Skip to main content

Pareto-Based Multi-output Metamodeling with Active Learning

  • Conference paper
Engineering Applications of Neural Networks (EANN 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 43))

Abstract

When dealing with computationally expensive simulation codes or process measurement data, global surrogate modeling methods are firmly established as facilitators for design space exploration, sensitivity analysis, visualization and optimization. Popular surrogate model types include neural networks, support vector machines, and splines. In addition, the cost of each simulation mandates the use of active learning strategies where data points (simulations) are selected intelligently and incrementally. When applying surrogate models to multi-output systems, the hyperparameter optimization problem is typically formulated in a single objective way. The different response outputs are modeled separately by independent models. Instead, a multi-objective approach would benefit the domain expert by giving information about output correlation, facilitate the generation of diverse ensembles, and enable automatic model type selection for each output on the fly. This paper outlines a multi-objective approach to surrogate model generation including its application to two problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gorissen, D., Couckuyt, I., Dhaene, T.: Multiobjective global surrogate modeling. Technical Report TR-08-08, University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium (2008)

    Google Scholar 

  2. Jin, B.Y., Sendhoff: Pareto-based multiobjective machine learning: An overview and case studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 38(3), 397–415 (2008)

    Article  Google Scholar 

  3. Fenicia, F., Solomatine, D.P., Savenije, H.H.G., Matgen, P.: Soft combination of local models in a multi-objective framework. Hydrology and Earth System Sciences Discussions 4(1), 91–123 (2007)

    Article  Google Scholar 

  4. Gorissen, D., De Tommasi, L., Croon, J., Dhaene, T.: Automatic model type selection with heterogeneous evolution: An application to rf circuit block modeling. In: Proceedings of the IEEE Congress on Evolutionary Computation, WCCI 2008, Hong Kong(2008)

    Google Scholar 

  5. Mierswa, I.: Controlling overfitting with multi-objective support vector machines. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 1830–1837. ACM Press, New York (2007)

    Google Scholar 

  6. Fieldsend, J.E.: Multi-objective supervised learning. In: Knowles, J., Corne, D., Deb, K. (eds.) Multiobjective Problem Solving from Nature From Concepts to Applications. Natural Computing Series. LNCS. Springer, Heidelberg (2008)

    Google Scholar 

  7. Knowles, J.: Parego: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation 10(1), 50–66 (2006)

    Article  Google Scholar 

  8. Voutchkov, I., Keane, A.: Multiobjective Optimization using Surrogates. In: Parmee, I. (ed.) Adaptive Computing in Design and Manufacture 2006. Proceedings of the Seventh International Conference, Bristol, UK, pp. 167–175 (April 2006)

    Google Scholar 

  9. Keane, A.J.: Statistical improvement criteria for use in multiobjective design optimization. AIAA Journal 44(4), 879–891 (2006)

    Article  Google Scholar 

  10. Knowles, J.D., Nakayama, H.: Meta-modeling in multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 245–284. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Last, M.: Multi-objective classification with info-fuzzy networks. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS, vol. 3201, pp. 239–249. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Keys, A.C., Rees, L.P., Greenwood, A.G.: Performance measures for selection of metamodels to be used in simulation optimization. Decision Sciences 33, 31–58 (2007)

    Article  Google Scholar 

  13. Lee, T.: The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  14. Gorissen, D., De Tommasi, L., Crombecq, K., Dhaene, T.: Sequential modeling of a low noise amplifier with neural networks and active learning. Neural Computing and Applications 18(5), 485–494 (2009)

    Article  Google Scholar 

  15. Lophaven, S.N., Nielsen, H.B., Søndergaard, J.: Aspects of the matlab toolbox DACE. Technical report, Informatics and Mathematical Modelling, Technical University of Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby (2002)

    Google Scholar 

  16. Gorissen, D., De Tommasi, L., Hendrickx, W., Croon, J., Dhaene, T.: Rf circuit block modeling via kriging surrogates. In: Proceedings of the 17th International Conference on Microwaves, Radar and Wireless Communications, MIKON 2008 (2008)

    Google Scholar 

  17. Nørgaard, M., Ravn, O., Hansen, L., Poulsen, N.: The NNSYSID toolbox. In: IEEE International Symposium on Computer-Aided Control Sysstems Design (CACSD), Dearborn, Michigan, USA, pp. 374–379 (1996)

    Google Scholar 

  18. Suykens, J.A.K., Gestel, T.V., Brabanter, J.D., Moor, B.D., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific Publishing Co., Pte, Ltd., Singapore (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gorissen, D., Couckuyt, I., Laermans, E., Dhaene, T. (2009). Pareto-Based Multi-output Metamodeling with Active Learning. In: Palmer-Brown, D., Draganova, C., Pimenidis, E., Mouratidis, H. (eds) Engineering Applications of Neural Networks. EANN 2009. Communications in Computer and Information Science, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03969-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03969-0_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03968-3

  • Online ISBN: 978-3-642-03969-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics