Skip to main content

Which Distance for the Identification and the Differentiation of Cell-Cycle Expressed Genes?

  • Conference paper
Advances in Intelligent Data Analysis VIII (IDA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5772))

Included in the following conference series:

  • 1776 Accesses

Abstract

This paper addresses the clustering and classification of active genes during the process of cell division. Cell division ensures the proliferation of cells, but becomes drastically aberrant in cancer cells. The studied genes are described by their expression profiles (i.e. time series) during the cell division cycle. This work focuses on evaluating the efficiency of four major metrics for clustering and classifying gene expression profiles. The study is based on a random-periods model for the expression of cell-cycle genes. The model accounts for the observed attenuation in cycle amplitude or duration, variations in the initial amplitude, and drift in the expression profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anagnostopoulos, A., Vlachos, M., Hadjieleftheriou, M., Keogh, E.J., Yu, P.S.: Global Distance-Based Segmentation of Trajectories. In: Proc. of ACM SIGKDD, pp. 34–43 (2006)

    Google Scholar 

  2. Bar-Joseph, Z., Gerber, G.K., Gifford, D.K., Jaakkola, T., Simon, I.: Continuous Representations of Time-Series Gene Expression Data. Journal of Computational Biology 10(3), 341–356 (2003)

    Article  MATH  Google Scholar 

  3. Caiado, J., Crato, N., Pena, D.: A periodogram-based metric for time series classification. Computational Statistics and Data Analysis 50, 2668–2684 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Douzal-Chouakria, A., Nagabhushan, P.N.: Adaptive dissimilarity index for measuring time series proximity. Advances in Data Analysis and Classification Journal 1(5-21) (2007)

    Google Scholar 

  5. Douzal-Chouakria, A., Diallo, A., Giroud, F.: Adaptive clustering for time series: application for identifying cell-cycle expressed genes. Computational Statistics and Data Analysis 53(4), 1414–1426 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Džeroski, S., Gjorgjioski, V., Slavkov, I., Struyf, J.: Analysis of time series data with predictive clustering trees. In: Džeroski, S., Struyf, J. (eds.) Knowledge Discovery in Inductive Databases, 5th International Workshop, KDID, Berlin, Germany (2006)

    Google Scholar 

  7. Eisen, M.B., Brown, P.O.: DNA arrays for analysis of gene expression. Methods Enzymol. 303, 179–205 (1999)

    Article  Google Scholar 

  8. Garcia-Escudero, L.A., Gordaliza, A.: A proposal for robust curve clustering. Journal of Classification 22, 185–201 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Heckman, N.E., Zamar, R.H.: Comparing the shapes of regression functions. Biometrika 22, 135–144 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. He, Y., Pan, W., Lin, J.: Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data. Computational Statistics and Data Analysis 51(2), 641–658 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kakizawa, Y., Shumway, R.H., Taniguchi, N.: Discrimination and clustering for multivariate time series. Journal of the American Statistical Association 93, 328–340 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. An Introduction to Cluster Analysis. John Wiley & Sons, New York (1990)

    MATH  Google Scholar 

  13. Keller, K., Wittfeld, K.: Distances of time series components by means of symbolic dynamics. International Journal of Bifurcation Chaos 14, 693–704 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keogh, E.J., Pazzani, M.J.: Scaling Up Dynamic Time Warping for Data Mining Applications. In: Proc. of ACM SIGKDD, pp. 285–289 (2000)

    Google Scholar 

  15. Kruskall, J.B., Liberman, M.: The symmetric time warping algorithm: From continuous to discrete. In: Time Warps, String Edits and Macromolecules. Addison-Wesley, Reading (1983)

    Google Scholar 

  16. Liu, D., Umbach, D.M., Peddada, S.D., Li, L., Crockett, P.W., Weinberg, C.R.: A Random-Periods Model for Expression of Cell-Cycle Genes. Proc. Natl. Acad. Sci. USA 101, 7240–7245 (2004)

    Article  Google Scholar 

  17. Liu, X., Lee, S., Casella, G., Peter, G.F.: Assessing agreement of clustering methods with gene expression microarray data. Computational Statistics and Data Analysis 52(12), 5356–5366 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maharaj, E.A.: Cluster of time series. Journal of Classification 17, 297–314 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Oates, T., Firoiou, L., Cohen, P.R.: Clustering time series with Hidden Markov Models and Dynamic Time Warping. In: Proc. 6th IJCAI 1999, Workshop on Neural, Symbolic and Reinforcement Learning Methods for Sequence Learning, Stockholm, pp. 17–21 (1999)

    Google Scholar 

  20. Park, C., Koo, J., Kim, S., Sohn, I., Lee, J.W.: Classification of gene functions using support vector machine for time-course gene expression data. Computational Statistics and Data Analysis 52(5), 2578–2587 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Scrucca, L.: Class prediction and gene selection for DNA microarrays using regularized sliced inverse regression. Computational Statistics and Data Analysis 52(1), 438–451 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Serban, N., Wasserman, L.: CATS: Cluster After Transformation and Smoothing. Journal of the American Statistical Association 100, 990–999 (2004)

    Article  MATH  Google Scholar 

  23. Shieh, J., Keogh, E.J.: iSAX: Indexing and Mining Terabyte Sized Time Series. In: Proc. of ACM SIGKDD, pp. 623–631 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diallo, A., Douzal-Chouakria, A., Giroud, F. (2009). Which Distance for the Identification and the Differentiation of Cell-Cycle Expressed Genes?. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, JF. (eds) Advances in Intelligent Data Analysis VIII. IDA 2009. Lecture Notes in Computer Science, vol 5772. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03915-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03915-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03914-0

  • Online ISBN: 978-3-642-03915-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics