
Selecting Computer Architectures
by Means of Control-Flow-Graph Mining

Frank Eichinger and Klemens Böhm

Institute for Program Structures and Data Organisation (IPD)
Universität Karlsruhe (TH), Germany, {eichinger, boehm}@ipd.uka.de

Abstract Deciding which computer architecture provides the best per-
formance for a certain program is an important problem in hardware
design and benchmarking. While previous approaches require expensive
simulations or program executions, we propose an approach which solely
relies on program analysis. We correlate substructures of the control-flow
graphs representing the individual functions with the runtime on certain
systems. This leads to a prediction framework based on graph mining,
classification and classifier fusion. In our evaluation with the SPEC CPU
2000 and 2006 benchmarks, we predict the faster system out of two with
high accuracy and achieve significant speedups in execution time.

1 Introduction

The question which computer architecture is best suited for a certain application
is of major importance in hardware design and benchmarking. Think of a new
scientific tool for which hardware is needed. It is not clear which hardware is most
appropriate. Other developments give way to similar questions: With heteroge-
neous multicore processors, one has to decide at runtime on which processors to
execute a certain program. Reconfigurable hardware allows to change the hard-
ware at runtime. These upcoming technologies motivate studying dependencies
between program characteristics and computer architectures as well.

To deal with the problem which architecture provides the best performance
for a certain application, several approaches have been used, ranging from execu-
tions and simulations to analytical models and program analysis. At first sight, it
seems feasible to assess the performance of a program by executions on the sys-
tems in question. But this requires to have access to the machines, and porting
the program to them can be expensive. Simulations of processor architectures
require detailed information on the architectures to choose from and might be
very time-consuming. As modern computer architectures have an extreme com-
plexity, analytical models describing them are hard to establish and may be
unreliable. Some recent approaches make use of program analysis. The intuition
is that similar programs display a similar runtime behaviour when executed on
the same machine. Execution times for a number of programs are known for
many systems, e.g., from benchmarks suites. [1, 2] compare similarities of pro-
grams based on execution properties such as the CPU instruction mix. These

properties are architecture-dependent, but independent of the implementation
used. To obtain them, program executions or simulations are necessary.

In this article we investigate another method to find the best computer archi-
tecture which does not require any execution or simulation of the application in
question. Likewise, we assume that similar applications have a similar execution
behaviour – but have consciously decided not to measure any runtime-related
characteristics. Instead, we entirely rely on published execution times of bench-
mark programs. In our approach, we define similarity using structural charac-
teristics of the control-flow graphs (CFGs) [3] of the underlying functions. Our
research question is to investigate how well they describe the performance-related
characteristics of a program, and if they can be used for performance predictions.
In contrast to software metrics like lines of code and statements used, CFGs do
not have any potentially distracting characteristics which depend on language
specifics, such as the language used or the programming style of the developers.
In more detail, we derive structural features from CFGs by means of frequent
subgraph mining. The resulting subgraph features characterise a function and
can train a classifier which predicts the best architecture for a given application.

The solution just outlined requires a number of contributions at different
stages of the analysis process:

Representation of Control-Flow Graphs. To derive subgraph features from
CFGs, the nodes of the graphs have to be labelled with information relevant for
performance analysis. So far, nodes represent blocks of source code. We have to
turn them into concise categorical labels which graph mining algorithms can use.
However, such a labelling is not obvious. We propose a labelling scheme with
information that is relevant for performance.

Mining Large Graphs. Once we have derived suitable CFGs, mining them
is another challenge, due to the size of some of them. We develop an efficient
technique consisting of two steps: We first mine a subset of the graphs that are
‘easy to mine’ and then inspect the remaining graphs. Our technique provides
guarantees for the support values achieved.

Classification Framework. We propose a classification setting for our specific
context. This is necessary: CFG based information is available at the function
level, as we will explain, while we want to choose the best architecture for a
program as a whole. We propose a framework that first learns at the function
level, before we turn our classification model into a predictor for the architecture
where a given program performs best.

Our experimental evaluation is based on the SPEC CPU 2000 and 2006
benchmark suites. The main result is that, for ‘relatively similar’ computer ar-
chitectures to choose from, our approach achieves an average prediction accuracy
of 69% when choosing between two systems. This also shows the existence of re-
markably strong relationships between CFGs and runtime behaviour.

Paper outline: Section 2 presents related work, Section 3 describes CFG rep-
resentations, and Section 4 says how we mine them. Section 5 describes the
prediction framework, Section 6 our results. Section 7 concludes.

2 Related Work

In the areas of computer architecture, high-performance computing and bench-
marking, different approaches have been investigated to predict the runtime of
applications. Many of them make use of intelligent data-analysis techniques.

As mentioned, analytic models can assess the performance of software on
certain machines. For distributed MPI (message passing interface) programs,
Kühnemann et al. developed a compiler tool which helps deriving such a mo-
del [4]. It builds on source-code analysis and properties of the underlying ma-
chines. These properties include the execution times of basic arithmetic and
logical operations, which have to be derived for the machines in question. This
requires access to the machines or at least a detailed knowledge. The approach
then creates a runtime-function model. Another analytical model approach, in
the area of superscalar processors, is [5]. Karkhanis et al. use architecture-
dependent information such as statistics of branch mispredictions and cache
misses to build a performance-prediction model. While predictions are good, the
approach requires time-consuming executions to obtain the characteristics used.

The approach which probably is most similar to ours is [1, 2]. Joshi et al. use
program characteristics to make statements on the similarities of programs [1].
In contrast to [4, 5], they do not use microarchitecture-dependent measures to
characterise programs, but microarchitecture-independent ones, such as the in-
struction mix and branch probabilities. This limits the approach to a certain
instruction-set architecture and a specific compiler. Furthermore, generating the
measures requires simulation or execution. Based on [1], Hoste et al. use program-
similarity measures and predict performance with programs from the SPEC
CPU 2000 benchmark suite [2]. They then normalise the microarchitecture-
independent characteristics with techniques such as principal-component anal-
ysis. These normalised measures represent a point in the so-called benchmark
space for every program. The performance of an unknown application is then
predicted as the weighted average of execution times of programs in the neigh-
bourhood. To obtain enough reference points with known performance measures,
the authors rely on programs from a benchmark suite. Like our approach, [2] can
determine the best platform for an application. Its advantage is that predictions
tend to be more accurate than ours. This is achieved by the limitation to a cer-
tain instruction-set architecture and by executing or simulating the application
in question on an existing platform. Our approach in turn has no such limitation.
It uses only measures generated from the source code and does not require any
simulation or execution of the program in question.

İpek et al. do not only predict performance for different systems [6] but also
contribute to hardware design. The number of design alternatives in computer
architecture is huge, and it is hard to develop a good architecture for certain
applications. The combination of design parameters is often described as a point
in a design space, as is done in [6]. The authors simulate sampled points in de-
sign spaces corresponding to the memory hierarchy and to chip multiprocessors,
which then serve as input for neural networks. They then use these networks for
performance predictions of new computer-architecture designs.

Our approach is also related to work in the field of graph classification. One
of the first studies, with an application in chemistry, is [7]. The authors propose
a graph-classification framework which consists of three steps: (1) search for
frequent subgraphs which are then used as binary features indicating if a certain
subgraph is included in a graph, (2) a feature-selection strategy to reduce the
dimensionality and (3) a model-learning step. Our approach is similar in that
frequent subgraphs are generated which serve as features to learn a classification
model. However, our application does not require feature selection, but a more
complex approach to integrate classifications to a prediction for a program.

3 Control-Flow-Graph Representation

Control-Flow-Graph Generation. Control-flow graphs (CFGs) [3] are a common
program representation in compiler technology. They are static in nature and can
be derived from source code. They represent all control flows which can possibly
occur. The nodes of a CFG stand for basic blocks of code, i.e., sequences of
statements without any branches. The edges represent the possible control flows,
i.e., edges back to previous nodes for loops and different branches for condition
statements. This paper studies the usual setting where one CFG describes a
single function.

For our work, it is important to define an architecture-independent represen-
tation of CFGs. In particular, some compiler optimisations affect the structure
of the CFGs, e.g., loop unrolling. This might vary when making optimisations
for different architectures. Therefore, we use the GNU compiler collection (gcc)
to obtain CFGs using the -O0-flag, which prevents the compiler from making any
optimisations. However, the gcc normalises the source code by using canonical
constructs for artefacts which can be expressed in several ways in the program-
ming language. This normalisation is an advantage, as the same algorithms tend
to be expressed in the same way, even if the source-code representations vary.

(a) (b)

Figure 1. Example control-flow graph (CFG).

Figure 1 is an example of a CFG: (a) is a part of the function AllocAlignment
from the SPEC program 456.hmmer in a (simplified) intermediate representa-
tion derived with the gcc. (b) is the CFG derived from the function. In the
intermediate representation, if and goto-statements represent loops.

In addition to the nodes displayed in Figure 1(b), some CFG representations
introduce additional entry and exit nodes which do not represent any code. They
do not represent any performance-related information. To obtain a more concise
graph representation, we do not make use of such nodes.

Node Labelling. To mine CFGs, it seems that one could analyse the pure graph
structure ignoring the content of the nodes. However, such an approach would
lose a lot of (performance-related) information. To avoid this, we propose the
following mapping of source code to node labels:

– FP for blocks containing floating-point operations.
– Call for blocks without FP operations but calls of other functions.
– Set for blocks without FP or Call operations but load/store operations.
– Int for blocks containing none of the above (simple integer ALU operations).

So far, the labelling scheme leaves aside the actual number of statements in
a node, which might be important as well. Furthermore, the different labels are
quite imbalanced: FP is assigned to only 3% of the nodes from CFGs in the SPEC
CPU 2000 and 2006 programs used (see Table 1), Call is assigned to 19%, Set
to 61% and Int to 17%. Large sets of nodes with the same label, as well as only
few different ones, have a negative effect on the performance of graph-mining
algorithms (cf. [8]). We therefore propose a more fine-grained labelling scheme:
We divide the blocks labelled with Call into blocks containing one function call,
Call1, and blocks with two or more calls, Call2+. As there is a larger variety in
the number of load/store operations, and the Set class of labels is the largest,
we divide it in four labels. Each of them has approximately the same number
of corresponding nodes. Blocks with one load/store operation are labelled Set1,
blocks with two with Set2, those with three to five with Set3-5 and those with
more than five Set6+. In preliminary experiments, graph mining was one order of
magnitude faster with the fine-grained labels, while the accuracy of predictions
did not decrease. Figure 2 provides examples of the labelling schemes.

CPU 2000 CPU 2006
164.gzip 183.equake 255.vortex 400.perlbench 436.cactus-ADM 464.h264ref
175.vpr 186.crafty 256.bzip2 401.bzip2 445.gobmk 470.lbm
176.gcc 188.ammp 300.twolf 403.gcc 454.calculix 481.wrf
177.mesa 197.parser 429.mcf 456.hmmer 482.sphinx3
179.art 253.perlbmk 433.milc 458.sjeng
181.mcf 254.gap 435.gromacs 462.lib-quantum

Table 1. SPEC benchmark programs used.

(a) orig. CFG from Fig. 1 (b) coarse-grained (c) fine-grained

Figure 2. Examples of CFG node labelling schemes.

4 Control-Flow-Graph Mining

For our experiments (see Section 6) we use the C/C++ programs from the SPEC
CPU 2000 and 2006 benchmarks suites listed in Table 1. This results in a set
GCFG of approximately 27,000 CFGs belonging to the 31 programs. The graphs
have an average size of 22 nodes, with high variance. Approximately 30% of the
graphs consist of one node only, while roughly 12% have more than 32 nodes,
including a few with more than 1,000 nodes. As graphs with a single node do not
contain any information which is useful for our scheme, we omit these graphs.
This reduces the size of GCFG to approximately 19,000 graphs.

(a) (b)

Figure 3. Illustration of CFGs with problematic node degrees.

Though the average graphs in GCFG are not challenging from a state-of-the-
art graph-mining perspective, the large CFGs do lead to scalability problems.
We can mine the entire graph set with, say, the gSpan algorithm [9] in a reason-
able time, but only with relatively high minimum support values (minSup). In
preliminary experiments, this leads to the discovery of very small substructures,
i.e., with a maximum of two nodes only. Further, the CloseGraph algorithm [10]
is not helpful in our case. This is because there rarely are closed graphs (with ex-
actly the same support) which offer pruning opportunities. In preliminary exper-
iments, CloseGraph even increased the runtime because of the search for closed
structures. – To obtain larger subgraph patterns from our CFG dataset GCFG

by means of frequent subgraph mining, we inspect the larger graphs further.
We observe that they frequently contain nodes with a high degree. This causes

the scalability problems. Node Int in Figure 3(a) serves as an illustration. In
many cases, bulky switch-case statements which lead to many outgoing edges
in one node and many incoming edges in another one cause these high degrees.
Typically, programs treat many different case branches similarly. Therefore, the
corresponding nodes frequently have the same labels (Set1 in Figure 3(a)). The
problem with these situations is the number of potential embeddings. As an
example, we want to find out the embeddings of the graph in Figure 3(b) in
the graph in Figure 3(a). Algorithms like gSpan search for all such embeddings
(subgraph isomorphisms), which is NP-complete [11]. In the example, there are
20 distinct embeddings. GCFG contains nodes with a degree of 720, which leads
to extreme numbers of possible embeddings. To conclude, the graphs in GCFG

with high node degrees prohibit mining of GCFG with reasonably low minSup
values. Early experiments with roughly the same data set, but with the largest
graphs excluded, have led to encouraging results in turn. We therefore propose
the following mining steps:

1. Mining of all graphs Gsmall smaller than a certain threshold tsize, resulting
in a set of frequent subgraphs SG . (Gsmall := {g ∈ GCFG |size(g) ≤ tsize})

2. Search for subgraph isomorphisms of the subgraphs SG within the large
graphs Glarge which have been omitted in Step 1. (Glarge := GCFG \Gsmall)

3. Unified representation of all graphs in GCFG with feature vectors.

Before we can derive frequent subgraphs (SG) in Step 1, we first system-
atically identify combinations of the support in Gsmall (minSupsmall) and the
size threshold (tsize), which let us mine the data in reasonable time. We do
this by means of preliminary mining runs. In general, one wants to have a low
minSupsmall, to facilitate finding large and significant subgraphs, and a high tsize.
This is to ensure that only few patterns, namely those only included in Glarge,
are missed. With our dataset, we found a tsize of 32 (corresponding to Glarge with
a size of 12% of |GCFG|) and a minSupsmall of 1.7% to be good values. We assume
that similar tsize values can be found when mining other CFG datasets, since our
numbers are based on a sample of 27,000 CFGs. We then mine Gsmall with the
ParSeMiS implementation1 of the gSpan algorithm [9], which is a state-of-the-
art algorithm in frequent subgraph mining. This results in a set of subgraphs
SG which are frequent within Gsmall.

In Step 2 we determine which graphs in Glarge contain the subgraphs in
SG by means of a subgraph-isomorphism test. Although this problem is NP-
complete [11], we benefit from properties of our specific dataset. E.g., there are
no cliques larger than three nodes, and the average node degree of 3.4 is relatively
low. Therefore, this step is less expensive in terms of runtime than Step 1.

In Step 3, we represent every CFG in GCFG with a feature vector. Such a
vector contains one bit for every subgraph in SG . A bit states if the respective
subgraph is included in the CFG.2 As the subgraphs in SG have a minimum size
1 http://www2.informatik.uni-erlangen.de/Forschung/Projekte/ParSeMiS/
2 In preliminary experiments we have used the numbers of embeddings. This has not

yielded better results. However, generating boolean features makes the subgraph-
isomorphism test in Step 2 much easier.

of one edge, single nodes are not included. We believe that these nodes provide
important information as well. We therefore extend the vector with single nodes
labelled with the label classes described in Section 3. For these features, we use
integers representing their number of occurrences. This allows for a more precise
description of the operations contained in a CFG, i.e., in a function. Summing
up, we represent every CFG g ∈ GCFG with the following vector:

g := (sg1 , sg2 , ..., sgn , FP , Call1, Call2+, Set1, Set2, Set3-5, Set6+, Int)

where sg1 , sg2 , ..., sgn ∈ SG are boolean features, |SG | = n, and FP , Call1,
Call2+, Set1, Set2, Set3-5, Set6+ and Int are integers.

Our technique based on mining Gsmall bears the risk that certain subgraphs
may not be found, namely those contained in Glarge. In the worst case, a subgraph
sg is contained in every graph in Glarge, corresponding to 12% of |GCFG| in our
case, but hardly misses the minimum support when only looking at Gsmall. In
other words, sg becomes a part of the result set SG if it has a support of 13.5% in
GCFG. More formally, we can guarantee to find all subgraphs with the following
minimum support in GCFG:

minSupguarantee =
|Glarge|
|GCFG|

+
|Gsmall|
|GCFG|

·minSupsmall

In our dataset, minSupguarantee is 13.5%. However, we find many more subgraphs
as we are mining with a much lower minSupsmall in Gsmall. A direct mining of
GCFG with a minSup of 13.5% was not possible due to scalability problems – the
lowest minSup value possible in preliminary experiments was 20%. Our approach
succeeds due to the relatively small fraction of large graphs. It is applicable to
other datasets as well, but only if the share of large graphs is similar.

5 Classification Framework

We now describe the subsequent classification process, to predict the best com-
puter architecture for a given program. We formulate this prediction as the
selection between a number of architectures. The architectures are the classes
in this setting. In the following, we focus on the prediction of the faster one of
two architectures. This is due to the limited number of architectures with data
available, as we will explain. However, with more training data, we do not see
any problems when choosing from an arbitrary number of systems.

For the classification, we are faced with the challenge that our substructure
based feature vectors are descriptions at the function level, while we are inter-
ested in predictions for a program as a whole. At the same time, SPEC publishes
runtimes of several systems – this information is at the level of programs as well.
Potentially helpful information on the execution of functions, such as the num-
ber of calls and the execution time, is not available. This situation is completely
natural, and this is why we propose an approach that is supposed to work with-
out that information. In the following, we develop an approach which does not
need any more runtime-related information than the one typically available.

One way to do program-level predictions is to aggregate the information
contained in the feature vectors to the program level. Then a classification model
could be learned with this data. As one program consists of many functions
(typically hundreds to thousands in the benchmarks), such an aggregation would
lose potentially important fine-grained information. Further, it would force us to
learn a model based on only few tuples (programs). The problem is the limited
availability of systems which are evaluated with more than one benchmark suite.
E.g., a system evaluated with SPEC CPU 2006 is rarely evaluated with the
now outdated CPU 2000 benchmark suite as well. The number of benchmark
programs whose execution time for the same machines is known is therefore
limited in practice – and deriving this information would be tedious.

Hence, we propose a classification framework containing a simplification
which might seem unusual or ‘simplistic’ at first sight: To learn a classifier at the
function level, we assign the fastest architecture for the program as a whole to all
feature vectors describing its CFGs (functions). This simplification, caused by
a lack of any respective information, clearly does not take the characteristics of
the different functions of a program into account. It also ignores the potentially
imbalanced distribution of execution times of the individual functions. However,
our hope is that the large amount of function-level training data compensates
these issues, and we will show this. Once the classification model is learned, we
use it to classify functions from programs with unknown runtime behaviour. We
aggregate these predictions to the program level with majority vote.

To learn a prediction model, any classification technique can be used in princi-
ple. We have carried out preliminary experiments with support vector machines,
neural networks and decision trees, and the results were best with the latter.
We therefore deploy the C5.0 algorithm, a successor of C4.5 [12]. Our imple-
mentation in the SPSS Clementine data-mining suite lets us specify weights for
every tuple during the learning process, to emphasise certain tuples. With our
approach, we weight every feature vector with two factors:

1. One class might consist of many more tuples than the other one in the learn-
ing data set. As this typically leads to an increased number of predictions
of the larger class, we increase the weight of the under-represented one. We
use the fraction of the number of functions in the larger class divided by the
one of the under-represented class as the weight.

2. The difference in runtime of some programs on the two machines considered
might be large, while it is marginal with other programs. To give a higher
influence to a program with very different execution times, we use the ratio
of the execution time of the slower machine to the one of the faster machine
as another weight for the feature vectors of a program.

To fuse the classifications on the function level, we use the majority-vote
technique [13]. This is standard to combine multiple classifications. In extensive
experiments, we have evaluated alternative weights for learning, as well as dif-
ferent combination schemes. In particular, we have examined the two weights
mentioned – as well as other ones – as weights for the majority-vote scheme.

System 1 System 2 System 3
Bull SAS NovaScale B280 Dell Precision 380 HP Proliant BL465c
Intel Xeon E5335, Intel Pentium 4 670 AMD Opteron 2220
QuadCore, 2.0 GHz SingleCore, 3.8 GHz DualCore, 2.8 GHz
2x4 MB L2, 8 GB RAM 2 MB L2, 2 GB RAM 2x1 MB L2, 16 GB RAM

System 4 System 5 System 6
Intel D975XBX Motherboard FSC Celsius V830 IBM BladeCenter LS41
Intel Pentium EE 965 AMD Opteron 256 AMD Opteron 8220
DualCore, 3.7 GHz SingleCore, 3.0 GHz DualCore, 2.8 GHz
2x2 MB L2, 4 GB RAM 1 MB L2, 2 GB RAM 2x1 MB L2, 32 GB RAM

Table 2. Systems used for runtime experiments.

Note that, while the graph-mining step of our approach may be time-con-
suming, it only takes place once, in order to build the classification model. The
prediction for a new program is much faster, once the model is built.

6 Experiments

In this section we present our experiments and results. For the programs listed
in Table 1, the runtimes on a number of systems are published on the SPEC
homepage3. We make use of this data and use a subset of the systems available,
listed in Table 2. Not every system is evaluated with the older CPU 2000 and the
more recent CPU 2006 benchmark. Therefore, our selection is motivated by the
availability of runtimes for both benchmarks. Although there would have been a
few more systems available, we have only used the ones mentioned. They allow
us to set up experiments where the balance of systems being fastest with some
programs and systems being fastest with other programs is almost equal. This
eases the data-mining process. In reality, equality is not necessary when enough
data is available. Our experiments cover single-, dual- and quadcore architectures
as well as different memory hierarchies and processors, see Table 3.

We use the classification framework as described in Section 5, along with
2-fold cross-validation. We use partitions which are stratified with respect to
the class and consist of roughly equal numbers of functions. For evaluation we
derive the accuracy, i.e., the percentage of programs with correct prediction, and
the speedup in terms of execution time. To obtain the latter, we first calculate
the total runtime of all programs, each one on the machine predicted. This
allows us to derive a percentage, ‘speedup reached’. 0% is achieved when the
slowest architecture is always selected, 100% if the predictor assigns the fastest
architecture to every program. Table 3 contains both measures as well.

We achieve an accuracy of 69% on average. This indeed corresponds to a
speedup. On average, we reach 71% of the speedup that would have been pos-
sible in theory. Further, our results show that there is a strong relationship
3 http://www.spec.org/benchmarks.html

Exp. Platforms Processors accuracy speedup reached

1 System 5 vs. System 2 Opteron vs. Pentium 4 71.0% 83.2%
2 System 3 vs. System 4 Opteron vs. Pentium EE 64.5% 58.6%
3 System 6 vs. System 1 Opteron vs. Xeon 71.0% 72.6%

Table 3. Experiments and results.

between CFGs and runtime behaviour. Although it would be interesting, we do
not compare our results to approaches making use of execution properties, such
as [2]. Such a comparison is not possible, since [2] uses other benchmarks and
target machines, as well as other evaluation metrics.

To savour our experimental results, one should take several points into ac-
count. The programs in the SPEC CPU benchmarks are relatively similar in the
sense that they are all compute-intensive (not I/O or memory-intensive). The
systems considered are relatively similar as well. All of them are off-the-shelf
systems, differing mainly in their configuration. However, it does not affect run-
time by much if, say, the number of processors or the size of RAM changes. The
programs considered do not use multiple threads and always fit in memory. The
only architectural difference of some significance is the instruction set used, i.e.,
x86 in the Xeon and Pentium systems and x86-64 in the Opteron systems.

7 Conclusion and Future Work

In the computer industry, it is important to know which platform provides the
best performance for a given program. Most approaches proposed so far require
in-depth knowledge of the systems or of runtime-related characteristics. One
must obtain them using expensive simulations or executions.

