Skip to main content

Self-Organizing Maps for Structured Domains: Theory, Models, and Learning of Kernels

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 247))

Introduction

Self-Organizing Maps (SOMs) are a form of Machine Learning methods which are popularly applied as a tool to either cluster vectorial information, or to produce a topology preserving projection of high dimensional data vectors onto a low dimensional (often 2-dimensional) display space [20]. A SOM is generally trained unsupervised. The computational complexity of the underlying algorithms grows linearly with the size and number of inputs, which renders the SOM suitable for data mining tasks. The standard SOM algorithm is defined on input domains involving fixed sized data vectors. It is however recognized that many problem domains are naturally represented by structured data which are more complex than fixed sized vectors. Just to give some examples, in speech recognition, data is available in the form of variable length temporal vectors, while in Chemistry data is most naturally represented through molecular graphs.Moreover, numerous data mining tasks provide structural information which may be important to consider during the processing. For example, document mining in the world wide web involves both inter-document structure due to the formatting or hypertext structure, and intra-document structure due to hyperlink or reference dependencies. Note that any model capable of dealing with graphs can be used also in applications involving vectors, sequences, and trees, since these are special cases of graphs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient substructure discovery from large semi-structured data. In: Proc. Second SIAM Int. Conf. Data Mining (SDM 2002), pp. 158–174 (2002)

    Google Scholar 

  2. Bloehdorn, S., Moschitti, A.: Structure and semantics for expressive text kernels. In: Proceedings of the Sixteenth ACM conference on Information and Knowledge Management (CIKM 2007), pp. 861–864 (2007)

    Google Scholar 

  3. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels over discrete structures, and the voted perceptron. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (ACL 2002), pp. 263–270 (2002)

    Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  5. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  6. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  7. Denoyer, L., Gallinari, P.: Report on the xml mining track at inex 2005 and inex 2006: categorization and clustering of xml documents. SIGIR Forum 41(1), 79–90 (2007)

    Article  Google Scholar 

  8. Gartner, T.: A survey of kernels for structured data. ACM SIGKDD Explorations Newsletter 5(1), 49–58 (2003)

    Article  MathSciNet  Google Scholar 

  9. Gori, M., Hagenbuchner, M., Tsoi, A.C.: The traffic policeman benchmark. Technical report, University of Wollongong, Australia (December 1998)

    Google Scholar 

  10. Günter, S., Bunke, H.: Self-organizing map for clustering in the graph domain. Pattern Recognition Letters 23(4), 405–417 (2002)

    Article  MATH  Google Scholar 

  11. Guyon, I.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    Article  MATH  Google Scholar 

  12. Hagenbuchner, M., Sperduti, A., Tsoi, A.C.: Contextual processing of graphs using self-organizing maps. In: Proceedings of the 13th European Symposium on Artificial Neural Networks (ESANN 2005), pp. 399–404 (2005)

    Google Scholar 

  13. Hagenbuchner, M., Sperduti, A., Tsoi, A.C.: Contextual self-organizing maps for structured domains. In: Proceedings of the Workshop on Relational Machine Learning, pp. 46–55 (2005)

    Google Scholar 

  14. Hagenbuchner, M., Tsoi, A.C., Sperduti, A.: A supervised self-organising map for structured data. In: Allison, N., Yin, H., Allison, L., Slack, J. (eds.) WSOM 2001 - Advances in Self-Organising Maps, pp. 21–28. Springer, Heidelberg (2001)

    Google Scholar 

  15. Hagenbuchner, M.: Unsupervised learning of data-structures. An expository overview and comments. Technical report, University of Wollongong, Australia, and University of Siena, Italy (1999), markus@uow.edu.au

    Google Scholar 

  16. Hagenbuchner, M., Tsoi, A.C.: A benchmark for testing adaptive systems on structured data. In: Proceedings of the 7th European Symposium on Artificial Neural Networks (ESANN 1999), pp. 63–68 (1999)

    Google Scholar 

  17. Hammer, B., Micheli, A., Sperduti, A.: Universal approximation capability of cascade correlation for structures. Neural Comput. 17(5), 1109–1159 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kashima, H.: Machine Learning Approaches for Structured Data. PhD thesis, Graduate School of Informatics, Kyoto University, Japan (2007)

    Google Scholar 

  19. Kashima, H., Koyanagi, T.: Kernels for semi-structured data. In: Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002), pp. 291–298 (2002)

    Google Scholar 

  20. Kohonen, T.: Self-Organisation and Associative Memory, 3rd edn. Springer, Heidelberg (1990)

    Google Scholar 

  21. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1995)

    Google Scholar 

  22. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using string kernels. Journal of Machine Learning Research 2, 419–444 (2002)

    Article  MATH  Google Scholar 

  23. Moschitti, A.: A study on convolution kernel for shallow semantic parsing. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics (ACL 2004), pp. 335–342 (2004)

    Google Scholar 

  24. Suzuki, J., Isozaki, H.: Sequence and tree kernels with statistical feature mining. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems, vol. 18, pp. 1321–1328. MIT Press, Cambridge (2006)

    Google Scholar 

  25. Trentini, F., Hagenbuchner, M., Sperduti, A., Scarselli, F., Tsoi, A.C.: A self-organising map approach for clustering of xml documents. In: IEEE World Congress on Computational Intelligence, WCCI 2006, Vancouver, Canada, pp. 1805–1812. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  26. van Hulle, M.: Faithful Representations and Topographic Maps. John Wiley, New York (2000)

    Google Scholar 

  27. Vishwanathan, S.V.N., Smola, A.J.: Fast kernels for string and tree matching. In: Neural Information Processing Systems, NIPS 2002, pp. 569–576 (2002)

    Google Scholar 

  28. Watkins, C.: Dynamic alignment kernels. In: Advances in Large Margin Classifiers, pp. 39–50. MIT Press, Cambridge (1999)

    Google Scholar 

  29. Wettschereck, D., Aha, D.W., Mohri, T.: A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence Review 11, 273–314 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aiolli, F., Da San Martino, G., Hagenbuchner, M., Sperduti, A. (2009). Self-Organizing Maps for Structured Domains: Theory, Models, and Learning of Kernels. In: Bianchini, M., Maggini, M., Scarselli, F., Jain, L.C. (eds) Innovations in Neural Information Paradigms and Applications. Studies in Computational Intelligence, vol 247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04003-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04003-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04002-3

  • Online ISBN: 978-3-642-04003-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics