
ar
X

iv
:0

70
8.

17
23

v1
  [

cs
.L

O
] 

 1
3 

A
ug

 2
00

7

Hybrid Branching-Time Logics⋆

Volker Weber

Fachbereich Informatik, Universität Dortmund
44221 Dortmund, Germany
volker.weber@udo.edu

Abstract. Hybrid branching-time logics are introduced as extensions of
CT L-like logics with state variables and the downarrow-binder. Following
recent work in the linear framework, only logics with a single variable
are considered. The expressive power and the complexity of satisfiability
of the resulting logics is investigated.
As main result, the satisfiability problem for the hybrid versions of sev-
eral branching-time logics is proved to be 2EXPTIME-complete. These
branching-time logics range from strict fragments of CT L to extensions
of CT L that can talk about the past and express fairness-properties.
The complexity gap relative to CT L is explained by a corresponding
succinctness result.
To prove the upper bound, the automata-theoretic approach to branching-
time logics is extended to hybrid logics, showing that non-emptiness of
alternating one-pebble Büchi tree automata is 2EXPTIME-complete.

1 Introduction

Hybrid logics are extensions of modal logic that allow to refer to individual
states of a model. They aim at extending the expressive power of modal logics,
without losing their nice properties such as decidability. Hybrid logics have been
researched quite intensively during the last years. Their applications range from
verification to reasoning about semistructured data [10]. See [4] for a recent
survey and an introduction to hybrid logic.

On the technical side, the aims of hybrid logic can be achieved by adding
nominals and state variables, corresponding to the first-order concepts of con-
stants and variables. Nominals are an additional kind of atomic symbols which
are true in exactly one state in a model, and therefore name this state. Nominals
are fixed with the model, whereas the assignment of states to state variables can
be changed by quantification. To preserve the local perspective of modal logic,
the quantifier considered the most is the downarrow-operator, first introduced
in [12] and denoted ↓, which binds a state variable to the current state.

Satisfiability of hybrid ↓-languages is undecidable with respect to arbitrary
Kripke-structures [2] and only non-elementarily decidable if the class of models
is restricted to trees [16] or linear structures [11], i.e., to those models impor-
tant in verification. These results initiated research on decidable fragments and
fragments of lower complexity [20,18].

⋆ An extended abstract of this paper was presented at the International Workshop on
Hybrid Logics (HyLo 2007).

http://arxiv.org/abs/0708.1723v1


In [18], Schwentick and W. considered bounded-variable fragments of hy-
brid ↓-languages in the linear framework. While complexity of the two-variable
fragment is already as bad as for the unbounded language, satisfiability of the
one-variable fragment is EXPSPACE-complete. Furthermore, the one-variable
fragment has the full expressive power of first-order logic.

The aim of this paper is to extend this successful approach to the branching-
time framework. While the logic of [18] could also be interpreted over trees, we
believe that hybrid extensions of classical branching-time logics like CT L are a
more convenient formalism to reason about trees.

Our main result is that satisfiability for the one-variable-fragment of hybrid
ECT L+Past is 2EXPTIME-complete. The lower bound is already achieved for
the logic containing only the next X and future F modalities and is explained
by a corresponding succinctness result. The upper bound is by a reduction to
non-emptiness of alternating one-pebble Büchi tree automata, a problem that
we prove to be 2EXPTIME-complete as well. Furthermore, we study the ex-
pressive power of hybrid branching-time logics and show, for example, that the
one-variable-fragment of hybrid CT L is strictly more expressive than CT L.

Section 2 gives the basic notions of branching-time logics and introduces
their hybrid extension. It also contains the definition of alternating one-pebble
Büchi tree automata. Section 3 is concerned with the expressive power of hybrid
branching-time logics, which are compared with classical branching-time logics
and logics with the N-operator (“from now on”) of [15]. The complexity and suc-
cinctness results can be found in Section 4, those on tree automata in Section 5.
We give some directions for further research in Section 6.

2 Preliminaries

The basic definitions of branching-time logics and Büchi tree automata are pre-
sented in this section. As both formalism are defined with respect to infinite
trees, we start by defining these structures.

Let D={1,. . . ,k} be a finite set of directions for some k ∈ N. An infinite
D-tree is a prefix-closed set T ⊆ D∗, i.e., whenever x · c ∈ T where x ∈ D∗ and
c ∈ D, then also x ∈ T . The empty string ε is the root of T and for all c ∈ D,
x · c is called a child of the node x. A path π in T is a prefix-closed minimal
set π ⊆ T , such that for every x ∈ π, there is a unique c ∈ D with x · c ∈ π.
We use “≤” to denote the descendant-relation on T , i.e., x < y if and only if y
is a strict descendant of x. Note that this order is partial as nodes in different
branches are incomparable. The branching degree d(x) is the number of children
of a node x. We only consider k-ary trees, where d(x) = k for every node x, and
refer to them as trees in the following.

A labeled tree over a finite alphabet Σ is a pair (T, V ) where T is a tree and
V : T → Σ assigns a symbol from Σ to every node of T . We are mainly interested
in the case in which Σ = 2PROP for some set PROP of propositions. Such trees,
usually referred to as computation trees, result for example from the unwinding
of Kripke structures (see, e.g., [13]). In the following, we identify (T, V ) with T .



2.1 Branching-Time Logics

We briefly recall the basic notions of branching-time logic, starting from the logic

ECT L+Past which extends CT L in two ways: First, by adding the
∞

F-modality
for “infinitely often in the future” to express fairness properties. Secondly, by
introducing past modalities Y for “previous” and S for “since”.

ECT L+Past-formulas are defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | EXϕ | EϕUϕ | AϕUϕ | E
∞

F | Yϕ | ϕSϕ

where p ∈ PROP. We use the usual abbreviations ⊤, ⊥, ϕ ∨ ϕ, ϕ→ ϕ, and

EFϕ := E⊤Uϕ EGϕ := ¬AF¬ϕ A
∞

Gϕ := ¬E
∞

F¬ϕ

AFϕ := A⊤Uϕ AGϕ := ¬EF¬ϕ A
∞

Fϕ := AGAFϕ

AXϕ := ¬EX¬ϕ Pϕ := ⊤Sϕ E
∞

Gϕ := EFEGϕ

The semantics of ECT L+Past-formulas is defined with respect to a compu-
tation tree T and a node n of T :

– T, n |= p iff p ∈ V (n)
– T, n |= ¬ϕ iff T, n 6|= ϕ

– T, n |= ϕ ∧ ψ iff T, n |= ϕ and T, n |= ψ

– T, n |= EXϕ iff there exists a c ∈ D, such that T, n · c |= ϕ

– T, n |= EϕUψ iff there exists a path π with n ∈ π, such that there is
a descendant n′ ∈ π of n with T, n′ |= ψ and for all nodes x ∈ π with
n ≤ x < n′, we have T, x |= ϕ

– T, n |= E
∞

Fϕ iff there exists a path π with n ∈ π, such that there are infinitely
many descendants n′ ∈ π of n with T, n′ |= ϕ

– T, n |= AϕUψ iff for all paths π with n ∈ π, there is a descendant n′ ∈ π of
n with T, n′ |= ψ and for all nodes x ∈ π with n ≤ x < n′, we have T, x |= ϕ

– T, n |= Yϕ iff T, n′ |= ϕ with n = n′ · c for some c ∈ D

– T, n |= ϕSψ iff there exists an ancestor n′ of n, such that T, n′ |= ψ and for
all nodes x with n′ < x ≤ n, we have T, x |= ϕ

Two formulas ϕ and ψ are equivalent, if T, ε |= ϕ ⇐⇒ T, ε |= ψ for all
computation trees T , i.e., we only consider initial equivalence as we want to
compare the expressive power of logics with and without past modalities [15].

We consider several fragments of ECT L+Past and denote them by B(C),
where C is the set of temporal operators allowed. To give some examples:

– B(X,F) is the logic UB of [5],
– B(X,U) is the well known logic CT L [7],

– B(X,U,
∞

F) was introduced in [8] as ECT L, and
– B(X,U,Y,S) is PCT L, i.e., CT L +Past.

In all these logics, future temporal operators occur only immediately in the
scope of the path quantifiers E and A. Opposed to this, the branching time logic
CT L∗ from [8] allows Boolean combinations and nesting of these operators.



2.2 Hybrid Branching-Time Logics

We extend branching-time logics with hybrid machinery along the lines of [18].
I.e., we use only one state variable x and consider only a single nominal root.

Definition 2.1. Given a set C ⊆ {X,F,U,
∞

F,Y,P,S} of modalities and a
branching-time logic B(C), the formulas of the corresponding hybrid branching-
time logic HB(C) are those of B(C) and additional

↓x.ϕ | x | @xϕ | root | @rootϕ,

where ϕ is a HB(C)-formula and x is the only state variable.
The semantics of hybrid branching-time formulas is defined with respect to

a computation tree T and two nodes n,m of T , where n is the current node and
m is the node assigned to the state variable x:

T, n,m |=↓x.ϕ iff T, n, n |= ϕ T, n,m |= x iff n = m

T, n,m |= @xϕ iff T,m,m |= ϕ T, n,m |= root iff n = ε

T, n,m |= @rootϕ iff T, ε,m |= ϕ

and the semantics of classical branching-time logic are extended in the obvious
way, i.e., the state variable is not affected.

A formula ϕ is called satisfiable if there is a computation tree T and nodes
n,m such that T, n,m |= ϕ.

Remark 2.2 (Using hybrid machinery). We give two examples on how hybrid
branching-time logics work. The reader will find both patterns again in the
proofs given in this paper.

Hybrid branching-time logics can reason about the past without using past
modalities. The past formula Pϕ can be expressed as ↓x.@rootEF(EFx∧ϕ), for
example. This illustrates how a finite prefix of a path can be fixed.

Moreover, they can easily compare two nodes. The property that there are
two different nodes in a tree that agree on the propositions p1, . . . , pn, can be
expressed as EF(↓x.@rootEF(¬x ∧

∧n
i=1 pi ↔ @xpi)).

Remark 2.3 (Bisimulations). Bisimulation equivalence is not respected by hy-
brid branching-time logics: We can distinguish two isomorphic subtrees by nam-
ing the root of one of those subtrees. But they respect hybrid one-bisimulations
defined in [3] and successfully applied in [18] in the linear framework.

2.3 Tree Automata

The following basic notions about Büchi automata on infinite trees are based on
the definitions in [22] and [23]. For a more general introduction to automata on
infinite trees, we refer to [21].

A non-deterministic Büchi tree automaton A is a tuple (Q,Σ, q0, δ, F ), where
Q is a finite set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q

is a set of final states, and δ : Q × Σ → 2Q
k

is a transition function. Whenever



A is in state q at a node x, it non-deterministically chooses a k-tuple (q1, . . . , qk)
of states from δ(q, V (x)) and moves to node x · i in state qi for each i = 1, . . . , k.

A run r of A on a Σ-labeled tree (T, V ) is a Q-labeled tree (T, V ′), such that
the root is labeled by the initial state and the transition rules are respected, i.e.,
if a node x is labeled q and its children are labeled q1, . . . , qk, then (q1, . . . , qk) ∈
δ(q, V (x)). A run r is accepting if lim(π) ∩ F 6= ∅ for every infinite path π of r,
where lim(π) is the set of states occurring infinitely on π. A labeled tree (T, V )
is accepted by A if there is an accepting run of A on (T, V ). The language of A
is the set of trees accepted by A and denoted L(A).

Proposition 2.4 ([17]). Non-emptiness of non-deterministic Büchi tree au-
tomata can be decided in quadratic time.

Alternating one-pebble Büchi tree automata generalize this concept in three
ways. First, they are two-way automata, i.e., they can also move upward in the
tree. Additionally, they can drop a pebble at a position in the tree and lift the
pebble again if they are at the position where the pebble was placed. In other
words, these automata can mark a position to find it again after moving away.
Finally, they can universally and existentially branch into several independent
sub-computations.

More formally, an alternating one-pebble Büchi tree automaton is a tuple
A = (Q,Σ, q0, δ, F ), such that Q is a finite set of states, Σ is a finite alphabet,
q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and

δ : Q×Σ → (Q× {drop,lift}) ∪ B+([k]×Q)

is a transition function.
In this definition, we use [k] := {−1, 0, 1, . . . , k} to give the direction of a move

of the automaton and B+(X) to denote the set of positive Boolean formulas over
X , i.e., formulas built from X by ∧ and ∨ including ⊤ and ⊥. Note that such an
automaton can send several subcomputations into the same direction, but does
not need to go into every direction.

A configuration (q, x, y) ∈ Q×D∗ × (D∗ ∪ {⊥}) of A consists of a state, the
current position in the tree, and the position of the pebble, where “⊥” means
that the pebble is not placed.

A run r of A on an infinite labeled k-ary tree (T, V ) is a possibly infinite
tree (T ′, V ′) whose nodes are labeled by configurations of A. This tree must be
compatible with the transition function. For example, for every node v ∈ T ′

labeled by a state (q, x · c, y),

– if δ(q, V (x · c)) = (q′, drop) and y = ⊥, then v has a child labeled with
(q, x · c, x · c), otherwise, i.e. if y 6= ⊥, the transition cannot be applied;

– if δ(q, V (x ·c)) = (q′, lift), then v has a child (q′, x ·c,⊥) if x ·c = y, otherwise
the transition cannot be applied;

– if δ(q, V (x · c)) = (1, q′) ∧ (−1, q′′), v has children labeled by (q′, x · c · 1, y)
and (q′′, x, y);

– if δ(q, V (x · c)) = (0, q′)∨ (2, q′′), then v has a child labeled by (q′, x · c, y) or
a child labeled (q′′, x · c · 2, y).

A run is accepting if every infinite path contains infinitely many configurations
with states from F . Acceptance of A is defined as usual.



3 Expressivity

We examine the expressive power of hybrid branching-time logics. By Remark
2.3, these logics are strictly more expressive than their classical counterparts. In
the first part of this section, we give two examples where hybrid machinery is
used to cover even more expressive classical branching-time logics. These results
are in contrast to [18], where it was shown that the hybrid version of LT L is
expressively equivalent to LT L. The second part compares branching-time logics
with the N-operator to hybrid branching-time logics.

3.1 Capturing Classical Branching-Time Logics

Adding hybrid machinery to B(X,F) results in a strictly more expressive logic.

Theorem 3.1. HB(X,F) is strictly more expressive than B(X,F).

Proof. It is known from [15] that the extension of B(X,F) with one of the past
modalities S or Y is strictly more expressive than B(X,F). We show that both
S and Y can be expressed in HB(X,F).

For the Y modality, the idea is to fix the current node by naming it x and
then to jump to the root and move forward to the node where EXx holds. This
node is the unique predecessor of the node named x. If the latter node is already
the root, no predecessor exists and the following formula evaluates to false.

Yϕ ≡↓x.@rootEF((EXx) ∧ ϕ)

The Since-modality can be replaced in a similar way:

ϕSψ ≡↓x.@rootEF(EFx ∧ ψ ∧ (x ∨EX(EFx ∧AG(EFx→ ϕ)))),

respecting that ψ either holds at the current or at some previous node. ⊓⊔

As both formulas given in the previous proof are of linear size in the length
of the past-formulas, we obtain the following intensification of Theorem 3.1.

Corollary 3.2. There is a linear translation from B(X,F,Y,S) to HB(X,F).

This shows that every hybrid branching-time logic containing X and F can
refer to the past. In particular, the hybrid version of CT L captures the extension
of CT L with past modalities, which is known to be strictly more expressive
than the pure future logic [15]. As hybrid branching-time logics do not respect
bisimulation-equivalence, this inclusion is strict.

Theorem 3.3. HB(X,U) is strictly more expressive than PCT L.

The bisimulation argument even shows that there cannot be a translation
from hybrid branching-time logics into PCT L∗, since the latter can express only
bisimulation-invariant properties.

On the other hand, we conjecture that it is not possible to express the ECT L-

formula E
∞

Fp in HB(X,U). In this case, HB(X,U) and CT L∗ are incomparable
with respect to expressive power.



Finally, hybrid branching-time logics are obviously fragments of Monadic
Path Logic (MPL), the fragment of MSO where set-quantification is restricted
to paths. This inclusion can be proved to be strict by observing that hybrid
branching-time logics respect hybrid one-bisimulations as defined in [3].

3.2 Expressing “From Now On”

The temporal operator N for “from now on” was introduced by Laroussinie and
Schnoebelen to branching-time logics with past [15]. The semantics of N is given
by: T, n |= Nϕ iff T ′, ε |= ϕ, where T ′ = {m ∈ N

∗ | n ·m ∈ T } is the subtree of
T rooted at n. That is, N allows to forget about the past.

In [15] the authors provide several results on whether N adds expressive
power to branching-time logics with past. E.g., it does for B(X,F,Y,P) but
does not for PCT L and PCT L∗. Moreover, they argue that N offers a more
convenient way to describe some properties in branching-time logics with past
(see [15] for an example), which is partially attributed to the succinctness of
logics with the N-operator.1

The following proposition shows that hybrid branching-time logics offer at
least the same convenience and are at least as succinct as the logics including N.

Proposition 3.4. For every set of modalities C ⊆ {X,F,U,
∞

F,Y,P,S}, there
is a linear translation from B(N, C) to HB(P, C).

Proof. Given a B(N, C)-formula ϕ, we obtain an equivalent HB(P, C)-formula
↓x.ϕ′ by substitutingN by the downarrow-operator and guarding all past modal-
ities. I.e., ϕ′ results from ϕ by applying the following rules once for every past
modality and every N-operator:

Nψ → ↓x.ψ Pψ → P(Px ∧ ψ)
Yψ → Y(Px ∧ ψ) ϕSψ → ϕS(Px ∧ ψ)

Requiring P is only a restriction if Y is the only past modality in C. ⊓⊔

As we show in the next section, we cannot add N on top of hybrid branching-
time logics without blowing up the complexity of satisfiability non-elementarily.
Intuitively, this is becauseN can play the role of a second state variable, therefore
enabling us to talk about three points at the same time: the new root created
by N, the state named x, and the current state.

But the reader should be warned not to think ofN as a kind of state variable,
since the ability to name a state and then to talk about its past is crucial to
most results in this paper.

1 To the best of our knowledge, this succinctness gap has so far only been proved for
the case of linear temporal logic in [14]. Succinctness and complexity for branching-
time logics with N seem to be open problems.



4 Complexity of the Satisfiability Problem

The main motivation behind the one-variable approache to hybrid branching-
time logics is to tame the complexity of the satisfiability problem. This sec-
tion shows that this approache was successful by providing a 2EXPTIME-
completeness result for satisfiability of several hybrid branching-time logics.

The proof of the lower complexity bound for HB(X,F) is by a reduction
from the 2n-corridor tiling game. We first define the 2n-corridor tiling problem.
An instance I = (T,H, V, n) of this problem consists of a finite set T of tile
types, horizontal and vertical constraints H,V ⊆ T × T , and a number n given
in unary. The task is to decide, whether T tiles the 2n ×m-corridor for some m,
respecting the constraints H and V and some border constraints, especially on
the top row to be reached.

The 2n-corridor tiling game is played by two playersE and A on an instance I
of the 2n-corridor tiling problem. The players alternately place tiles starting with
player E and following the constraintsH and V , as the opponent wins otherwise.
E wins the game if the required top row is reached. To decide whether E has a
winning strategy in such a game is complete for 2EXPTIME [6].

Proposition 4.1. Satisfiability of HB(X,F) is hard for 2EXPTIME.

Proof. Let I = (T,H, V, n) be an instance of the 2n-corridor tiling problem. We
build an HB(X,F)-formula ϕI of size polynomial in |I| that is satisfiable if and
only if player E has winning strategy in the tiling game on I.

Such a winning strategy is a finite T -labeled tree whose levels alternately
correspond to moves of E and A. A node corresponding to a move of E, as
the root for example, has one child for every possible next move of A. Nodes
representing moves of A have only one child: the best move E can make. In order
for the strategy to be winning, every path in this tree has to correspond to a
correct tiling reaching the required top row.

The formula ϕI consists of two parts. The first part describes an encoding
of a winning strategy, using a numbering of the states belonging to one row of
the tiling as shown in Figure 1. Numbers are encoded by n propositions, one for
each digit. The second part basically contains the conditions posed by H and V .

To make this more precise, ϕI is the conjunction of the two formulas ϕstruc

and ϕtiles. The first formula, ϕstruc, starts by separating the lines of the tiling
by an additional state labeled by the proposition symbol q# and marking the

· · · · · · · · · · · ·

root row 1 row m

q# q# q# q# q q1 2n 1 2n

Fig. 1. A path in the encoding of a winning strategy for the 2n-corridor tiling
game with m rows.



states beyond the encoding by the proposition symbol q.

ϕstruc = root ∧ q# ∧ ¬q ∧ (

n−1∧

i=0

¬qi) ∧AG((¬q ∧ ¬q#) ∨ ((q ↔ ¬q#) ∧
n−1∧

i=0

¬qi))

∧AF(q# ∧AGq) ∧AG(q → AGq) ∧ ϕnum

To get a correct numbering of the states representing one row of the tiling,
ϕnum requires every state to have only properly numbered direct successors.
This numbering is required to check the vertical constraints.

ϕnum = AG([q# → (AX(¬q ∧ ¬q# ∧
n−1∧

i=0

¬qi) ∨AXq)]

∧[(¬q ∧ ¬q#) → ((

n−1∧

i=0

qi ∧AXq#) ∨ ν)])

ν = ↓x.AX

n−1∨

i=0

(
∧

j<i

(qj ↔ @x¬qj) ∧ qi ∧@x¬qi ∧
∧

j>i

(qj ↔ @xqj))

The second part of ϕI expresses that every state corresponding to a move of
one of the players is labeled by exactly one tile, using proposition symbols pt to
represent the tiles, that the conditions in H and V are respected, and that all
possible moves of A are represented.

ϕtiles = AG([¬q ∧ ¬q#] → [
∨

t∈T

(pt ∧
∧

t6=t′∈T

¬pt′) ∧ θH ∧ θV ∧ θA])

θH = ¬
n−1∧

i=0

qi →
∧

t∈T

(pt → AX
∨

(t,t′)∈H

pt′)

θV = ↓x.@rootAG([EXEFx ∧ ¬EF(q# ∧EXEF(q# ∧EFx))

∧
n−1∧

i=0

(qi ↔ @xqi)] →
∧

t∈T

(pt →
∨

(t,t′)∈V

@xpt′)))

θA = ¬q0 →
∧

t∈T

(pt →
∧

(t,t′)∈H

[EXpt′∨ ↓x.@rootAG([EXEFx ∧ ¬EF(q#

∧EXEF(q# ∧EFx)) ∧
n−1∧

i=0

(qi ↔ @xqi)] → EX[EFx ∧
∨

(t′′,t′) 6∈V

pt′′ ])])

We omit formulas for the border constraints, which are straightforward. ⊓⊔

Before we proceed with the upper bound, we show that the lower bound is
due to the succinctness of hybrid formulas.

Theorem 4.2. The succinctness of HB(F) with respect to CT L is O(n)!, i.e.,
there is a HB(F)-formula of length O(n) such that every equivalent CT L-formula
is at least of length O(n)!.



Proof. We consider the CT L+-formula E(Fp1∧Fp2∧· · ·∧Fpn), expressing that
there exists a path such that each of the propositions p1, . . . , pn holds at some
node on the path. Adler and Immerman proved that one requires a formula of
size O(n)! to express this property in CT L [1]. The following HB(F)-formula has
only size O(n).

EF(↓x.@root

n∧

i=1

EF(pi ∧EFx))

The crucial point is that this property depends only on a finite prefix of the
path, which can be fixed by naming its last state x. ⊓⊔

The proof of the upper complexity bound for satisfiability of hybrid branching-
time logics uses the automata-theoretic approach to branching-time logics (see
[24] and references therein), extended to the hybrid framework.

Before we go on, we observe that nesting of the ↓-operator can be avoided.

Lemma 4.3. For every HB(X,U,
∞

F,Y,S)-formula ϕ, there is an equivalent
formula ψ of length O(|ϕ|) without nested occurrences of the ↓-operator.

Proof. We add, for each sub-formula θ =↓ x.ξ of ϕ, a new proposition pθ. In a
bottom-up fashion, we replace every occurrence of a formula θ by pθ and add to
ϕ one conjunct AG(pθ ↔ θ′), for every θ. Here, θ′ results from θ by replacing
all strict sub-formulas ↓x.χ by the respective proposition. ⊓⊔

We can now prove the main theorem of this paper.

Theorem 4.4. For every set of temporal operators C ⊆ {U,Y,
∞

F,P,S}, the
satisfiability problem for HB(X,F, C) is complete for 2EXPTIME.

Proof. The lower bound was proved in Proposition 4.1.
The proof of the upper bound is a extension of a proof in [22], constructing

an alternating Büchi tree automaton for a given CT L-formula.

Given an HB(X,U,
∞

F,Y,S)-formula ϕ without nested occurrences of the
↓-operator, we build an alternating one-pebble Büchi tree automaton Aϕ =
(Q,Σ, q0, δ, F ), with Σ = 2PROP, such that ϕ holds at the root of some Σ-labeled
tree (T, V ) if and only if Aϕ accepts this tree. This reduces the satisfiability

problem forHB(X,U,
∞

F,Y,S) to non-emptiness of alternating one-pebble Büchi
tree automata. The latter problem is proved to be in 2EXPTIME in Section 5.

In the following, we denote the dual of a formula ψ by ψ. It is obtained from
ψ by switching ∧ and ∨, and by negating all other maximal subformulas (we
identify ¬¬ψ with ψ), e.g., x ∨ (¬x ∧EFp) = ¬x ∧ (x ∨ ¬EFp) (cf. [22]).

The set Q of states is based on the Fisher-Ladner-closure of ϕ, consisting of

the subformulas of ϕ and their duals. Additionally, the formula (EXE
∞

Fψ) ∧ ψ

and all its subformulas are included for every subformula E
∞

Fψ of ϕ. The initial
state q0 is ϕ. The set F of accepting states contains ⊤ and all formulas of the

form ¬E(χUψ), ¬A(χUψ), and (EXE
∞

Fψ)∧ψ from Q. The transition function
δ is defined by induction on the formula structure:



. . .

. . .root

pa pb pb pa pa q

q

q

Fig. 2. The tree used to represent the string abbaa in the proof of Theorem 4.5.

δ(⊤, σ) = (0,⊤) δ(p, σ) = (0,⊤) if p ∈ σ

δ(¬ψ, σ) = δ(ψ, σ) δ(ψ ∧ ξ, σ) = (0, ψ) ∧ (0, ξ)

δ(x, σ) = (⊤, lift) δ(E
∞

Fϕ, σ) =
∨k

i=1(i,E
∞

Fϕ) ∨ (0, (EXE
∞

Fϕ) ∧ ϕ)

δ(↓x.ψ, σ) = (ψ, drop) δ(E(χUψ), σ) = (0, ψ) ∨ ((0, χ) ∧
∨k

i=1(i,E(χUψ))

δ(EXψ, σ) =
∨k

i=1(i, ψ) δ(A(χUψ), σ) = (0, ψ) ∨ ((0, χ) ∧
∧k

i=1(i,A(χUψ))
δ(Yψ, σ) = (−1, ψ) δ(χSψ, σ) = (0, ψ) ∨ ((0, χ) ∧ (−1, χSψ)

where σ ∈ Σ, p ∈ PROP, and the notion of a dual is extended to δ in the obvious
way, e.g., δ(EXψ, σ) =

∧k
i=1(i, ψ).

The result then follows from Theorem 5.1. ⊓⊔

This result is optimal with respect to the number of state variables available.
We have shown in Section 3.2 that the N-operator can be simulated by a state
variable, and therefore be seen as a “weak” kind of variable. In the following,
we show that adding the N-operator to hybrid branching-time logics causes a
non-elementary blow-up in complexity.

We have to be a bit careful when adding the N-operator to hybrid branching-
time logics. First, what is the semantics of a formula of the form @rootψ in the
scope of an N-operator? As the N was introduced to forget about the past, the
most natural thing is to define that this formula jumps to the new root created
my the N-operator. While this is minor if past modalities are available, it is the
only reasonable choice for pure future hybrid branching-time logics.

The second difficulty is that the state variable might be bound to some state
in the past. In order not to unbind the variable, we assume that in this case
the assignment is updated to the current state, i.e., to the new root. But this
situation does not occur in the following proof.

Theorem 4.5. The satisfiability problem for HB(X,F,N) has non-elementary
complexity.

Proof. We give a reduction from the non-emptiness problem for star-free expres-
sions built from union, concatenation, and negation. This problem is known to
have non-elementary complexity [19]. With a string of length i over an alphabet
Σ we associate a tree whose first i + 1 nodes have only one child. All states
beyond carry the label q as shown in Figure 2.

The following formula ψ holds at the root if and only if the tree is an encoding
of a string, e.g., every state belonging to the string is labeled by exactly one pσ.

ψ = EF((q ∧AGq)∧ ↓x.@rootAG(EFEXx→ (¬q ∧
∨

σ∈Σ

(pσ ∧
∧

σ 6=σ′∈Σ

¬pσ′ ))))

∧¬q ∧AG(¬q → EX ↓x.@rootAG(EXx→ AXx))



We map every star-free expression α to a formula

ϕα = ψ ∧EF(¬q ∧AXq∧ ↓x.@rootα
′),

where α′ is inductively defined as follows:

ε′ = x σ′ = EX(x ∧ pσ) , for all σ ∈ Σ

∅′ = ⊥ (α · β)′ = EF(EFx∧ ↓x.@rootα
′ ∧Nβ′)

(¬α)′ = ¬α′ (α ∪ β)′ = α′ ∨ β′

The idea is that x is always used to mark the end of the substring which is
matched with respect to a star-free (sub-)expression while its beginning is at the
child of the root “created” by N. ⊓⊔

5 Non-emptiness of Alternating One-Pebble Tree

Automata

In this section, we show that the non-emptiness problem for alternating Büchi
tree automata with one pebble is 2EXPTIME-complete. The proof is based on
[18] where EXPSPACE-completeness for the string case is shown.

Theorem 5.1. Non-emptiness of alternating one-pebble Büchi tree automata is
complete for 2EXPTIME.

To simplify the presentation of the proof of the upper bound, we assume that
we do not have arbitrary positive Boolean combinations on the right-hand side of
a transition rule, but only either disjunctions or conjunctions. This is equivalent
to the more general notion used before. A configuration is called existential if
the matching transition rule contains a disjunction and universal if it contains a
conjunction.

A run r of an alternating Büchi tree automaton A with one pebble is an
infinite in which the nodes are labeled with configurations (q, x, y), where q is
the state, x is a node of the tree and j is the position of the pebble (⊥ if the
pebble is not placed). We are interested in runs of the following structure. A
run is homogeneous if, for every existential configuration (q, x, y), all nodes of r
labeled with configuration (q, x, y) have the same configuration at their child.

Note that the configuration graph of A on a tree T can be seen as the arena
of a two-player game with a Büchi winning condition. Thus, from the existence
of memoryless winning strategies in such games [9] (see also [25]), it follows that
if A has an accepting run on T , then it also has a homogeneous accepting run.

We show that for each alternating one-pebble Büchi tree automaton there is
an equivalent non-deterministic Büchi tree automaton of double exponential size.
The basic idea is to simulate an accepting homogeneous run of the alternating
automaton by running the non-deterministic Büchi automaton constructed in
[18] for the string case along every branch of the tree.

When arguing about runs, we will make use of the following version of König’s
Lemma.



Theorem 5.2 (König’s Lemma). If in a tree each node has only finitely many
children and there are nodes of arbitrary depth, then the tree has an infinite path.

Proof (of Theorem 5.1). Hardness follows from Proposition 4.1 via the transla-
tion presented in the proof of Theorem 4.4.

For the upper bound, we show that, for each alternating one-pebble Büchi
tree automaton A, there is an equivalent non-deterministic Büchi tree automaton

B of size |ΣA| · 22
O(|QA |)

, which can be constructed from A in space exponential
in |QA|. The result then follows by Proposition 2.4. As already indicated above,
B checks, on input T , whether A has a homogeneous accepting run r on T .

A run is not accepting if and only if it has a non-accepting path. Thus,
B checks that r has no non-accepting path. The non-accepting paths can be
classified as follows. First, a path π can be bounded, i.e., there is some m ∈ N

such that all nodes of T occurring in the labels along π are at most of depth m,
otherwise, we call π unbounded.

There are two kinds of unbounded non-accepting paths:

(1a) At some point, the automaton A drops the pebble at some node y and never
lift it again. In this case, all further configurations are of the form (q, x, y),
for some q, x.

(1b) Otherwise, the path has infinitely many configurations of the form (q, x,⊥).

In both cases x can be arbitrarily deep in T .
Likewise, there are two kinds of bounded non-accepting paths.

(2a) The first kind drops the pebble at some node y and never lifts it again.
Thus, there are q and x such that (q, x, y) occurs infinitely often on π and
there is a subpath from configuration (q, x, y) to (q, x, y) which does not visit
any accepting state, does not lift the pebble, and does not visit any strict
descendant of x.

(2b) The other kind of bounded paths has infinitely many configurations of the
form (q, x,⊥), hence there is again a maximum x and a state q such that
(q, x,⊥) occurs infinitely often and only finitely many nodes have a configura-
tions (p, x′,⊥) with x′ > x. Therefore, there is a subpath from configuration
(q, x,⊥) to (q, x,⊥) which does not visit any accepting state and does not
visit any descendant of x without having the pebble placed before.

Note that the node x is not unique in both cases. Therefore, B will check the
existence of such path at every possible node x of T .

In the following we describe the information that B maintains in order to
check that r has only accepting paths.

