Skip to main content

Particle Swarm Optimizer Based on Dynamic Neighborhood Topology

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5755))

Abstract

In this paper, a novel dynamic neighborhood topology based on small world network (SWLPSO) is introduced. The strategy of the learning exemplar choice of the particle is based upon the clustering coefficient and the average shortest distance. This strategy enables the diversity of the swarm to be preserved to discourage premature convergence. Experiments were conducted on a set of classical benchmark functions. The results demonstrate good performance in solving multimodal problems used in this paper when compared with the other PSO variants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eberhart, R., Kennedy, J.: New Optimizer Using Particle Swarm Theory. In: Proc. 6th Int. Symp. Micro Machine Human Science, pp. 39–43 (1995)

    Google Scholar 

  2. Kennedy, J., Eberhart, R.: PSO Optimization. In: Proc. IEEE Int.Conf. Neural Networks, Perth, Australia, vol. 4, pp. 1941–1948 (1995)

    Google Scholar 

  3. Kennedy, J.: Small Worlds and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Performance. In: Proc. Congr. Evol.Comput, pp. 1931–1938 (1999)

    Google Scholar 

  4. Kennedy, J., Mendes, R.: Population Structure and Particle Swarm Performance. In: Proc. IEEE Congr. Evol. Comput., Honolulu, HI, pp. 1671–1676 (2002)

    Google Scholar 

  5. Niu, B., Zhu, Y.L., He, X.X., Wu, H., Shen, H.: A Lifecycle Model for Simulating Bacterial Evolution. Neurocomputing 72, 142–148 (2008)

    Article  Google Scholar 

  6. Niu, B., Li, L.: A novel PSO-DE-based hybrid algorithm for global optimization. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS (LNAI), vol. 5227, pp. 156–163. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Parsopoulos, K.E., Vrahatis, M.N.: UPSO-A Unified Particle Swarm Optimization Scheme. Lecture Series on Computational Sciences, pp. 868–873 (2004)

    Google Scholar 

  8. Mendes, R., Kennedy, J., Neves, J.: The Fully Informed Particle Swarm: Simpler, Maybe Better. IEEE Trans. Evol. Comput, 204–210 (2004)

    Google Scholar 

  9. Peram, T., Veeramachaneni, K., Mohan, C.K.: Fitness-distance-ratio Based Particle Swarm Optimization. In: Proc. Swarm Intelligence Symp., pp. 174–181 (2003)

    Google Scholar 

  10. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Evaluation of comprehensive learning particle swarm optimizer. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 230–235. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Transactions on Evolutionary Computation 10(3), 281–295 (2006)

    Article  Google Scholar 

  12. Angeline, P.J.: Using Selection to Improve Particle Swarm Optimization. In: Proc. IEEE Congr. Evol. Comput., Anchorage, AK, pp. 84–89 (1998)

    Google Scholar 

  13. Lovbjerg, M., Rasmussen, T.K., Krink, T.: Hybrid Particle Swarm Optimizer with Breeding and Subpopulations. In: Proc. Genetic Evol.Comput. Conf., pp. 469–476 (2001)

    Google Scholar 

  14. Miranda, V., Fonseca, N.: New Evolutionary Particle Swarm Algorithm (EPSO) Applied to Voltage/VAR control. In: Proc. 14thPower Syst. Comput. Conf., Seville, Spain (2002)

    Google Scholar 

  15. Watts, D.J., Strogatz, S.H.: Collective Dynamics of Small-world Networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  16. Wilke, D.N.: Analysis of the Particle Swarm Optimization Algorithm. Master’s thesis, Dept. Mechanical and Aeronautical Eng., Univ. of Pretoria, Pretoria, South Africa (2005)

    Google Scholar 

  17. Schutte, J.F., Groenwold, A.A.: Sizing Design of Truss Structures Using Particle Swarms. Struct. Multidisc. Optim. 25(4), 261–269 (2003)

    Article  Google Scholar 

  18. Coello, C.A.C.G., Pulido, T., Lechuga, M.S.: Handling Multiple Objectives with Particle Swarm Optimization. IEEE Trans. Evol.Comput. 8, 256–279 (2004)

    Article  Google Scholar 

  19. Messerschmidt, L., Engelbrecht, A.P.: Learning to Play Games Using a PSO-based Competitive Learning Approach. IEEE Trans. Evol.Comput. 8, 280–288 (2004)

    Article  Google Scholar 

  20. Wachowiak, M.P.: An Approach to Multimodal Biomedical Image Registration Utilizing Particle Swarm Optimization. IEEE Trans. Evol. Comput. 8, 289–301 (2004)

    Article  Google Scholar 

  21. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proc. IEEE Congr. Evol. Comput., pp. 69–73 (1998)

    Google Scholar 

  22. Shi, Y., Eberhart, R.C.: Particle Swarm Optimization with Fuzzy Adaptive Inertia Weight. In: Proc.Workshop Particle Swarm Optimization, Indianapolis, pp. 101–106 (2001)

    Google Scholar 

  23. Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing Hierarchical Particle Swarm Optimizer with Time Varying Accelerating Coefficients. IEEE Trans. Evol. Comput. 8, 240–255 (2004)

    Article  Google Scholar 

  24. Fan, H.Y., Shi, Y.: Study on Vmax of Particle Swarm Optimization. In: Proc.Workshop Particle Swarm Optimization, Indianapolis, IN (2001)

    Google Scholar 

  25. Clerc, M.: The Swarm and the Queen: Toward a Deterministic and Adaptive Particle Swarm Optimization. In: Proc. ICEC 1999, Washington, DC, pp. 1951–1957 (1999)

    Google Scholar 

  26. Corne, D., Dorigo, M., Glover, F.: New Ideas in Optimizaton, pp. 379–387. McGraw-Hill, New York (1999)

    Google Scholar 

  27. Clerc, M., Kennedy, J.: The Particle Swarm: Explosion, Stability, and Convergence in a Multi-dimensional Complex Space. IEEE Trans. Evol.Comput. 6, 58–73 (2002)

    Article  Google Scholar 

  28. Newmama, M.E.J., Watts, K.J.: Renormalization Group Analysis of the Small-world Network Model. Phys.Lett.A. 263, 341–346 (1999)

    Article  MathSciNet  Google Scholar 

  29. Erdös, P., Renyi, A.: On Random Graphs. Publicationes Mathematicae 6, 290–297 (1959)

    MATH  Google Scholar 

  30. Barrat, A., Weigt, M.: On the Properties of Small World Networks. Europe Physicals 13, 547–560 (2003)

    Google Scholar 

  31. Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Zhao, Q., Shao, Z., Shang, Z., Sui, C. (2009). Particle Swarm Optimizer Based on Dynamic Neighborhood Topology. In: Huang, DS., Jo, KH., Lee, HH., Kang, HJ., Bevilacqua, V. (eds) Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence. ICIC 2009. Lecture Notes in Computer Science(), vol 5755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04020-7_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04020-7_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04019-1

  • Online ISBN: 978-3-642-04020-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics