Skip to main content

Robotic Implementation of Realistic Reaching Motion Using a Sliding Mode/Operational Space Controller

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5744))

Abstract

It has been shown that a task-level controller with minimal-effort posture control produces human-like motion in simulation. This control approach is based on the dynamic model of a human skeletal system superimposed with realistic muscle like actuators whose effort is minimised. In practical application, there is often a degree of error between the dynamic model of a system used for controller derivation and the actual dynamics of the system. We present a practical application of the task-level control framework with simplified posture control in order to produce life-like and compliant reaching motions for a redundant task. The addition of a sliding mode controller improves performance of the physical robot by compensating for unknown parametric and dynamic disturbances without compromising the human-like posture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bicchi, A., Peshkin, M.A., Colgate, J.E.: Safety for physical human-robot interaction. In: Springer Handbook of Robotics, pp. 1335–1348 (2008)

    Google Scholar 

  2. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Pearson Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  3. De Sapio, V., Warren, J., Khatib, O.: Predicting reaching postures using a kinematically constrained shoulder model. Advances in Robot Kinematics 3, 209–218 (2006)

    Article  MATH  Google Scholar 

  4. De Sapio, V., Warren, J., Khatib, O., Delp, S.: Simulating the task-level control of human motion: a methodology and framework for implementation. The Visual Computer 21(5), 289–302 (2005)

    Article  Google Scholar 

  5. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: Opensim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering 54(11), 1940–1950 (2007)

    Article  Google Scholar 

  6. Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. Taylor and Francis, London (1998)

    MATH  Google Scholar 

  7. Flash, T., Hogan, N.: The coordination of arm movements: An experimentally confirmed mathematical model. Journal of neuroscience 5, 1688–1703 (1985)

    Google Scholar 

  8. Hermann, G., Ge, S.S., Guo, G.: Discrete linear control enhanced by adaptive neural networks in application to a HDD-servo system. Control Engineering Practice 16(8), 930–945 (2008)

    Article  Google Scholar 

  9. Khatib, O., Sentis, L., Park, J., Warren, J.: Whole body dynamic behaviour and control of human-like robots. International Journal of Humanoid Robotics 1(1), 29–43 (2004)

    Article  Google Scholar 

  10. Lacquaniti, F., Soechting, J.F.: Coordination of arm and wrist motion during a reaching task. The Journal of Neuroscience 2(4), 399–408 (1982)

    Google Scholar 

  11. Uno, Y., Kwato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. Biological Cybernetics 26, 109–124 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spiers, A., Herrmann, G., Melhuish, C., Pipe, T., Lenz, A. (2009). Robotic Implementation of Realistic Reaching Motion Using a Sliding Mode/Operational Space Controller. In: Kim, JH., et al. Advances in Robotics. FIRA 2009. Lecture Notes in Computer Science, vol 5744. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03983-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03983-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03982-9

  • Online ISBN: 978-3-642-03983-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics