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Abstract. We study an extension of monadic second-order logic of order
with the uncountability quantifier “there exist uncountably many sets”.
We prove that, over the class of finitely branching trees, this extension
is equally expressive to plain monadic second-order logic of order. By
the standard correspondence between monadic second-order logic and
automata, this shows that the extension of first-order logic by cardinality
quantifiers collapses to pure first-order logic over injectively presentable
ω-tree-automatic structures, which generalizes previous results by Kuske
and Lohrey.
Additionally, it follows from our proofs that the continuum hypothesis
holds for classes of sets definable in monadic second-order logic over
finitely branching trees, which is notable since not all of these classes are
analytic. Our method to eliminate the uncountability quantifier is based
on Shelah’s composition method and basic results from descriptive set
theory. It is constructive, yielding a decision procedure for the extended
logic.

1 Introduction

Monadic second-order logic of order, MLO, extends first-order logic by allowing
quantification over subsets of the domain. The binary relation symbol < and
unary predicate symbols Pi are its only non-logical relation symbols. MLO plays
a very important role in mathematical logic and computer science. The funda-
mental connection between MLO and automata was discovered independently
by Büchi, Elgot and Trakhtenbrot when the logic was proved to be decidable
over the class of finite linear orders and over (ω,<). Moving away from linear
orders, Rabin proved that monadic second-order theory of the full binary tree,
S2S for short, is decidable [13]. This theorem, obtained using the notion of tree
automata, is one of the most celebrated results in theoretical computer science,
sometimes even called “the mother of all decidability results”.

First-order cardinality quantifiers, also known under the name of Magidor-
Malitz quantifiers, count the number of elements with a given property. These
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quantifiers have been widely investigated in mathematical logic with respect
to both decidability and the possibility of elimination. The book [1] presents
results on decidability and other properties of first-order logic extended with
such cardinality quantifiers over various natural classes of structures.

Second-order cardinality quantifiers in MLO, which we study in this paper,
have been mostly considered in the context of automata and automatic struc-
tures. The first, basic result [2, 3] shows that the quantifier “there exist infinitely
many words” can be eliminated on automatic structures. By the standard cor-
respondence between automata and MLO mentioned above, this is equivalent
to eliminating the quantifier “there exist infinitely many sets” from weak MLO
over (ω,<). The case of full MLO over (ω,<) corresponds to injectively pre-
sented ω-automatic structures and was solved by Kuske and Lohrey in [7, 8].
Let us remark that, while cardinality quantifiers are hardly ever used directly in
specifications, the structural properties of ω-regular languages identified in these
results gave important insights into automatic structures and their properties.

Motivated by previous work on (ω,<) that used word automata, we investi-
gate cardinality quantifiers over finitely branching trees, in particular over the
binary tree with arbitrary labelings, which corresponds to tree automata with
additional parameters. The parameterless question was previously studied by
Niwiński, who in [11] proved that a regular language of infinite trees is uncount-
able if and only if it contains a non-regular tree.

This paper deals with the expressive power of the extension of MLO by
cardinality quantifiers “there exist infinitely many subsets X such that” (∃ℵ0),
“there exist uncountably many subsets X such that” (∃ℵ1) and “there exist
continuum many subsets X such that” (∃2ℵ0 ). We study the extension of MLO
by these quantifiers, MLO(∃ℵ0 ,∃ℵ1 ,∃2ℵ0 ), over simple trees. These are finitely-
branching trees every branch of which is either finite or of order type ω. Our
main results are summarized in the next two theorems.

Theorem 1 (Elimination of the uncountability quantifier). For every
MLO(∃ℵ0 ,∃ℵ1 ,∃2ℵ0 ) formula ϕ(Y ) there exists an MLO formula ψ(Y ), com-
putable from ϕ, that is equivalent to ϕ(Y ) over the class of simple trees.

In addition to the above, the reduction will show that over simple trees the
quantifiers ∃ℵ1X and ∃2ℵ0

X are equivalent, i.e. that the continuum hypothesis
holds for MLO-definable families of sets. This is notable, for it is known that in
MLO one can define non-analytic classes of sets [12].

Theorem 2. For every MLO formula ϕ(X,Y ), ∃ℵ1X ϕ(X,Y ) is equivalent to
∃2ℵ0

X ϕ(X,Y ) over simple trees.

These results naturally extend to cardinality quantifiers ∃ℵ0X, ∃ℵ1X and
∃2ℵ0

X counting (finite) tuples of sets. This follows from the basic fact that for
any cardinal κ ≥ ℵ0 it holds ∃κ(U, V ) ϕ ≡ ∃κU

(
∃V ϕ

)
∨ ∃κV (∃U ϕ).

Call a structure A generalized tree-automatic [4], or specifically T-automatic,
if there is an MSO-to-FO interpretation of A in a labelled simple tree T. This is
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equivalent to A having a concrete representation with infinite trees as elements
and atomic relations given by Rabin automata. Such a representation is called
injective if equality is uninterpreted [6]. Theorem 1 thus entails the following.

Corollary 3. Cardinality quantifiers can be effectively eliminated from first-
order logic on injectively presented generalized tree-automatic structures.

Since both automatic and ω-automatic structures are ω-tree-automatic, this
is a generalization of the previously mentioned results from [2, 3] and [7, 8]. It is
as well a generalization of the theorem of Niwiński from [11], which follows form
a parameterless instance of our theorem.

As remarked before, in the study of cardinality quantifiers for MLO the
structural characterization obtained is often of independent interest. Our main
technical result, Lemma 11, gives three conditions such that any uncountable
tree language must satisfy at least one of them, and is thus a structural charac-
terization of this kind.

Organization

We begin by showing in Section 2 how MLO(∃ℵ0) collapses over all structures to
MLO extended with a predicate expressing that a set X is infinite. Consequently,
MLO(∃ℵ0) collapses to plain MLO over simple trees, over which this predicate is
definable. Next, in Section 3, we fix our notation and terminology for trees and
recollect some essentials of Shelah’s composition method for MLO. The rest of
the paper is devoted to the proof of Theorems 1 and 2.

In Section 4 we start by reducing the question of the existence of uncountably
many sets X satisfying a given MLO formula ϕ(X,Y ) with parameters Y over
a simple tree to a disjunction of three (non-exclusive) conditions: A, B and C.
Condition A deals with MLO-properties of antichains; Condition C deals with
a simpler version of the uncountability quantifier, namely with the quantifier
“there exist uncountably many branches”. Condition B expresses that there are
uncountably many subsets of a branch of the tree with a special MLO property.

The conditions are treated individually in succeeding sections showing that
each can be formulated in plain MLO (for Condition B we can only show this
under the assumption that neither A nor C holds) and that in fact each condition
guarantees the existence of continuum many sets X satisfying ϕ(X,Y ).

The most straightforward of the three, Condition A, is dealt with in Section 5.
In Section 6, we show that Condition B can be significantly weakened assum-

ing that conditions A and C are not satisfied. Relying on the elimination results
on (ω,<) from [7, 8], we formalize this weakened form of Condition B in MLO
and prove, that it guarantees the existence of continuum many sets satisfying ϕ.

In Section 7 we consider Condition C in the special case of the complete
binary tree. The key theorem that we prove there, which might be of independent
interest, is that MLO-definable sets of branches of the binary tree are Borel. This
opens the way to formalizing Condition C in plain MLO first over the binary tree
and finally, in Section 8, over arbitrary simple trees. The proof is summarized in
Section 9.
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2 Infinity quantifier

Before we proceed to the uncountability quantifier, let us consider the second-
order infinity quantifier ∃ℵ0X. While it cannot be eliminated in general, it is
easily reduced to the auxiliary predicate Inf(X) expressing that a set X is infi-
nite. Note that the extension of MLO by this predicate, denoted MLO(Inf), is
expressively equivalent to the use of the first-order infinity quantifier ∃ℵ0x inside
monadic second-order formulas.

Proposition 4. For every MLO(∃ℵ0) formula ϕ(Y ) there exists an MLO(Inf)
formula ψ(Y ) equivalent to ϕ(Y ) over all structures.

Proof. Observe that the following are equivalent:

(1) There are only finitely many X which satisfy ϕ(X,Y ).
(2) There is a finite set Z such that any two different sets X1, X2 which both

satisfy ϕ(Xi, Y ) differ on Z, i.e.

∃Z
(
¬Inf(Z) ∧ ∀X1X2

(
(ϕ(X1, Y ) ∧ ϕ(X2, Y ) ∧X1 6= X2) →

∃z ∈ Z (z ∈ X1 ↔ z 6∈ X2)
))
.

Item (2) implies (1) as a collection of sets pairwise differing only on a finite set
Z has cardinality at most 2|Z|. Conversely, if X1, . . . , Xk are all the sets that
satisfy ϕ(Xi, Y ), then choose for every pair of distinct sets Xi, Xj an element
zi,j in the symmetric difference of Xi and Xj and define Z as the set of these
chosen elements. ut

As the predicate Inf(X) is uniformly MLO-definable over all finitely branch-
ing trees (cf. Lemma 12), we have the following corollary.

Corollary 5. MLO(∃ℵ0) collapses effectively to MLO over the class of simple
trees.

Observe that the converse of Proposition 4 holds as well. In fact, the predicate
Inf(X) can be defined over all structures by the formula ∃κY (Y ⊆ X) for any
ℵ0 ≤ κ ≤ 2ℵ0 . Therefore, by Proposition 4, any of the quantifiers ∃κ with
ℵ0 < κ ≤ 2ℵ0 can be used to define ∃ℵ0 .

3 Preliminaries

For a given set A we denote by A∗ the set of all finite sequences of elements of
A, by Aω the set of all infinite sequences of elements of A (i.e. functions ω → A),
and A≤ω = A∗ ∪ Aω. For any sequence s = s0s1s2 . . . ∈ A≤ω we denote by |s|
the length of s (either a natural number or ω) and by s|n = s0 . . . sn−1 the finite
sequence composed of the first n elements of s, with s|0 = ε, the empty sequence.
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We write s[n] for the (n+ 1)st element of s (we count from 0), so s[n] = sn for
n ∈ N. Given a finite sequence s and a sequence t ∈ A≤ω we denote by s · t (or
just st) the concatenation of s and t. Moreover, we write s � t if s is a prefix of
t, i.e. if there exists a sequence r such that t = sr. A subset B of A≤ω is said to
be prefix-closed if for every t ∈ B and s � t it holds that s ∈ B.

3.1 Trees

For a number l ∈ N, l > 0, an l-tree is a structure T = (T,<, P1, . . . , Pl),
where the Pi’s are unary predicates and < is the irreflexive and transitive binary
ancestor relation with a least element called the root of T and such that for
every v ∈ T the set {u ∈ T | u < v} of ancestors of v is linearly ordered by
<. Elements of a tree are referred to as nodes, maximal linearly ordered sets of
nodes are called branches, ancestor-closed and linearly ordered sets of nodes are
called paths, whereas chains are arbitrary linearly ordered subsets. An antichain
is a set of pairwise incomparable nodes. Given a node v, the subtree of T rooted
in v is obtained by restricting the structure to the domain Tv = {u ∈ T | u ≥ v}
and is denoted Tv.

Given a finite set A, we denote by T(A) the full tree over A, which is a struc-
ture with the universe A∗, < interpreted as the prefix ordering and unary predi-
cates Pa = A∗a for each a ∈ A. For finite A with |A| = n, this structure is axiom-
atizable in MLO and its MLO theory is the same as SnS, the monadic second-
order theory of n successors (modulo trivial MLO-interpretations in T(n)).

We identify a path B of T(A) with the sequence β = a0a1a2 . . . ∈ A≤ω such
that B = {a0 . . . as | s ≤ |β|}. Conversely, given a sequence β ∈ A≤ω we write
Pref(β) for the corresponding path B.

Ordered sums of trees are defined as follows.

Definition 6. Let l > 0, I = (I,<I) be an unlabeled tree and let Ti = (Ti, <i

, P i1, . . . , P
i
l ) be an l-tree for each i ∈ I. The tree sum of (Ti)i∈I, denoted∑

i∈I Ti, is the l-tree

T = (
⋃
i∈I
{i} × Ti, <T,

⋃
i∈I
{i} × P1

i, . . . ,
⋃
i∈I
{i} × Pli),

such that (i, a) <T (j, b) for i, j ∈ I, a ∈ Ti, b ∈ Tj iff:

i <I j and a is the root of Ti, or i = j and a <i b .

Unless explicitly noted, we will not make a distinction between Ti and the iso-
morphic subtree {i} × Ti of T.

A particular special case of the sum we will be using is when the index
structure I consists of a single branch, i.e. is a linear ordering. For every linear
order (I,<) and chain 〈Ti | i ∈ I〉 of trees, the sum T =

∑
i∈I Ti is well defined,

and (I,<) forms a path (not necessarily maximal) of T.
We remark that not every tree can be decomposed as a sum along an arbi-

trarily chosen path. Such discrepancies can be ruled out by requiring that every
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two nodes possess a greatest common ancestor, i.e. an infimum. In this paper we
consider only simple trees, which trivially fulfill this requirement.

Definition 7. A simple tree is a finitely branching tree every branch of which
is either finite or of order type ω.

3.2 MLO and the composition method

We will work with labeled trees in the relational signature {<,P1, . . . , Pl} where
< is a binary relation symbol denoting the ancestor relation of the tree, and the
Pi’s are unary predicates representing a labeling.

Monadic second-order logic of order, MLO for short, extends first-order logic
by allowing quantification over subsets of the domain. MLO uses first-order vari-
ables x, y, . . . interpreted as elements, and set variables X,Y, . . . interpreted as
subsets of the domain. Set variables will always be capitalized to distinguish them
from first-order variables. The atomic formulas are x < y, x ∈ Pi and x ∈ X, all
other formulas are built from the atomic ones by applying boolean connectives
and the universal and existential quantifiers for both kinds of variables. Concrete
formulas will be given in this syntax, taking the usual liberties and short-hands,
such as X ∪Y,X ∩Y,X ⊆ Y , guarded quantifiers and relativizations of formulas
to a set.

The quantifier rank of a formula ϕ, denoted qr(ϕ), is the maximum depth
of nesting of quantifiers in ϕ. For fixed n and l we denote by Formn,l the set of
formulas of quantifier depth ≤ n and with free variables among X1, . . . , Xl. Let
n, l ∈ N and T1,T2 be l-trees. We say that T1 and T2 are n-equivalent, denoted
T1 ≡n T2, if for every ϕ ∈ Formn,l, T1 |= ϕ iff T2 |= ϕ.

Clearly, ≡n is an equivalence relation. For any n ∈ N and l > 0, the set
Formn,l is infinite. However, it contains only finitely many semantically distinct
formulas, so there are only finitely many ≡n-classes of l-structures. In fact, we
can compute representatives for these classes as follows.

Lemma 8 (Hintikka Lemma). For n, l ∈ N, we can compute a finite set
Hn,l ⊆ Formn,l such that:

– For every l-tree T there is a unique τ ∈ Hn,l such that T |= τ .
– If τ ∈ Hn,l and ϕ ∈ Formn,l, then either τ |= ϕ or τ |= ¬ϕ. Furthermore,

there is an algorithm that, given such τ and ϕ, decides which of these two
possibilities holds.

Elements of Hn,l are called (n, l)-Hintikka formulas.

Given an l-tree T we denote by Tpn(T) the unique element of Hn,l satisfied
in T and call it the n-type of T. Thus, Tpn(T) determines (effectively) which
formulas of quantifier-depth ≤ n are satisfied in T.

We sometimes speak of the n-type of a tuple of subsets V = V1, . . . , Vm of
a given l-tree T. This is synonymous with the n-type of the (l +m)-tree (T, V )
obtained by expansion of T with the predicates Pl+1, . . . , Pl+m interpreted as
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the sets V1, . . . , Vm. This type will be denoted by Tpn(T, V ) and often referred
to as an n-type in m variables, whereby the n-type of the (l +m)-tree (T, V ) is
understood. Moreover, when considering substructures, e.g. T′ ⊆ T, and given
sets X ⊆ T, we write Tpn(T′, X) to denote Tpn(T′, X ∩ T′).

The essence of the composition method is that certain operations on struc-
tures, such as disjoint union and certain ordered sums, can be projected to
n-types. A general composition theorem for MLO from which most other follow
was proved by Shelah in [14]. We only cite the composition theorem that we use
[9], a more detailed presentation of the method can be found in [15, 5].

Theorem 9 (Composition Theorem for Trees). For every MLO-formula
ϕ(X) in the signature of l-trees having m free variables and quantifier rank n,
and given the enumeration τ1(X), . . . , τk(X) of Hn,l+m, there exists an MLO-
formula θ(Q1, . . . , Qk) such that for every tree I = (I,<I) and family {Ti | i ∈ I}
of l-trees and subsets V1, . . . , Vm of

∑
i∈I Ti,∑

i∈I
Ti |= ϕ(V ) ⇐⇒ I |= θ(Q1, . . . , Qk)

where Qr = QI;Vr = {i ∈ I | Tpn(Ti, V ) = τr} for each 1 ≤ r ≤ k. Moreover, θ
is computable from ϕ, and does not depend on the decomposition of T.

4 U-D colorings and the three conditions

To eliminate the uncountability quantifier from ∃ℵ1X ϕ(X,Y ) over an l-tree T,
we will consider certain colorings of segments of T. Let us first fix m sets Y , n as
the quantifier rank of ϕ, and k as the number of n-types in l +m+ 1 variables.

An interval of a tree is a connected and convex set I of nodes, i.e. such that
for every u,w ∈ I if u and w are incomparable, then their greatest common
ancestor is in I, and if u < w then for every u < v < w also v ∈ I. We denote
by T|I the restriction of an l-tree T to the interval I.

An interval having a minimal element is called a tree segment. Observe that
every interval of a simple tree is a tree segment and that the summands Ti of a
tree sum T =

∑
i∈I Ti are tree segments of T. In fact any subtree Tz of a tree T

is a tree segment.
Let Z be a subset of a tree T and z be an element of T. We use the notation

Tz\Z for the restriction of T to the set Tz \ (
⋃
w∈Z\{z} Tw). Any tree segment T′

with a minimal element z can be written in the form Tz\Z , where Z is the set
{u | u ≥ z ∧ u 6∈ T′}.

Definition 10. Let T = (T,<, P ,X, Y ) be an l + m + 1-tree such that T |=
ϕ(X,Y ) and let I be an interval of T.

(1) I is a U-interval for ϕ, X, Y iff

T|I |= ∀Z τ(Z, Y )→ Z = X,
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where τ(X,Y ) is the n-type of T|I in m+ 1 variables.4

(2) I is a D-interval for ϕ, X, Y iff it is not a U-interval.
(3) In the special case of I = {u | u ≥ z} we say that the subtree Tz is a U-tree

or D-tree, respectively, and further say that z is a U-node or D-node for
ϕ,X, Y .

(4) The set of D-nodes for ϕ,X, Y is denoted D(X).
(5) An infinite path P is called a D-path for ϕ,X, Y if every v ∈ P is a D-node

for ϕ,X, Y , i.e. if P ⊆ D(X).

Whenever ϕ,X, Y are clear from the context, we will write “D-interval for
X” instead of “D-interval for ϕ,X, Y ”, and similarly for the other notions above.

Observe that D(X) is prefix-closed since if u < v and Tv is a D-tree then,
by composition, Tu is a D-tree as well. Therefore D(X) can be thought of as a
tree whose infinite paths are precisely the infinite D-paths for X.

We note that each of the notions introduced in Definition 10 is formalizable
in MLO. Let us start by constructing the formula DINTϕ(I,X, Y ), expressing
that I is a D-interval for ϕ,X and Y . By the Hintikka Lemma (L.8), the set of
n-types Hn,l+m+1 can be computed and is finite. Thus, we can write the formula

ψeqtp(X,X ′, Y ) =
∧

τ∈Hn,l+m+1

τ(X,Y )↔ τ(X ′, Y ),

expressing thatX andX ′ have the same n-type on the tree T. Let ψrel
eqtp(X,Z, Y , I)

be the relativization of ψeqtp(X,Z, Y ) to an interval I, which expresses that X
and Z have the same n-type on I. DINTϕ(I,X, Y ) can now be written as

ϕ(X,Y ) ∧ ∃Z(ψrel
eqtp(X,Z, Y , I) ∧X ∩ I 6= Z ∩ I).

Using this formula we can also write the formulas DPATHϕ(P,X, Y ) and DNODEϕ(v,X, Y ),
expressing, respectively, that P is a D-path and that v is a D-node for ϕ,X, Y ,
and the formula DSETϕ(D,X, Y ) which holds iff D = D(X).

The following lemma is the first step in eliminating the ∃ℵ1 quantifier from
MLO over simple trees.

Lemma 11. Let T be a simple l-tree and ϕ(X,Y ) an MLO-formula in the sig-
nature of l-trees. Then for every tuple of subsets V of T

T |= ∃ℵ1X ϕ(X,V )

if and only if one of the following conditions is satisfied.

A. There is a set U satisfying T |= ϕ(U, V ) and there is an infinite antichain A
of D-nodes for ϕ,U, V .

B. There is an infinite branch B which is a D-path for uncountably many U
satisfying T |= ϕ(U, V ).

4 As set before, n is the quantifier rank of ϕ and m is the length of Y .
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C. The set of branches

{B | exists a U such that B is a D-path for ϕ,U, V }

is uncountable.

Proof. Condition B explicitly requires the existence of uncountably many sets
satisfying ϕ(X,V ), so it is clearly sufficient for ∃ℵ1X ϕ(X,V ) to hold. We first
show that Condition A is in itself sufficient, and then that if Condition A does not
hold, then Condition C is sufficient as well. Last we prove that the disjunction
of the three is also necessary.

Sufficiency of Condition A.
To see that Condition A is sufficient, let U and A be the sets guaranteed to exist
in Condition A, and let v0 denote the root of T = (T, U, V ). Then T can be
decomposed as

T = Tv0\A +
∑
w∈A
Tw.

Applying the Composition Theorem (Th.9) to this decomposition, we get that
T |= ϕ(U ′, V ) for every U ′ such that U ′∩Tv0\A = U∩Tv0\A and Tpn(Tw, U ′, V ) =
Tpn(Tw, U, V ) for all w ∈ A. By the choice of A, U can be modified indepen-
dently on each subtree Tw without changing its type Tpn(Tw). Hence there are
continuum many different sets U ′ as above.

Sufficiency of Condition C when Condition A fails.
If Condition A does not hold, then for each U satisfying ϕ(U, V ), the set D(U)
does not contain an infinite antichain. Thus, since D(U) is a simple tree and
König’s Lemma applies, it is comprised of only finitely many branches. In par-
ticular, there are only finitely many infinite D-paths for each such U . Thus, if
Condition C holds and there are uncountably many D-paths altogether, then
there are uncountably many sets U satisfying ϕ(U, V ) as well.

Necessity of the three conditions.
As already observed above, if Condition A fails, then for each U satisfying
ϕ(U, V ), D(U) is a tree comprised of only finitely many branches. In particular,
there are only finitely many infinite D-paths for each such U . In case Condition
C fails too, there are at most countably many sets D(U) altogether for all the
sets U satisfying ϕ(U, V ).

It remains to show that if Condition B is not fulfilled either, then for every
set D there can be at most countably many sets U satisfying ϕ(U, V ) and having
D(U) = D. For all those D containing an infinite path, this is explicitly guaran-
teed by the failure of Condition B. Let us consider the other case, so let D be a
finite prefix-closed set and F be the set of maximal points in D, i.e. its frontier
nodes. If D = D(U), then U is fully determined by U ∩ D and the n-types of
all successor nodes of the frontier nodes. Over finitely branching trees this only
allows for a finite number of choices of U . The simultaneous failure of all three
conditions therefore implies that ∃≤ℵ0X ϕ(X,V ). ut
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5 Formalization of Condition A

The definition of Condition A can be directly cast in MLO(Inf). It suffices there-
fore to note that the predicate Inf(X) can be formalized in pure MLO over
simple trees, as proved in Appendix A.

Lemma 12. There exists an MLO formula ψInf(X) that holds on a simple tree
T if and only if X is infinite.

Condition A can now be formalized in MLO as

ψA(Y ) = ∃U∃A
(
ϕ(U, Y ) ∧ ψInf(A) ∧ antich(A)∧
(∀w ∈ A DNODEϕ(w,U, Y ))

)
,

where antich(A) = ∀x, y ∈ A ¬(x < y ∨ y < x).
Already in the proof of Lemma 11 we have pointed out that if condition A is

satisfied, then there are continuum many sets X satisfying the formula ϕ(X,Y ).

6 Condition B

In this section, we show that a branch B is a witness for Condition B if and
only if this branch satisfies a disjunction of three sub-conditions: Ba, Bb and
Bc. Moreover, if both Condition A and Condition C fail, then already the sub-
conditions Ba and Bc are sufficient. Finally, we express both Ba and Bc in MLO
and show, that in fact both these sub-conditions guarantee the existence of
continuum many sets X satisfying the formula ϕ(X,Y ) in consideration.

As in the previous section, we assume that the formula ϕ(X,Y ) of quantifier
rank n is fixed together with a simple l-tree T and m parameters Y , and let k
be the number of n-types in l + m + 1 variables. Additionally, we fix a branch
B and introduce the formula ψ(X,Y , P ) stating that P is an infinite D-path for
X and that ϕ(X,Y ) holds:

ψ(X,Y , P ) = DPATHϕ(P,X, Y ) ∧ Inf(P ) ∧ ϕ(X,Y ).

Note that the branch B witnesses Condition B if and only if ∃ℵ1U ψ(U, Y ,B).
To break up Condition B, we decompose T = (T, X, Y ) along the branch B,

T =
∑
w∈B Tw\B , and apply the Composition Theorem (Th.9) to this decom-

position and the formula ψ. This yields a formula θ such that

T |= ψ(X,Y ,B) ⇐⇒ (B,<) |= θ(P1, . . . , Pr),

where r is the number of qr(ψ)-types in l+m+ 2 variables, which we enumerate
as τ1, . . . , τr, and

Pi = {w ∈ B | (Tw\B , {w}) |= τi}.
Note that we use the expansion of Tw\B by {w} as w is the only element of
Tw\B that belongs to B. The above application of the Composition Theorem
allows us to formulate the following lemma (proved, together with the next one,
in Appendix B).
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Lemma 13. There are uncountably many X ⊆ T satisfying the formula ψ(X,Y ,B)
in T iff one of the following sub-conditions holds.

(Ba) There exists a set X such that Tw\B is a D-interval for ϕ,X, Y for infinitely
many w ∈ B.

(Bb) There exists a set X satisfying ψ and a w ∈ B so that

Tw\B |= ∃ℵ1X ′ τi(X ′, Y ∩ Tw\B , {w}),

where τi = Tpqr(ψ)(Tw\B , X, Y , {w}).
(Bc) It holds that

(B,<) |= ∃ℵ1P

(
θ(P ) ∧

r∧
i=1

Pi ⊆ Qi ∧ ∀x
( r∨
i=1

(x ∈ Pi ∧
∧
j 6=i

x 6∈ Pj
))

,

where Qi is the set of nodes on the branch B in which the type τi is satisfied
by some set X, i.e.

Qi = {w ∈ B | Tw\B |= ∃X τi(X,Y ∩ Tw\B , {w})}

for each 1 ≤ i ≤ r.

While Condition (Bb) in itself is just another instance of the problem we
started with, we claim that when conditions A and C fail, it can simply be
ignored.

Lemma 14. If over a finitely branching tree T both Condition A and Condition
C fail, then Condition B holds if and only if there exists a branch that satisfies
Condition (Ba) or Condition (Bc).

In the next subsections we construct MLO formulas ψBa(B, Y ) and ψBc(B, Y )
that formalize the sub-conditions (Ba) and (Bc). By the above lemma, we can
then use the formula ψB(Y ) = ∃B(ψBa(B, Y ) ∨ ψBc(B, Y )) for Condition B of
Lemma 11.

6.1 Formalization of Condition Ba

Condition (Ba) is clearly expressible in MLO(Inf) and thus, over simple trees,
in pure MLO as well, by the formula

ψBa(B, Y ) = ∃X ∃ℵ0w DINT(Tw\B , X, Y ),

where Tw\B is just a notation for the set defined by

x ∈ Tw\B ⇐⇒ w ≤ x ∧ ¬∃b ∈ B (b > w ∧ b ≤ x).

The fact that Condition (Ba) is sufficient for the existence of continuum many
sets U satisfying ϕ(U, V ) can be arrived at by appealing to the Composition
Theorem in the same manner as for Condition A in the proof of Lemma 11,
because the set X can be left intact or changed to another one with the same
type on any of the infinitely many trees Tw\B which are D-intervals for X.

11



6.2 Formalization of Condition Bc

In order to eliminate the explicit use of the uncountability quantifier from Con-
dition (Bc) over (B,<) ∼= (ω,<), we use Proposition 2.5 from [8] reformulated
using the standard equivalence of automata and MLO on (ω,<), as stated in
the following proposition.

Proposition 15. For every MLO formula ϕ(X,Y ) there exists an effectively
constructable formula ψ(Y ) such that over (ω,<)

ψ(Y ) ≡ ∃ℵ1X ϕ(X,Y ) ≡ ∃2ℵ0
X ϕ(X,Y ).

Applying this result to the formula on the right hand side of Condition (Bc),
with Q as parameters, we obtain a formula ϑ(Q) such that Condition (Bc) holds
iff (B,<) |= ϑ(Q), with Q as specified there.

By Proposition 15, if ϑ(Q) holds, then there are even continuum many sets
P satisfying Condition (Bc). As shown in the proof of Lemma 13 above, this
ensures the existence of continuum many sets X satisfying ψ(X,Y ,B), because
for each P a corresponding X exists. Thus, in this case there are continuum
many sets X satisfying ϕ(X,Y ).

To formalize Condition (Bc) in MLO over the tree T, we first define the sets
Qi on T. As the set of types is computable, we can compute each τi and thus
effectively construct the formula αi(w,B, Y ) expressing that w is a node on the
branch B such that Tw\B |= ∃X τi(X,Y ∩ Tw\B , {w}), i.e. w ∈ Qi. Using this
formula we can express Condition (Bc) as ψBc(B, Y ) =

∃Q

(
r∧
i=1

(
w ∈ Qi ↔ αi(w,B, Y )

)
∧ ϑB(Q)

)
,

where ϑB is a relativization of ϑ to the branch B.

7 The full binary tree and the Cantor space

In order to formalize Condition C in MLO over simple trees, we first analyze
the problem only on the full binary tree and identify and prove the following
key topological property that distinguishes counting branches from counting
arbitrary sets.

On the full binary tree T(2) = ({0, 1}∗,≺, S0, S1) where ≺ is the prefix-order
and Si = {0, 1}∗i, we show that the set of branches satisfying any given MLO
formula is a Borel set in the Cantor topology and hence it has the perfect set
property : it is uncountable iff it contains a perfect subset iff it has the cardinality
of the continuum. A perfect set is a closed set without isolated points. (see
Appendix C for an overview of the topological notions we use).

The Cantor-Bendixson Theorem states that closed subsets of a Polish space
have the perfect set property : they are either countable or contain a perfect
subset and thus have cardinality continuum. A set P is perfect if it is closed and

12



if every point p ∈ P is a condensation point of P , i.e. if every neighborhood of
p contains another point from P . We shall rely on the following fundamental
result of Souslin.

Theorem 16 (cf. e.g. in [10]). A subset of a Polish space is Borel if and only
if it is both analytic and co-analytic. Moreover, every uncountable analytic set
contains a perfect subset.

Note that whether co-analytic sets, or all sets on higher levels of the projective
hierarchy, satisfy the continuum hypothesis is independent of ZFC [10].

A key observation that our formalization will exploit is that even though
there are non-Borel sets of trees definable in MLO, sets of definable paths are
Borel. Recall that for a sequence π ∈ {0, 1}∗ we denote by Pref(π) the path
through T(2) that corresponds to this sequence, which formally is the set of
prefixes of π.

Theorem 17 (MLO definable sets of branches are Borel). Let U1, . . . , Um
be subsets of T(2) and let ψ(X,Y ) be an MLO formula over T(2). Then the set

X = {π ∈ {0, 1}ω | T(2) |= ψ(Pref(π), U) }

of branches of the binary tree satisfying ψ(X,U) is Borel and therefore it has the
perfect set property.

Proof. Note that the complement of X is also definable by ¬ψ(X,U). We will
show that every definable set of branches is analytic. Therefore, by Souslin’s
Theorem, it is Borel. To prove this, we will use the following variation of the
Composition Theorem (c.f [9]), proved in Appendix D.

Lemma 18. Let ψ(X,Y1, . . . , Ym) be an MLO formula with quantifier rank n ≥
2, and let k be the number of (n+ 2)-types in m+ 1 variables. Then there exists
an MLO formula θ(I, Z1, . . . , Zk) such that

T(2) |= ψ(Pref(π), U) ⇐⇒ (ω,<) |= θ({n | π[n] = 1}, Q),

where for each 1 ≤ i ≤ k we define Qi = Qπ,Ui as

Qi = {j ∈ ω | Tpn+2(T(2)π|j , U) = τi}.

Let θ be the formula obtained by applying the above lemma to ψ. Then,
by the well-known correspondence of MLO and finite automata on ω-words,
there is an ω-regular language Lθ ⊆ ({0, 1}k+1)ω ∼= {0, 1}ω × ({0, 1}k)ω, such
that Lθ consists of those pairs of sequences (π, ρ) for which (ω,<) |= θ(P,Q),
where P and Q are subsets of ω with characteristic sequences π ∈ {0, 1}ω and
ρ ∈ ({0, 1}k)ω. By McNaughton’s theorem, cf. [16], Lθ ∈ Σ0

3.
Let T be the extension of T(2) with each node w labeled by (σ, q) such that

w is the σ-th successor of its parent (i.e. w ∈ Sσ) and q = (0, . . . , 0, 1, 0, . . . , 0)
with the 1 in position i if Tpn+2(T(2)w, U) = τi. The set [T ] of labeled infinite
branches of T is closed in the Cantor topology.

By construction, X is the projection of Lθ ∩ [T ] to its first component, and
is analytic as Lθ ∈ Σ0

3 and [T ] ∈ Π0
1. ut
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8 Formalizing Condition C

The perfect set property established in Theorem 17 provides an MLO-definable
characterisation of Condition C of Lemma 11 over the full binary tree (with
arbitrary labelling). Via interpretations this can be extended to all simple trees
to yield the following characterisation (proved in Appendix E).

Proposition 19 (Eliminating uncountably-many-branches quantifier).
For every MLO formula ϕ(X,Y ) the assertion “∃ℵ1B branch(B) ∧ ϕ(B, Y )”
is equivalent over all simple trees to the existence of a perfect set of branches
B, each satisfying ϕ(B, Y ). The latter ensures that there are in fact continuum
many such branches.

Towards an MLO formulation note that the collection of nodes of a perfect
set of branches induces a perfect tree, and vica versa. A perfect tree is one
without isolated branches, equivalently, one in which for every node u there are
incomparable nodes v, w > u. Perfectness is thus first-order definable.

Corollary 20. Over simple trees Condition C is expressible in MLO as

ψC(Y ) = ∃P perfect(P ) ∀B ⊂ P, branch(B) ∃X DPATHϕ(B,X, Y )

Hence if Condition C holds then there are continuum many D-paths altogether
for all sets U satisfying ϕ(U, Y ).

9 Summary of the proofs

As we have shown above, the conditions of Lemma 11 can be formalized in
MLO over simple trees, thus we can again state the conclusion of this Lemma:
T |= ∃ℵ1X ϕ(X,Y ) holds if and only if

T |= ψA(Y ) ∨ ∃B(ψBa(B, Y ) ∨ ψBc(B, Y )) ∨ ψC(Y ).

Using the above, we can reduce any formula of MLO(∃ℵ1) to an MLO formula
equivalent over the class of simple trees by inductively eliminating the inner-most
occurrence of a cardinality quantifier. Theorem 1 follows. Moreover, as we have
shown in the corresponding sections, each of the conditions of Lemma 11 implies
the existence of continuum many sets X satisfying ϕ(X,Y ), whence Theorem 2.

10 Further results

The technique we used here can be applied to linear orders and leads to the
following generalization of the theorem of Kuske and Lohrey (c.f. Proposition 15).

Theorem 21 (Eliminating uncountability quantifier on linear orders).
(1) For every MLO(∃ℵ1) formula ϕ(Y ) there exists an MLO formula ψ(Y ) that

is equivalent to ϕ(Y ) over the class of all ordinals.
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(2) For every MLO(∃ℵ1) formula ϕ(Y ) there exists an MLO formula ψ(Y ) that
is equivalent to ϕ(Y ) over the class of all countable linear orders. Moreover,
∃ℵ1X ϕ(X,Y ) is equivalent to ∃2ℵ0

X ϕ(X,Y ) over the class of countable
linear orders.

Furthermore, in all these cases ψ is computable from ϕ.

The proof will be provided in an extension of this paper. Let us remark
that (2) cannot be obtained by interpretations of countable linear orders in the
full binary tree and the expressive equivalence of MLO(∃ℵ1) to MLO and to
MLO(∃2ℵ0 ) over the full binary tree.

Acknowledgment. We are very grateful to Sasha Rubin for insightful dis-
cussions at an earlier stage of this work.
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A Infinity predicate on simple trees

Lemma 12. There exists an MLO formula ψInf(X) that holds on a simple tree
T if and only if X is infinite.

Proof. By König’s Lemma, a set X ⊆ T is infinite if and only if there exists a
path in T containing infinitely many elements of X. The condition that a path
P contains infinitely many elements of X can in turn be expressed in MLO by
the formula

ψinfpath(P,X) = ∀x ∈ P ∃y ∈ P (x < y ∧ y ∈ X).

Thus, the correct formula ψInf(X) is given by

ψInf(X) = ∃P (path(P ) ∧ ψinfpath(P,X)) ,

where path(P ) expresses that P is a path. ut

B Expressing Condition B – proofs

Lemma 13. There are uncountably many X ⊆ T satisfying the formula ψ(X,Y ,B)
in T iff one of the following sub-conditions holds.

(Ba) There exists a set X such that Tw\B is a D-interval for ϕ,X, Y for infinitely
many w ∈ B.

(Bb) There exists a set X satisfying ψ and a w ∈ B so that

Tw\B |= ∃ℵ1X ′ τi(X ′, Y ∩ Tw\B , {w}),

where τi = Tpqr(ψ)(Tw\B , X, Y , {w}).
(Bc) It holds that

(B,<) |= ∃ℵ1P

(
θ(P ) ∧

r∧
i=1

Pi ⊆ Qi ∧ ∀x
( r∨
i=1

(x ∈ Pi ∧
∧
j 6=i

x 6∈ Pj
))

,

where Qi is the set of nodes on the branch B in which the type τi is satisfied
by some set X, i.e.

Qi = {w ∈ B | Tw\B |= ∃X τi(X,Y ∩ Tw\B , {w})}

for each 1 ≤ i ≤ r.

Proof. By the application of the Composition Theorem done above, T |= ψ(X,Y ,B)
iff (B,<) |= θ(P1, . . . , Pr). Let us consider the following cases.

Case 1: There exists a tuple P such that (B,<) |= θ(P ) and there are un-
countably many sets X for which Pi = {w ∈ B | (Tw\B , X, Y , {w}) |= τi} for
each 1 ≤ i ≤ r.
In this case the branch B witnesses Condition B, so we only need to show that
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one of the sub-conditions holds. By contradiction, assume that sub-condition
(Ba) does not hold. Then, for every set X satisfying ψ(X,Y ,B), the segment
Tw\B is a D-interval only for finitely many w ∈ B. Consider one of the un-
countably many sets X which have qr(ψ)-types on Tw\B described by P . Since
qr(ψ) ≥ qr(ϕ) and Tw\B is a U-interval for X for all but finitely many w’s, all
of the continuum many sets that share P must be equal to X on all but finitely
many Tw\B . Thus, there is as well a single w for which there are continuum
many different sets sharing the types with X on Tw\B , and thus Condition (Bb)
is satisfied.

Case 2: For each tuple P such that (B,<) |= θ(P ) there are only countably
many sets X for which Pi = {w ∈ B | (Tw\B , X, Y , {w}) |= τi}.
In this case, we show that Condition (Bc) is both necessary and sufficient for
the existence of uncountably many sets X satisfying ψ.

Necessity of Condition (Bc).
As a direct consequence of the application of the Composition Theorem above
and the condition of this case, if there are uncountably many sets X satisfying
ψ then there are uncountably many corresponding tuples P for which (B,<) |=
θ(P ). By definition, Pi is the set of w’s for which (Tw\B , X, Y , {w}) |= τi. Taking
the X above we get Tw\B |= ∃Xτi(X,Y ∩ Tw\B , {w}), and therefore Pi ⊆ Qi
holds. Since Hintikka formulas are mutually exclusive, each two sets Pi, Pj for
i 6= j are disjoint. This guarantees that the remaining conjunct ∀x

(∨r
i=1(x ∈

Pi ∧
∧
s6=r x 6∈ Ps

)
of Condition (Bc) is satisfied, and thus Condition (Bc) holds.

Sufficiency of Condition (Bc).
By definition of the sets Qi, for each w ∈ Qi there is a set Xw,i which makes the
type τi satisfied on the extension of Tw\B . Assuming that Condition (Bc) holds,
let P be the uncountable set of tuples P that witness this condition. For each
such tuple P and each w ∈ B the last conjunct of Condition (Bc) guarantees
that there is a unique i = i(w) for which w ∈ Pi. Construct XP as the sum of
Xw,i(w) over all w ∈ B. Since Pi ⊆ Qi, the tuple P indeed describes the types of
the set XP . Therefore for different tuples P 1, P 2 the sets XP1

, XP2
are different

as well. Moreover, since θ(P ) holds, the above application of the Composition
Theorem guarantees that ψ(XP , Y , B) holds. Thus {XP | P ∈ P} constitutes
an uncountable family of sets satisfying ψ. ut

Lemma 14. If over a finitely branching tree T both Condition A and Con-
dition C fail, then Condition B holds if and only if there exists a branch that
satisfies Condition (Ba) or Condition (Bc).

Proof. If conditions A and C fail, then, as we have already seen, the set D =
{D(X) | T |= ϕ(X,Y )} is countable. Moreover, each D ∈ D is a union of finitely
many paths.

If Condition B holds then there are uncountably many sets X satisfying
ϕ(X,Y ) and thus, as D is countable, there is a set D such that D = D(X) for
uncountably many X satisfying ϕ. Fix such a set D and consider all its labelings
by the types of X on the partial trees Tw\D, i.e. the set L = {LX | D(X) = D}
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where L
X

= 〈LX1 . . . LXk 〉 and

LXj = {w ∈ D | Tpn(Tw\D, X, Y , {w}) = τj}.

We are going to show that the failure of Condition (Bc) guarantees that the set
L is countable.

First, D is the union of a finite set of branches, therefore there is a finite
set E = {e1, . . . , es} of maximal branching points of D. For i = 1 . . . s, let
Pathi = {v ∈ D | v > ei}, let Bi be the unique branch of D that contains Pathi
and let Tfin = D\∪iPathi. Note that Tfin is a finite subtree of D and hence there
are only finitely many possible labelings of Tfin. Note also that Bi are infinite
branches.

If L was uncountable then there would exist an i with uncountably many
different labelings of Pathi, i.e. the set H = {HX | D(X) = D} where H

X
=

〈HX
1 . . . HX

k 〉,

HX
j = {w ∈ Pathi | Tpn(Tw\D, X, Y , {w}) = τj},

would be uncountable. However, for w ∈ Pathi, Tw\D = Tw\Pathi
= Tw\Bi

.

Therefore, Q = {QX | D(X) = D} where Q
X

= 〈QX1 , . . . QXk 〉 and

QXj = {w ∈ Bi | Tpn(Tw\Bi
, X, Y , {w}) = τj}

would be uncountable. Since qr(ψ) ≥ n, different n-types induce different qr(ψ)-
types, so the set P = {PX | D(X) = D}, with P

X
= 〈PX1 , . . . PXr 〉 and

PXj = {w ∈ Bi | Tpqr(ψ)(Tw\Bi
, X, Y , {w}) = τj},

is uncountable as well. (Note that here τj is an qr(ψ)-type.) As shown in the
part on necessity of Condition (Bc) in the proof of Lemma 13, each such P

X

satisfies the formula in Condition (Bc), so this condition holds for Bi.
As shown above, L is countable. Since there are uncountably many X with

D(X) = D, there exists a single type labeling L such that L = L
X

for uncount-
ably many of these sets X. Thus each of these uncountably many sets X has the
same type Tpn(Tw\D, X, Y , {w}) for each w ∈ B, which we denote τ(w).

If Condition (Ba) is not satisfied either, all but finitely many of these τ(w)

uniquely define X on the respective tree segments Tw\D.
Thus, there exists a w ∈ D such that there are uncountably many X as

above pairwise differing on the tree segment Tw\D. However, by definition, every
subtree of Tw\D is a U-tree relative to every of these X, because D(X) = D.
Hence if T is finitely branching, i.e. if Tw\D \ {w} is a finite union of such U-
trees, then there can be only finitely many X as above pairwise differing on
Tw\D, which is a contradiction. ut

C Overview of topological notions

The argument we present is based on basic results of descriptive set theory
and the theory of finite automata on infinite words in connection with monadic
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second-order logic and the Borel hierarchy of the Cantor space. Let us recall a few
basic notions from descriptive set theory. A thorough introduction to descriptive
set theory can be found in [10], we only mention a few basic facts.

The Cantor space is the topological space with the product topology on
{0, 1}ω. It is a Polish space with the topology generated by basic neighborhoods
w{0, 1}ω with the prefix w ∈ {0, 1}∗. Alternatively, it can be defined by the
metric d(α, β) = 2−min{n : α[n]6=β[n]}.

The hierarchy of Borel sets is generated starting from open sets, i.e. unions
of basic neighborhoods, denoted Σ0

1, and closed sets, which are complements of
open sets and denoted Π0

1. Further on by transfinite induction for any countable
ordinal α, Σ0

α is defined as {
⋃
i∈ω Ai | ∀i ∃βi < α Ai ∈ Π0

βi
} and the Π0

α-sets are
the complements of Σ0

α-sets. The projective hierarchy is built on top of the Borel
hierarchy, starting with Σ1

0 = Π1
0 as the class of Borel sets. On the first level

one has the class Σ1
1 of analytic sets, which are projections of Borel sets, and

the class Π1
1 of co-analytic sets, whose complements of analytic. The hierarchy is

built in this manner with sets in Σ1
α+1 being projections of Π1

α-sets, and Π1
α+1

sets being complements of Σ1
α sets.

The connection between the topological complexity of MLO-definable tree
languages and the complexity of tree-automata recognizing them is well under-
stood. By Rabin’s complementation theorem, all MLO-definable tree languages
are in Σ1

2 ∩Π1
2. There are Σ1

1-complete as well as Π1
1-complete regular tree lan-

guages. For instance, the set of {a, b}-labeled binary trees, which have on every
path only finitely many a’s, is Π1

1-complete.There also exist regular tree lan-
guages not contained in Σ1

1 ∪Π1
1, however languages accepted by deterministic

tree automata are contained in Π1
1. In contrast, by McNaughton’s theorem, ω-

regular languages, i.e. MLO-definable sets of ω-words, are boolean combinations
of Π0

2 sets.

D Proof of Lemma 18

Lemma 18 is weaker than the full Composition Theorem for trees (Th. 9) of
Lifsches and Shelah [9], as the index structure on which the tree is decomposed
is a single branch and we consider a specific labeling. However, even if it is not
very likely to be useful for other applications, we need this particular version for
our proof.

Lemma 18. Let ψ(X,Y1, . . . , Ym) be an MLO formula with quantifier rank
n ≥ 2, and let k be the number of (n + 2)-types in m + 1 variables. Then there
exists an MLO formula θ(I, Z1, . . . , Zk) such that

T(2) |= ψ(Pref(π), U) ⇐⇒ (ω,<) |= θ({n | π[n] = 1}, Q),

where for each 1 ≤ i ≤ k we define Qi = Qπ,Ui as

Qj = {j ∈ ω | Tpn+2(T(2)π|j , U) = τi}.
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Proof. To construct θ, we first apply the Composition Theorem (Th.9) to ψ(X,Y )
on the full binary tree T(2) decomposed along any branch B. This yields an MLO
formula θ0(T ) such that, for every branch B of T(2),

T(2) |= ψ(Pref(π), U) ⇐⇒ (B,≺) |= θ0(P ).

Here, by definition of Pr = P
B;Pref(π),U
r , holds for each n-type τr, each ι ∈ {0, 1}

and v ∈ Pr that vι ∈ B if and only if τr is the n-type of (Pref(π), U) on the tree
segment T(2)v \ T(2)vι.

As a first step we refine θ0(P ) to a formula θ1(I, P ) such that (B,≺) |=

θ1

(
I, P

B;Pref(π),U
)

if and only if all of the following three conditions hold:

– (B,≺) |= θ0

(
P
B,Pref(π),U

)
,

– B = Pref(π), and
– I = B ∩ S1.

Observe that a node v ∈ B lies on the path π or is a 1-successor precisely
if the n-type τr(X,Y ) such that v ∈ Pr stipulates that X is not empty, or that
the root belongs to S1, respectively. As we assumed that n ≥ 2, let H and
G be the sets of those n-types τr(X,Y ) from which ∃x (x ∈ X), respectively,
∃x ∀y(x ≤ y) ∧ x ∈ S1, can be inferred. Then we set θ1(I, P ) to be

θ0(P ) ∧ ∀v

( ∨
τr∈H

v ∈ Pr ∧ (v ∈ I ↔
∨
τr∈G

v ∈ Pr)

)
,

and it indeed has the above property, i.e.

T(2) |= ψ(Pref(π), U) ⇐⇒ (ω,<) |= θ1({n | π[n] = 1}, T (π,U)
),

with Tr = {i ∈ ω | τr = Tpn(T(2)π|i\π|i+1 , {π|i}, U)} for each n-type τr.
Finally, for each i ∈ {0, 1} and (n + 2)-type σs(Y ) and n-type τr(X,Y ) we

define the relationship σs `i τr, meaning that σs ensures that τr is the n-type
of the tree segment obtained by removing the subtree of the i-th successor of
the root. This condition is expressible with a formula of quantifier rank n+ 2 as
follows: (This explains the need for (n+ 2)-types.)

σs(Y ) |= ∃z∃Z
(
∀x(z ≤ x) ∧

∃y
(
y ∈ Si ∧ ∀x(x < y → x = z) ∧ ∀x (x ∈ Z ↔ y 6≤ x)

)
∧

τZr ({z}, Y |Z)
)
,

where the superscript Z denotes relativization to Z. Finally, θ can be defined as
promised by θ(I,Q) =

∃P ∀n
∧

σs`iτr

(n ∈ Qs ∧ s(n) ∈ Si → n ∈ Pr) ∧ θ1(I, P ).
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where s(n) refers to the immediate successor of n, which is of course definable,
but used here in functional notation for brevity. ut

E Formalizing Condition C – proofs

Proposition 19 For every MLO formula ϕ(X,Y ) the assertion “∃ℵ1B branch(B)∧
ϕ(B, Y )” is equivalent over all simple trees to the existence of a perfect set of
branches B, each satisfying ϕ(B, Y ). The latter ensures that there are in fact
continuum many such branches.

Proof. Let ψ(Y ) be the MLO formula expressing that there is a prefix-closed set
of nodes Λ, such that (Λ,<) is a perfect tree and every infinite branch B ⊂ Λ
satisfies ϕ(B, Y ).

By definition of perfectness, ψ implies that there are uncountably many
branches B satisfying ϕ(B, Y ) over any tree. As we have shown in Theorem 17,
over the full binary tree with arbitrary additional unary predicates, ψ is equiva-
lent to this condition. We transfer the result to all simple trees using an encoding
of any simple tree in T(2) with appropriate predicates, as follows.

Every simple l-tree T is isomorphic to some (T,≺, P1, . . . , Pl) where T ⊆ N∗
is a prefix-closed subset of finite sequences of natural numbers and ≺ is the prefix
relation. Consider the following encoding µ : N∗ → {0, 1}∗

(n0, n1, . . . , ns) 7→ 0n010n11 . . . 0ns1,

and set S = µ(T ) and Qi = µ(Pi) for each i = 1 . . . l.
Given that v ≺ w in T iff µ(v) ≺ µ(w) in T(2), this defines an interpretation

of T inside (T(2), S,Q1, . . . , Ql). In particular, for every MLO-formula ϑ(X) of
l-trees

T |= ϑ(U) ⇐⇒ (T(2), S,Q1, . . . , Ql) |= ϑ∗(µ(U)),

where ϑ∗ is obtained from ϑ by interpreting each Pi with Qi and relativizing all
quantifiers to subsets/elements of S.

Observe that µ induces a function µ∗ mapping each infinite branch B of
T to the unique infinite branch µ∗(B) of T(2) containing µ(w) for all w ∈ B.
Conversely, every infinite branch of T(2) containing the µ-image of infinitely
many nodes of T is the µ∗ image of the unique infinite branch of T containing
all of these nodes. Hence µ∗ is injective (but not surjective).

Consider the formula ϕ(B, Y ) defining, with parameters V over T, an un-
countable set of branches. Thus, over simple trees, it defines an uncountable set
of infinite branches D = {B | T |= ϕ(B, V ) and B is an infinite branch}.

Then, according to earlier remarks, D∗ = {µ∗(B) | B ∈ D} is an uncount-
able set of branches of T(2) and it is defined by “branch(B) ∧ ∃ infinite P ⊆
B ϕ∗(P, µ(V ))” over (T(2), S,Q1, . . . , Ql).

Thus, by Theorem 17, there is a Λ∗ ⊆ T(2) inducing a perfect tree (Λ∗, <),
every infinite branch of which is in D∗.

We claim that Λ = µ−1(Λ∗) induces a perfect tree in T, every infinite branch
of which is then in D.
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For one, because Λ∗ is prefix-closed, so is Λ, therefore it induces a tree in
T. We know moreover, as Λ∗ is perfect, that the image µ∗(B) of every infinite
branch B ⊂ Λ is not isolated in Λ∗. Hence for every w ∈ B there is an infinite
branch C∗ ⊂ Λ∗ different from µ∗(B) and such that µ(w) ∈ C∗. Therefore
w ∈ µ−1(C∗), which is a branch through Λ and is different from B. This shows
that B is not isolated in Λ, and so Λ is perfect. ut
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