Skip to main content

Accuracy in Predicting Secondary Structure of Ionic Channels

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 244))

Abstract

Ionic channels are among the most difficult proteins for experimental structure determining, very few of them has been resolved. Bioinformatical tools has not been tested for this specific protein group. In the paper, prediction quality of ionic channel secondary structure is evaluated. The tests were carried out with general protein predictors and predictors only for transmembrane segments. The predictor performance was measured by the accuracy per residue Q and per segment SOV. The evaluation comparing ionic channels and other transmembrane proteins shows that ionic channels are only slightly more difficult objects for modeling than transmembrane proteins; the modeling quality is comparable with a general set of all proteins. Prediction quality showed dependence on the ratio of secondary structures in the ionic channel. Surprisingly, general purpose PSIPRED predictor outperformed other general but also dedicated transmembrane predictors under evaluation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, C.P., Kernytsky, A., Rost, B.: Transmembrane helix predictions revisited. Protein Sci. 11(12), 2774–2791 (2002)

    Article  Google Scholar 

  2. Cuthbertson, J.M., Doyle, D.A., Sansom, M.S.: Transmembrane helix prediction: a comparative evaluation and analysis. Protein Eng. Des. Sel. 18(6), 295–308 (2005)

    Article  Google Scholar 

  3. Punta, M., Forrest, L.R., Bigelow, H., Kernytsky, A., Liu, J., Rost, B.: Membrane protein prediction methods. Methods 41(4), 460–474 (2007)

    Article  Google Scholar 

  4. Koh, I.Y., Eyrich, V.A., Marti-Renom, M.A., Przybylski, D., Madhusudhan, M.S., Eswar, N., Graña, O., Pazos, F., Valencia, A., Sali, A., Rost, B.E.: Evaluation of protein structure prediction servers. Nucleic Acids Res. 31(13), 3311–3315 (2003)

    Article  Google Scholar 

  5. Chou, P.Y., Fasman, G.D.: Prediction of protein conformation. Biochemistry 13(2), 222–245 (1974)

    Article  Google Scholar 

  6. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank Nucleic Acids Research, vol. 28, pp. 235–242 (2002)

    Google Scholar 

  7. Jayasinghe, S., et al.: A database of membrane protein topology. Protein Sci. 10(2), 455–458 (2001)

    Article  Google Scholar 

  8. Membrane Proteins of Known Structure, http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html

  9. EVA: Evaluation of automatic structure prediction servers, http://cubic.bioc.columbia.edu/eva/

  10. Brünger, A.T., Free, R.: value: cross-validation in crystallography. Methods Enzymol. 277, 366–396 (1997)

    Article  Google Scholar 

  11. Tusnady, G.E., Dosztanyi, Z., Simon, I.: PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res. 33(Database issue), 275–278 (2005)

    Article  Google Scholar 

  12. PDBTM: Protein Data Bank of Transmembrane Proteins, http://pdbtm.enzim.hu/

  13. Rost, B., Sander, C.: Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232(2), 584–599 (1993)

    Article  Google Scholar 

  14. Zemla, A., Venclovas, C., Fidelis, K., Rost, B.: A modified definition of Sov, a segment-based measure for protein secondary structure prediction assessment. Proteins 34(2), 220–223 (1999)

    Article  Google Scholar 

  15. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)

    Article  Google Scholar 

  16. Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999)

    Article  Google Scholar 

  17. Cuff, J.A., Barton, G.J.: Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40(3), 502–511 (2000)

    Article  Google Scholar 

  18. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  19. Montgomerie, S., Sundararaj, S., Gallin, W.J., Wishart, D.S.: Improving the accuracy of protein secondary structure prediction using structural alignment. BMC Bioinformatics 7, 301 (2006)

    Article  Google Scholar 

  20. Tusnady, G.E., Simon, I.: Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J. Mol. Biol. 283(2), 489–506 (1998)

    Article  Google Scholar 

  21. HMMTOP, http://www.enzim.hu/hmmtop/html/submit.html

  22. Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L.: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305(3), 567–580 (2001)

    Article  Google Scholar 

  23. TMHMM server, v. 2.0, http://www.cbs.dtu.dk/services/TMHMM/

  24. Rost, B., Casadio, R., Fariselli, P., Sander, C.: Transmembrane helices predicted at 95% accuracy. Protein Sci. 4(3), 521–533 (1995)

    Article  Google Scholar 

  25. PredictProtein - Structure Prediction and Sequence Analysis, http://www.predictprotein.org/

  26. Cserzo, M., Wallin, E., Simon, I., von Heijne, G., Elofsson, A.: Prediction of transmembrane alpha-helices in procariotic membrane proteins: the Dense Alignment Surface method. Prot. Eng. 10, 673–676 (1997)

    Article  Google Scholar 

  27. DAS-TMfilter server, http://mendel.imp.ac.at/sat/DAS/DAS.html

  28. Arai, M., Mitsuke, H., Ikeda, M., Xia, J.X., Kikuchi, T., Satake, M., Shimizu, T.: ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res 32(Web Server issue), W390–W393 (2004)

    Article  Google Scholar 

  29. Conpred II, http://bioinfo.si.hirosaki-u.ac.jp/~ConPred2/

  30. Tusnady, G.E., Dosztanyi, Z., Simon, I.: TMDET: web server for detecting transmembrane regions of proteins by using their 3D coordinates. Bioinformatics 21(7), 1276–1277 (2005)

    Article  Google Scholar 

  31. Clayton, G.M., Altieri, S., Heginbotham, L., Unger, V.M., Morais-Cabral, J.H.: Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel. Proc. Natl. Acad. Sci. USA 105, 1511–1515 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Konopka, B., Dyrka, W., Nebel, JC., Kotulska, M. (2009). Accuracy in Predicting Secondary Structure of Ionic Channels. In: Nguyen, N.T., Katarzyniak, R.P., Janiak, A. (eds) New Challenges in Computational Collective Intelligence. Studies in Computational Intelligence, vol 244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03958-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03958-4_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03957-7

  • Online ISBN: 978-3-642-03958-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics