Skip to main content

DEMScale: Large Scale MDS Accounting for a Ridge Operator and Demographic Variables

  • Conference paper
  • 1781 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5772))

Abstract

In this paper, a method called DEMScale is introduced for large scale MDS. DEMScale can be used to reduce MDS problems into manageable sub-problems, which are then scaled separately. The MDS items can be split into sub-problems using demographic variables in order to choose the sections of the data with optimal and sub-optimal mappings. The lower dimensional solutions from the scaled sub-problems are recombined by taking sample points from each sub-problem, scaling the sample points, and using an affine mapping with a ridge operator to map the non-sample points. DEMScale builds upon the methods of distributional scaling and FastMDS, which are used to split and recombine MDS mappings. The use of a ridge regression parameter enables DEMScale to achieve stronger solution stability than the basic distributional scaling and FastMDS techniques. The DEMScale method is general, and is independent of the MDS technique and optimization method used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basilaj, W.: Incremental Multidimensional Scaling Method for Database Visualization. In: Erbacher, R.F., Pang, A. (eds.) Visual Data Exploration and Analysis, vol. VI, pp. 149–158 (1999)

    Google Scholar 

  2. Benzecri, J.P.: Correspondence Analysis Handbook. Marcel Dekker, Inc., New York (1992)

    MATH  Google Scholar 

  3. Borg, I., Leutner, D.: Measuring the Similarity between MDS Configurations. Multivariate Behavioral Research 20, 325–334 (1985)

    Article  Google Scholar 

  4. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 42–53. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Brodbeck, D.L., Girardin, D.L.: Combining Topological Clustering and Multidimensional Scaling for Visualising Large Data Sets. Unpublished Paper (Accepted for, but Not Published in, Proc. IEEE Information Visualization 1998) (1998)

    Google Scholar 

  6. Chalmers, M.: A Linear Iteration Time Layout Algorithm for Visualizing High-Dimensional Data. In: Yagel, R., Nielson, G.M. (eds.) Proceedings of the 7th Conference on Visualization, pp. 127–132. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  7. de Silva, V., Tenenbaum, J.B.: Sparse Multidimensional Scaling using Landmark Points. Technical Report, Stanford University (2004)

    Google Scholar 

  8. Faloutos, C., Lin, K.: FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Datasets. In: Cary, M., Schneider, D. (eds.) 1995 ACM SIGMOD International Conference on Management of Data, pp. 163–174. ACM, New York (1995)

    Chapter  Google Scholar 

  9. Fanty, M., Cole, R.: Spoken Letter recognition. In: Lippman, R.P., Moody, J., Touretzky, D.S. (eds.) Advances in Neural Information Processing Systems 3, pp. 220–226. Morgan Kaufmann, San Mateo (1990)

    Google Scholar 

  10. Groenen, P.J.K., Heiser, W.J.: The Tunneling Method for Global Optimization in Multidimensional Scaling. Psychometrika 61, 529–550 (1996)

    Article  MATH  Google Scholar 

  11. Groenen, P.J.K., Heiser, W.J., Meulman, J.J.: Global Optimization in Least-Squares Multidimensional Scaling. Journal of Classification 16, 225–254 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Groenen, P.J.K., Mathar, R., Heiser, W.J.: The Majorization Approach to Multidimensional Scaling for Minkowski Distances. Journal of Classification 12, 3–19 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guyon, I., Li, J., Mader, T., Pletscher, P.A., Schneider, G., Uhr, M.: Competitive Baseline Methods Set New Standards for the NIPS 2003 Feature Selection Benchmark. Pattern Recognition Letters 28, 1438–1444 (2007)

    Article  Google Scholar 

  14. Heiser, W.J., de Leew, J.: SMACOF-I. Technical Report UG-86-02, Department of Data Theory, University of Leiden (1986)

    Google Scholar 

  15. Hoerl, A.E., Kennard, R.W.: Ridge Regression: Biased Estimation for Nonorthogonal Problems. Techometrics 42, 80–86 (2000)

    Article  MATH  Google Scholar 

  16. Jourdan, F., Melancon, G.: Multiscale Hybrid MDS. In: Proceedings of the Information Visualisation Eighth International Conference, pp. 388–393. IEEE Computer Society, Washington (2004)

    Google Scholar 

  17. Kruskal, J.B.: Multidimensional Scaling for Optimizing a Goodness of Fit Metric to a Nonmetric Hypothesis. Psychometrika 29, 1–27 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kruskal, J.B.: Nonmetric Multidimensional Scaling: A Numerical Method. Psychometrika 29, 115–129 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marquardt, D.W., Snee, R.D.: Ridge Regression in Practice. The American Statistician 29, 3–20 (1975)

    MATH  Google Scholar 

  20. Morrison, A., Ross, G., Chalmers, M.: Fast Multidimensional Scaling through Sampling, Springs, and Interpolation. Information Visualization 2, 68–77 (2003)

    Article  Google Scholar 

  21. Morrison, A., Chalmers, M.: A Hybrid Layout Algorithm for Sub-Quadratic Multidimensional Scaling. In: Wong, P., Andrews, K. (eds.) Proceedings of the IEEE Symposium on Information Visualization, pp. 152–158. IEEE, Los Alamitos (2002)

    Google Scholar 

  22. Naud, A.: An Accurate MDS-Based Algorithm for the Visualization of Large Multidimensional Datasets. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 643–652. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Naud, A.: Visualization of High-Dimensional Data Using an Association of Multidimensional Scaling to Clustering. In: 2004 IEEE Conference on Cybernetics and Intelligent Systems, pp. 252–255 (2004)

    Google Scholar 

  24. Neslin Scott, A., Sunil, G., Kamakura, W.A., Lu, J., Mason, C.H.: Defection Detection: Measuring and Understanding the Predictive Accuracy of Customer Churn Models. Journal of Marketing Research 43, 204–211 (2006)

    Article  Google Scholar 

  25. Platt, J.C.: FastMap, MetricMap, and Landmark MDS are all Nyström Algorithms. Microsoft Research Working Paper (2006)

    Google Scholar 

  26. Quist, M., Yona, G.: Distributional Scaling. An Algorithm for Structure Preserving Embedding of Metric and Nonmetric Spaces. Journal of Machine Learning Research 5, 399–430 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Sammon, J.W.: A Nonlinear Mapping for Data Structure Analysis. IEEE Transactions on Computers 18, 401–409 (1969)

    Article  Google Scholar 

  28. Scheffé, H.: The Analysis of Variance. John Wiley & Sons, New York (1959)

    MATH  Google Scholar 

  29. Swayne, D.F., Lang, D.T., Buja, A., Cook, D.: GGobi: Evolving from XGobi into an Extensible Framework for Interactive Data Visualization. Computational Statistics & Data Analysis 43, 423–444 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Takane, Y., Yanai, H., Hwang, H.: Regularized Multiple-Set Canonical Correlation Analysis. Psychometrika 73, 753–775 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Takane, Y., Young, F.W., de Leew, J.: Nonmetric Individual Differences Multidimensional Scaling: An Alternating Least Squares Method with Optimal Scaling Features. Psychometrika 42, 7–67 (1977)

    Article  MATH  Google Scholar 

  32. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  33. Torgerson, W.S.: Theory and Methods of Scaling. Wiley, New York (1958)

    Google Scholar 

  34. Torgerson, W.S.: Multidimensional Scaling, I: Theory and Method. Psychometrika 17, 401–419 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  35. Trosset, M.W., Groenen, P.J.F.: Multidimensional Scaling Algorithms for Large Data Sets. Computing Science and Statistics 37 (2005)

    Google Scholar 

  36. Wang, J.T.L., Wang, X., Shasta, D., Zhang, K.: MetricMap: An Embedding Technique for Processing Distance-Based Queries in Metric Spaces. IEEE Transactions on Systems, Man, and Cybernetrics 35, 973–987 (2005)

    Article  Google Scholar 

  37. Williams, M., Munzner, T.: Steerable, Progressive Multidimensional Scaling. In: Ward, M., Munzer, T. (eds.) IEEE Symposium on Information Visualisation 2004, pp. 57–64. IEEE Computer Society, Washington (2004)

    Google Scholar 

  38. Yang, T., Liu, J., McMillan, L., Wang, W.: A Fast Approximation to Multidimensional Scaling. In: Proceedings of IEEE Workshop on Computation Intensive Methods for Computer Vision, pp. 1–8 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

France, S.L., Carroll, J.D. (2009). DEMScale: Large Scale MDS Accounting for a Ridge Operator and Demographic Variables. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, JF. (eds) Advances in Intelligent Data Analysis VIII. IDA 2009. Lecture Notes in Computer Science, vol 5772. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03915-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03915-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03914-0

  • Online ISBN: 978-3-642-03915-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics