated that reducing the size of piggybacked data on appli-
cation messages in causal message logging protocols has a major impact on
performance [4]. Optimistic message logging protocols require less information
to be piggybacked on messages than causal message logging protocols. Hence
optimistic message logging can perform better than causal message logging.

In this paper we present O2P, an optimistic message logging protocol target-
ing performance and scalability. O2P is a sender-based message logging protocol
tolerating multiple concurrent failures. It is based on an innovative active mes-
sage logging strategy to keep the size of piggybacked data minimal. Implemented
as a module of Open MPI [11], it is to our knowledge the first optimistic message
logging protocol implemented in a widely used MPI library. Evaluations show
that active optimistic message logging is a promising technique to provide an
efficient and scalable fault tolerance solution for MPI applications.

The paper is organized as follows. Section 2 presents the related work and mo-
tivates this work. The O2P protocol based on active optimistic message logging
is described in Section 3. We describe our prototype in Section 4. Experimental
results are provided and discussed in this section. Finally, conclusions and future
works are detailed in Section 5.

2 Background

2.1 Message Logging Principles

Message logging protocols assume that process execution is piecewise determin-
istic [21], i.e. the execution of a process is a sequence of deterministic intervals
started by a non-deterministic event, a message receipt. This means that starting
from the same initial state and delivering the same sequence of messages, two
processes inevitably reach the same state.

Determinants [1] describe messages. A determinant is composed of the mes-
sage payload and a tag. To identify messages, each process numbers the messages
it sends with a sender sequence number (ssn) and the messages it receives with a
receiver sequence number (rsn). A message tag is composed of the sender identi-
fier, the ssn, the receiver identifier and the rsn. Message logging protocols save
determinants into stable storage to be able to replay the sequence of messages
received by a process in the event of failures. A message is stable when its re-
ceiver has saved the corresponding determinant in stable storage. Sender-based
message logging [12] is usually used to avoid saving the message payload with
the determinant, i.e. the payload is saved in the message sender volatile memory.

The deterministic intervals composing the process execution are called state
intervals. A state interval is identified by an index corresponding to the receiver

Active Optimistic Message Logging for Reliable Execution 617

sequence number of the message starting the interval. Message exchanges create
causal dependencies between the state intervals of the application processes. The
state intervals are partially ordered by the Lamport’s happen-before relation.If
some determinants are lost in a process failure, some state intervals of the failed
process cannot be recovered. Non-failed processes depending on those lost state
intervals become orphan and have to be rolled-back to reach a consistent global
state, i.e. a state that could have been seen during failure free execution. Message
logging is generally combined with uncoordinated checkpointing. In that case,
checkpointing can be seen as a solution to reduce the size of the logs. When a
process is checkpointed, the determinants of all the messages it delivered pre-
viously can be deleted as soon as it is sure the process will never rollback the
checkpointed state. We do not consider checkpoints in the rest of the paper.

The three classes of message logging protocols are: optimistic, pessimistic,
and causal. A formal definition of these three classes can be found in [1]. They
differ in the way they ensure a consistent global state is reachable after a failure.
Pessimistic message logging never creates any orphan processes. Determinants
are logged synchronously on stable storage: a process has to wait for the de-
terminants of all the messages it has delivered to be stable before sending a
message. Thus in the event of failures, only the failed processes have to restart.
Causal message logging also ensures the no-orphan-process condition by piggy-
backing on messages the dependency information needed to be able to replay
them. On message delivery, the receiving process saves locally those dependency
data. Thus when a process fails the information needed to replay the messages
is provided by the non-failed processes. Finally, in optimistic message logging
determinants are saved asynchronously on stable storage. Application message
sending is never delayed but orphan processes might be created. To be able to
detect orphan processes, some dependency information is also piggybacked on
messages. When a failure occurs all the orphan processes are detected due to
the dependency information maintained by each process and are rolled-back to
a consistent global state.

2.2 Message Logging Protocols Evaluation

During the last decade, the respective performance of existing rollback-recovery
techniques has been compared through experimentation. The MPICH-V project
that aims at providing a fault tolerant MPI library provided several results.
In [14], they show that message logging tolerates a higher fault frequency than
coordinated checkpointing. However pessimistic message logging induces large
overhead on failure free execution due to synchronous logging [3]. That is why
they implemented a causal message logging protocol [14] that provides better
failure free performance since message sending is never delayed. However the
causal protocol still induces some overhead because of the size of the dependency
information piggybacked on application messages and because of the time needed
to compute them before message sending and after message delivery.

Since the size of the piggybacked data is one of the key point in causal message
logging performance, they promoted the use of an event logger to reduce this

618 T. Ropars and C. Morin

amount of data [4]. An event logger is an interface to a reliable storage where
determinants are saved. The application processes send their determinants to
the event logger that sends back an acknowledgement when a determinant is
saved. The saved determinants do not need to be piggybacked on the messages
anymore and thus the size of the piggybacked data is reduced. The evaluations,
made with three causal protocols [9, 13, 14] showed that the use of an event
logger has a larger impact on causal message logging performance than any
optimization in the computation of the process dependencies. However for high
message frequency, causal message logging combined with an event logger still
induces a large overhead on failure free execution. Comparing the three classes
of message logging protocols on recovery demonstrated that their performance
on recovery is very similar [15].

Optimistic message logging requires less information to be piggybacked on
messages than causal message logging, as explained in Section 3.1. Hence we
have investigated optimistic message logging. Our goal is to take into account
the use of an event logger in the design of an optimistic message logging protocol
to make it more efficient and scalable than existing optimistic protocols

3 O2P, an Active Optimistic Message Logging Protocol

O2P is a sender-based optimistic message logging protocol based on active mes-
sage logging to take advantage of the use of an event logger. In this section,
we first briefly explain why optimistic message logging can perform better than
causal message logging. Then we describe the system model we consider. Finally,
we detail O2P and how it takes advantage of the use of an event logger.

3.1 Optimistic versus Causal Message Logging

Causal message logging combined with an event logger is very similar to opti-
mistic message logging. However optimistic message logging can perform better
on failure free execution because it requires less information to be piggybacked
on application messages. This is illustrated by the simple scenario described in
Figure 1. In this example, messages m1 and m2 have not been logged when m3

is sent. A causal message logging protocol needs to piggyback on m3 all the
information needed to be able to replay this message in the event of a failure,
i.e. determinants of m1 and m2 must be piggybacked on m3. With an optimistic
message logging protocol, only the data needed to detect orphan processes are
piggybacked, i.e. the dependency to the last non stable state interval. So with
optimistic message logging only m2 determinant needs to piggybacked on m3.

3.2 System Model

We consider a distributed application composed of n processes communicating
only through messages. Our assumptions about communication channels are the
one described in the MPI Standard [10]. Communication channels are FIFO and
reliable but there is no bound on message transmission delay. Each process has

Active Optimistic Message Logging for Reliable Execution 619

Fig. 1. A simple communication pattern

access to a stable storage server. An event logger act as the interface between
the application processes and the stable storage. Information saved in volatile
memory is lost in a process crash and only the information saved on stable
storage remains accessible. We assume a fail-stop failure model for processes.

3.3 Protocol Description

Optimistic message logging protocols need to track dependencies between pro-
cesses during failure free execution to be able to detect orphan processes in the
event of a failure. Several optimistic message logging protocols are described in
the literature varying mainly in the way they track dependencies. To be able
to tolerate multiple failures, protocols use either dependency vectors [21, 19] or
fault tolerant vector clocks [20, 6]. Damani et al. [5] have demonstrated that
dependency vectors have properties similar to Mattern’s vector clocks.

O2P uses dependency vectors to track transitive dependencies between pro-
cesses. A dependency vector is a n entry vector, n being the number of processes
in the application. Each entry is composed of an incarnation number and a state
interval index. The incarnation number of a process is incremented each time it
restarts or rolls-back. Incarnation numbers are used to discard orphan messages
coming from old incarnations.

Existing optimistic message logging protocols implement the determinant’s
logging on stable storage as a periodical task. Determinants of the messages
delivered by a process are buffered in the process memory and are periodically
saved on stable storage. They don’t focus on minimizing piggybacked data size to
improve failure free performance. Vectors of size n are piggybacked on application
messages to trace dependencies between processes state intervals. This solution
is not scalable since the amount of piggybacked data grows with the application
size.

However it has been proved that tracking dependency to non-stable state
intervals is enough to be able to detect orphan processes after a failure [5]. A
process state interval is stable when the determinants of all messages delivered
by that process before this state interval have been saved on stable storage.
Furthermore we proved in [16] that with tracking dependencies only to non-
stable state intervals, it was possible to recover the maximum consistent global
state of the application after a failure. O2P takes advantage of these properties
to reduce the size of dependency vectors it piggybacks on application messages.

620 T. Ropars and C. Morin

Sending a message msg by process pi to process pj

Piggyback DependencyV ectori on msg // DependencyV ectori is the dependency
vector of process pi

Send msg to pj

Save msg in volatile memory

Delivering a message (msg,DependencyV ectormsg)
Get (msg,DependencyV ectormsg) from the incoming queue
sii ← sii + 1 // Incrementing state interval index
Deliver msg to the application
Update DependencyV ectori with detmsg // detmsg is the determinant of msg
Update DependencyV ectori with DependencyV ectormsg

Send detmsg to the event logger

Upon reception Ack(StableV ectormsg) on process pi

for all 0 ≤ k < n such that StableV ectormsg[k] ≥ DependencyV ectori[k] do
DependencyV ectori[k] = ⊥

Fig. 2. O2P failure free protocol

Failure Free Protocol. O2P logs determinants in an active way. Since O2P is a
sender based protocol, message payload is not included in the determinants saved
in stable storage. A simplified version of the failure free protocol is described in
Figure 2. As soon as a message is delivered, its determinant is sent to the event
logger to be logged. Process pi saves in entry j of its dependency vector the last
non-stable state interval of pj its current state interval depends on. This entry
is set to ⊥ if pi does not depend on any non stable state interval of pj .

O2P is based on two optimistic assumptions. The first one is the traditional
assumption used in optimistic message logging protocols: logging a determinant
is fast enough so that the risk of experiencing a failure between message delivery
and the log of the corresponding determinant is small. Thus the risk of orphan
process creation is low.

The second optimistic assumption we use is that logging a determinant is
fast enough so that the probability of having it saved before the next message
sending is high. If the second assumption is always valid, all the entries in the
dependency vector of a process sending a message are empty.

To take advantage of this, dependency vectors are implemented as described in
[18]. Instead of piggybacking the complete dependency vector on every message,
only the entries which have changed since the last send to the same process and
which are not empty, are sent as piggybacked data. Thus if the second optimistic
assumption is always valid, no data has to be piggybacked on the application
messages.

Event Logger. The event logger is the interface between the processes and the
reliable storage. When it receives a determinant from a process, it saves this deter-
minant and sends back the corresponding acknowledgement. In order to make a
process aware of the new determinants saved by other processes, the event logger
maintains a n entry vector called StableV ector. Entry k of the StableV ector, up-
dated each time the event logger saves a new determinant from process pk, is the
last stable state interval of pk. This vector is included in the acknowledgements

Active Optimistic Message Logging for Reliable Execution 621

sent by the event logger. When a process delivers an acknowledgement, it updates
its dependency vector according to the StableV ector. This mechanism contributes
to reduce the size of the piggybacked data by avoiding piggybacking information
on already stable state intervals.

Recovery Protocol. After a failure, a failed process is restarted from its last
checkpoint if any or from the beginning. It gets from the event logger the list
of determinants logged before the failure. Then it informs the other processes
of its restart and gives its maximum recoverable state interval. When a non-
failed process receives a failure notification, it can determine if it is orphan
according to its dependency vector. If its dependency vector is empty, it cannot
be orphan. The non-orphan processes can continue their execution while the
failed and orphan processes interact to find the maximum consistent global state
as described in [16].

4 Performance Evaluation

4.1 Implementation Details

We have implemented O2P as a component of the Open MPI library. Open MPI
provides a vampire Point-to-point Management Layer (PML) that enables to
overload the regular PML to execute additional code on every communication
request made by the application processes. Thus it enables to implement fault
tolerance protocols. O2P is a component of the vampire PML framework.

The event logger is a mono-threaded MPI process that can handle asyn-
chronous communications. This process is started separetely from the appli-
cation processes. Application processes connect to the event logger when they
start logging determinants.

Different solutions can be used to implement piggyback mechanisms. On each
message sending, a new data-type can be created using absolute addresses to
attach piggyback data to the application payload. Another solution is to send
an additional message with the piggybacked data after the application message.
Performance depends on the application and on the MPI implementation [17].
The evaluations we made showed that sending additional messages was more
efficient in our case. So it is the solution we adopted for our prototype.

4.2 Experimental Settings

Our experiments are run on a 60-node cluster of Dell PowerEdge 1950 servers.
Each node is equipped with an Intel Xeon 5148 LV processor running at 2.33
Ghz, 4 GB of memory and a 160 GB SATA hard drive. An additional Dell
PowerEdge 1950 server equipped with an Intel Xeon 5148 LV processor running
at 2.33 Ghz, 8 GB of memory and two 300 GB Raid0/SATA hard drives, is used
to run the event logger. All nodes, equipped with a Gigabit Ethernet network
interface, are linked by a single Cisco 6509 switch and run Linux 2.6.18.

622 T. Ropars and C. Morin

Table 1. Communication rate of the Class A NAS Parallel Benchmarks for 16 processes

BT CG FT LU MG SP

Execution
time (in s.)

23.32 0.72 1.54 15.03 0.62 14.73

Messages/second
per process

13 256 6 198 108 41

4.3 Results

To evaluate O2P, we used 6 class A applications from the NAS Parallel Bench-
mark [2], developed by the NASA NAS research center. Table 1 shows the
communication frequency per process of these applications. In the experiments,
application processes are uniformly distributed over the 60 nodes of the cluster.
The measurements we provide are mean values over 5 executions of each test.
For the experiments, we compare the active optimistic message logging protocol
used by O2P with a standard optimistic message logging protocol. This standard
protocol is not the implementation of any existing optimistic message logging
protocol but is a modified version of O2P that doesn’t take into account acknowl-
edgments sent by the event logger to update dependency vectors. So processes
don’t waste time updating their dependency vectors on acknowledgment deliv-
ery. But the amount of piggybacked data is also not optimized. We consider
that the standard protocol behaves like the optimistic protocols described in the
literature regarding piggybacked data management.

Size of the Piggybacked Data. To evaluate the impact of active message
logging, we measure the amount of data piggybacked on each application mes-
sage. We run the 6 benchmarks with 4 to 128 processes. Figure 3 presents the
mean number of timestamps, i.e. the number of entries in the dependency vector,
piggybacked on each message during the execution of the application. We first
evaluate this amount of piggybacked data for the standard optimistic message
logging protocol. This result is the number of timestamps a traditional opti-
mistic message logging protocol would piggyback on application messages. This
amount grows linearly with the size of the application, underlining the scala-
bility limit of existing optimistic message logging protocols. The results for the
active message logging strategy used by O2P are represented by the curve named
Active. For applications with low communication rates, i.e. BT and FT, active
message logging works perfectly up to 64 processes. Determinants are logged
with a very short delay by the event logger. Most of the time, the processes
do not depend on any non stable state intervals when they send a message. So
they do not have any information to piggyback. Here active optimistic message
logging efficiently reduces the amount of piggybacked data. For 128 processes,
the amount of data piggybacked is almost the same as for standard optimistic
message logging because the event logger is overloaded and does not manage to
log the determinants in time. For the benchmarks with a higher communication
frequency, this limit is reached earlier.

Active Optimistic Message Logging for Reliable Execution 623

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4 8 16 32 64 128

N
um

be
r

of
 T

im
es

ta
m

ps

BT Class A

Standard
O2P

 0

 10

 20

 30

 40

 50

 60

 70

 4 8 16 32 64 128

BT Class A CG Class A

 0

 10

 20

 30

 40

 50

 60

 70

 4 8 16 32 64 128

BT Class A CG Class A

 0

 20

 40

 60

 80

 100

 120

 4 8 16 32 64 128

BT Class A CG Class A FT Class A

 0

 20

 40

 60

 80

 100

 120

 4 8 16 32 64 128

BT Class A CG Class A FT Class A

 0

 5

 10

 15

 20

 4 8 16 32 64 128

N
um

be
r

of
 T

im
es

ta
m

ps

Number of Processes

BT Class A CG Class A FT Class A

LU Class A

 0

 5

 10

 15

 20

 4 8 16 32 64 128

N
um

be
r

of
 T

im
es

ta
m

ps

Number of Processes

BT Class A CG Class A FT Class A

LU Class A

 0

 20

 40

 60

 80

 100

 120

 4 8 16 32 64 128

Number of Processes

BT Class A CG Class A FT Class A

LU Class A MG Class A

 0

 20

 40

 60

 80

 100

 120

 4 8 16 32 64 128

Number of Processes

BT Class A CG Class A FT Class A

LU Class A MG Class A

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4 8 16 32 64 128

Number of Processes

BT Class A CG Class A FT Class A

LU Class A MG Class A SP Class A

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4 8 16 32 64 128

Number of Processes

BT Class A CG Class A FT Class A

LU Class A MG Class A SP Class A

Fig. 3. Amount of data piggybacked on application messages

Failure Free Performance. The overhead induced by O2P on failure free
execution for 4 representative benchmarks is summarized in Table 2. Evaluations
are made with 16, 32, and 64 processes. Application BT requires a square number
of processes. For this application, 36 processes are used instead of 32.

The overhead induced by the standard optimistic message logging protocol is
compared with O2P. O2P almost always provides better performance than the
standard protocol. For the applications with low communication rate, i.e. BT
and FT, the overhead induced by O2P is very small. For CG, which has a very
high communication rate, the overhead induced by optimistic message logging
is significant even if active optimistic message logging contributes to reduce it.

4.4 Discussion

Results show that active optimistic message logging can reduce efficiently the
amount of data piggybacked on messages during failure free execution. Thus
the performance and scalability of optimistic protocol is improved. Furthermore
when active optimistic message logging works well, the mean number of pig-
gybacked timestamps is close to zero. It means that most of the time when a
process sends a message it does not depend on any non stable state interval,
i.e. the message will never be rolled-back. In this way, active optimistic mes-
sage logging also reduces the cost of the recovery protocol because it limits the
risk of orphan process creation. Furthermore the non-failed processes that do

624 T. Ropars and C. Morin

Table 2. Overhead on failure free execution

N Protocol BT CG FT MG

16
Standard 1.14% 12.85% 0.26% 6.80%

O2P 0.98% 12.01% 0.13% 6.80%

32
Standard 2.49% 21.34% 0.95% 8.57%

Active 2.22% 21.81% 0.72% 8.57%

64
Standard 3.71% 41.32% 9.23% 15.00%

Active 3.13% 32.34% 0.00% 15.00%

not depend on any non stable state intervals when a failure occurs, can ignore
the failure notification and continue their execution. Future works include the
evaluation of the benefits of active optimistic message logging on recovery.

Experiments with large number of processes and with high communication
rate applications indicate that the event logger is the bottleneck of our system.
Implemented as a mono-thread MPI process, several solutions can be consid-
ered to improve it. The event logger could be implemented as a multi-thread
MPI process to take advantage of actual multi-core processors. Active replica-
tion techniques could also be used to improve both performance and reliability
of the event logger.Stable storage can be implemented in a distributed way using
the volatile memory of the computation nodes. To make a data stable despite r
concurrent failures, it has to be replicated in r+1 nodes. Hence we are investigat-
ing the implementation of an event logger based on a fault tolerant distributed
shared memory such as Juxmem.

5 Conclusion

Message logging is an attractive solution to provide transparent fault tolerance
for MPI applications since it can tolerate higher failure rate than coordinated
checkpointing [14] and is more suitable for applications communicating with the
outside world. It has been proved that making use of a stable storage to re-
duce the amount of data piggybacked by causal message logging on application
messages makes it more efficient and scalable [4]. However causal message log-
ging still induces a large overhead on failure free execution. Optimistic message
logging requires less information to be piggybacked on messages than causal mes-
sage logging. However, due to the risk of orphan process creation, the recovery
protocol of optimistic message logging protocols is complex and can be costly.
This is why existing optimistic message logging solutions are not widely used.

In this paper, we present O2P, a new optimistic protocol based on active op-
timistic message logging. Active optimistic message logging aims at overcoming
the limits of existing optimistic message logging solutions. Contrary to existing

Active Optimistic Message Logging for Reliable Execution 625

optimistic protocols that saves determinants periodically, O2P saves determi-
nants as soon as possible to reduce the amount of data piggybacked on messages
and reduce the risk of orphan process creation. Thus scalability and performance
of optimistic message logging are improved.

O2P is implemented as a module of Open MPI. It is to our knowledge the first
optimistic message logging protocol implemented in a widely used MPI library.
Experimental results show that active message logging improves the performance
and scalability of optimistic message logging. Furthermore it simplifies recovery
by reducing the risk orphan process creation. However our centralized implemen-
tation of the event logger, in charge of logging the determinants, is the actual
bottleneck of the system. To overcome this limitation, we are investigating a so-
lution based on a distributed shared memory to implement determinant logging.
Future works also include the comparison with other message logging protocols
implemented in Open MPI.

References

[1] Alvisi, L., Marzullo, K.: Message Logging: Pessimistic, Optimistic, Causal, and
Optimal. IEEE Transactions on Software Engineering 24(2), 149–159 (1998)

[2] Bailey, D., Harris, T., Saphir, W., van der Wilngaart, R., Woo, A., Yarrow, M.:
The NAS Parallel Benchmarks 2.0. Technical Report Report NAS-95-020, NASA
Ames Research Center (1995)

[3] Bouteiller, A., Cappello, F., Herault, T., Krawezik, K., Lemarinier, P., Magniette,
F.: MPICH-V2: a Fault Tolerant MPI for Volatile Nodes based on Pessimistic
Sender Based Message Logging. In: SC 2003: Proceedings of the 2003 ACM/IEEE
conference on Supercomputing, Washington, DC, USA, p. 25. IEEE Computer
Society Press, Los Alamitos (2003)

[4] Bouteiller, A., Collin, B., Herault, T., Lemarinier, P., Cappello, F.: Impact of
Event Logger on Causal Message Logging Protocols for Fault Tolerant MPI. In:
Proceedings of the 19th IEEE InternationalParallel and Distributed Processing
Symposium (IPDPS 2005), April 2005, vol. 1, p. 97. IEEE Computer Society
Press, Los Alamitos (2005)

[5] Damani, O.P., Wang, Y.-M., Garg, V.K.: Distributed Recovery with K-optimistic
Logging. Journal of Parallel and Distributed Computing 63, 1193–1218 (2003)

[6] Damani, O.P., Garg, V.K.: How to Recover Efficiently and Asynchronously when
Optimism Fails. In: International Conference on Distributed Computing systems,
pp. 108–115. IEEE Computer Society Press, Los Alamitos (1996)

[7] Elnozahy, E.N., Zwaenepoel, W.: On The Use And Implementation Of Message
Logging. In: 24th International Symposium On Fault-Tolerant Computing (FTCS-
24), pp. 298–307. IEEE Computer Society Press, Los Alamitos (1994)

[8] Elnozahy, E.N(M.), Alvisi, L., Wang, Y.M., Johnson, D.B.: A Survey of Rollback-
Recovery Protocols in Message-Passing Systems. ACM Computing Surveys 34(3),
375–408 (2002)

[9] Elnozahy, E.N., Zwaenepoel, W.: Manetho: Transparent Roll Back-Recovery with
Low Overhead, Limited Rollback, and Fast Output Commit. IEEE Transactions
on Computers 41(5), 526–531 (1992)

[10] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
www.mpi-forum.org

www.mpi-forum.org

626 T. Ropars and C. Morin

[11] Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation. In: Proceedings, 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, September 2004, pp. 97–104 (2004)

[12] Johnson, D.B., Zwaenepoel, W.: Sender-Based Message Logging. In: Digest of
Papers: The 17th Annual International Symposium on Fault-Tolerant Computing,
pp. 14–19 (1987)

[13] Lee, B., Park, T., Yeom, H.Y., Cho, Y.: An Efficient Algorithm for Causal Message
Logging. In: IEEE Symposium on Reliable Distributed Systems, pp. 19–25. IEEE
Computer Society Press, Los Alamitos (1998)

[14] Lemarinier, P., Bouteiller, A., Herault, T., Krawezik, G., Cappello, F.: Improved
message logging versus improved coordinated checkpointing for fault tolerant MPI.
In: CLUSTER 2004: Proceedings of the 2004 IEEE International Conference on
Cluster Computing, Washington, DC, USA, pp. 115–124. IEEE Computer Society
Press, Los Alamitos (2004)

[15] Rao, S., Alvisi, L., Vin, H.M.: The Cost of Recovery in Message Logging Protocols.
In: Symposium on Reliable Distributed Systems, pp. 10–18 (1998)

[16] Ropars, T., Morin, C.: O2P: An Extremely Optimistic Message Logging Protocol.
INRIA Research Report 6357 (November 2007)

[17] Schulz, M., Bronevetsky, G., de Supinski, B.R.: On the performance of transparent
MPI piggyback messages. In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.)
EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 194–201. Springer, Heidelberg (2008)

[18] Singhal, M., Kshemkalyani, A.: An efficient implementation of vector clocks. In-
formation Processing Letters 43(1), 47–52 (1992)

[19] Sistla, A.P., Welch, J.L.: Efficient Distributed Recovery Using Message Logging.
In: PODC 1989: Proceedings of the eighth annual ACM Symposium on Principles
of distributed computing, pp. 223–238. ACM Press, New York (1989)

[20] Smith, S.W., Johnson, D.B., Tygar, J.D.: Completely Asynchronous Optimistic
Recovery with Minimal Rollbacks. In: FTCS-25: 25th International Symposium
on Fault Tolerant Computing Digest of Papers, Pasadena, California, pp. 361–371
(1995)

[21] Strom, R., Yemini, S.: Optimistic Recovery in Distributed Systems. ACM Trans-
actions on Computing Systems 3(3), 204–226 (1985)

	Active Optimistic Message Logging for Reliable Execution of MPI Applications
	Introduction
	Background
	Message Logging Principles
	Message Logging Protocols Evaluation

	O2P, an Active Optimistic Message Logging Protocol
	Optimistic versus Causal Message Logging
	System Model
	Protocol Description

	Performance Evaluation
	Implementation Details
	Experimental Settings
	Results
	Discussion

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