This paper has proposed an approach solely based on the static analysis of
programs and on runtime data from benchmark executions, which is available
online. It analyses the control flow graphs (CFGs) of the functions. Based on
graph-mining results, it correlates programs with similar CFG substructures and
assumes that their runtime is similar as well. This leads to our prediction frame-
work for learning at function level and a classifier-fusion technique to derive
program-level predictions. Our framework can predict the runtime behaviour of
programs on the target platforms. Though our approach to assign the best archi-
tecture for a program as a whole to its classes might be unusual and somewhat
risky, it is beneficial according to our evaluation. In experiments with the SPEC
CPU 2000 and 2006 benchmarks we obtain an accuracy of 69% on average.

From a graph-mining perspective, we propose a technique which can deal
with situations when the usual approach does not scale, e.g., because of high
node degrees. Our technique leaves aside few graphs in the graph-mining step
which are ‘problematic’. Then, it maps the results to the graphs we left out
before. We provide guarantees on the overall support.

One aspect of our future work is to improve the prediction quality further.
We currently investigate the usage of software metrics which provide additional

information on a function. We also investigate program-dependence graphs [14].
They feature data dependencies in addition to control-flow information. Such
information might help regarding certain aspects of computer architectures, e.g.,
pipelining and register usage. However, the graphs are much larger than CFGs.
Another aspect is a further investigation from the computer architecture point of
view. Rather than correlating properties from source-code representations, e.g.,
CFG substructures, with architectures as a whole, we are interested in ties with
micro-architectural details, such as the cache architecture. Such insights would
be of enormous help when designing hardware for specific applications.

Acknowledgments

We thank Dietmar Hauf for much help with all aspects of this study and Wolf-
gang Karl and David Kramer for their guidance regarding computer architecture.

References

[1] Joshi, A., Phansalkar, A., Eeckhout, L., John, L.: Measuring Benchmark Similar-
ity Using Inherent Program Characteristics. IEEE Trans. Comput. 55(6) (2006)
769–782

[2] Hoste, K., Phansalkar, A., Eeckhout, L., Georges, A., John, L.K., Bosschere, K.D.:
Performance Prediction Based on Inherent Program Similarity. In: Proc. Int. Conf.
on Parallel Architectures and Compilation Techniques (PACT). (2006)

[3] Allen, F.E.: Control Flow Analysis. In: Proc. Symposium on Compiler Optimiza-
tion. SIGPLAN Notices (1970) 1–19

[4] Kühnemann, M., Rauber, T., Runger, G.: A Source Code Analyzer for Perfor-
mance Prediction. In: Proc. Int. Symposium on Parallel and Distributed Process-
ing. (2004)

[5] Karkhanis, T.S., Smith, J.E.: A First-Order Superscalar Processor Model.
SIGARCH Comput. Archit. News 32(2) (2004) 338

[6] İpek, E., McKee, S.A., Singh, K., Caruana, R., de Supinski, B.R., Schulz, M.:
Efficient Architectural Design Space Exploration via Predictive Modeling. ACM
Trans. Archit. Code Optim. 4(4) (2008) 1–34

[7] Deshpande, M., Kuramochi, M., Wale, N.: Frequent Substructure-Based Ap-
proaches for Classifying Chemical Compounds. IEEE Trans. Knowl. Data Eng.
17(8) (2005) 1036–1050

[8] Chakrabarti, D., Faloutsos, C.: Graph Mining: Laws, Generators, and Algorithms.
ACM Comput. Surv. 38(1) (2006) 2

[9] Yan, X., Han, J.: gSpan: Graph-Based Substructure Pattern Mining. In: Proc.
Int. Conf. on Data Mining (ICDM). (2002)

[10] Yan, X., Han, J.: CloseGraph: Mining Closed Frequent Graph Patterns. In: Proc.
Int. Conf. on Knowledge Discovery and Data Mining (KDD). (2003)

[11] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

[12] Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
[13] Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John

Wiley & Sons (2004)
[14] Ottenstein, K.J., Ottenstein, L.M.: The Program Dependence Graph in a Software

Development Environment. SIGSOFT Softw. Eng. Notes 9(3) (1984) 177–184