For each x, let Sx be the set of states q for which (q, x,⊥) occurs in r. We
consider two kinds of upward paths (downward paths are defined accordingly):

– paths starting from a configuration (p, x,⊥) and ending in a configuration
(q, x,⊥) without an intermediate configuration (p′, x′,⊥) with x < x′ (inter-
mediate configurations (p′, x′, y) with x 6< y and x < x′ are allowed);

– paths starting from a configuration (p, x, y) and ending in a configuration
(q, x, y), without any intermediate lifting of the pebble and without any
intermediate configurations (p′, x′, y) with x < x′.



For each node x, we denote by Ux the subset of Q×Q× {+, ∃}, such that

– (p, q,+) ∈ Ux if and only if all upward paths of r from (p, x,⊥) to (q, x,⊥)
visit an accepting state, and

– (p, q, ∃) ∈ Ux if and only if r has a upward path from (p, x,⊥) to (q, x,⊥),

and by Dx the subset of Q×Q× {+, ∃}, such that

– (p, q,+) ∈ Dx if and only if all downward paths2 of r from (p, x, ε) to (q, x, ε)
visit an accepting state, and

– (p, q, ∃) ∈ Dx if and only if r has a downward path from (p, x, ε) to (q, x, ε).

It should be noted that in the definition of Dx, the actual position of the
pebble does not matter, as long as it is not a descendant of x. The reader
should also observe the asymmetry between the Ux and the Dx. The Ux only
concern sub-computations from a configuration without pebble, the Dx only
from a configuration with pebble.

Furthermore, B uses the following sets which are parametrized by the current
position y of the pebble. Let, for each node x and each y 6> x, Sx,y be the set
of states p such that (p, x, y) occurs in r. Likewise, let Ux,y be the subset of
Q×Q× {+, ∃} such that

– (p, q,+) ∈ Ux,y if and only if all upward paths of r from (p, x, y) to (q, x, y)
visit an accepting state and

– (p, q, ∃) ∈ Ux,y if and only if r has a upward path from (p, x, y) to (q, x, y).

Recall that upward paths from a configuration (p, x, y) never lift the pebble.
Additionally, B uses sets Rx, Rx,y and D′

i which will be defined below. For
each x, we let Xx be the set {(Sx,y, Ux,y, Rx,y) | y 6> x}. Finally, for each x,
let the characteristic vector Cx of position x be (Sx, Ux, Dx, D

′
x, Rx, Xx). The

intended state of B at node x is basically (Cx·−1, Cx).
The sets of the form Sx, Sx,y, Dx and the transitions of A are guessed by B

and the remaining information can be determined from it. It is not hard to check
that local consistency of these sets can be tested by B. It should be noted that
the computation of Ux uses Dx to handle subpaths that drop the pebble outside
of the subtree rooted at x and lift it sometime later.

Whether a path of type (2b) exists from node x can be inferred from Ux and
the transitions δq,x. Likewise, paths of type (2a) can be tested with the help of
the sets Ux,y.

Thus, it remains to describe how to rule out paths of types (1a) and (1b)
and how to check that the sets Dx are correct.

To this end, we define for every path π in T an increasing sequence l0, l1, . . .
of nodes of π as follows. First of all, l0 = ε. Given lk, lk+1 is the minimal node
l > lk on π such that the following conditions hold.

(i) For each state q ∈ Slk , each subpath of r starting from a node with configu-
ration (q, lk,⊥) and reaching a configuration (p, l,⊥) contains an accepting
state.

2 Since r is homogeneous, all these paths are isomorphic.



(ii) For each y 6> lk and each state q ∈ Slk,y, each subpath of r starting from a
node with configuration (q, lk, y), reaching a configuration (p, l, y) without
lifting the pebble contains an accepting state.

(iii) For each (p, q, ∃) ∈ Dlk , there is a path in r from (p, lk, ε) to (q, lk, ε) on
which no node is a descendant of l.

(iv) For each (p, q,+) ∈ Dlk , all paths in r from (p, lk, ε) to (q, lk, ε) contain an
accepting state and do not visit any descendant of l.

With the help of König’s Lemma, it is not hard to see that such an l exists
if r is accepting.

For each k and each x with lk < x ≤ lk+1, let Rx be the set of states q
such that there is a node of r labeled with configuration (q, x,⊥) that can be
reached from a configuration (p, lk,⊥) for some p ∈ Slk , without passing any
accepting state and without visiting any descendant of x. Note that Rlk+1

= ∅
by the definition of lk+1.

Likewise, for each x, y, y 6> x, let Rx,y be the set of states q such that there is
a node of r with configuration (q, i, j) that can be reached from a configuration
(q′, lk, j) to w , without passing any accepting state,without lifting the pebble,
and without visiting descendants of x. Again by the definition of lk+1, Ulk+1

= ∅.
Finally, let D′

x be a set of tuples (p, q, ∃) and (p, q,+) from Di, which still
have to be fulfilled in order to satisfy conditions (iii) and (iv) for k.

The accepting states of B are those for which Rx = ∅, for all (S,U,R) ∈ Xx,
R = ∅, and D′

x = ∅.
It is not hard to see that B can maintain the characteristic vectors Cx and

that B accepts T if and only if A has a homogeneous accepting run on T .
Furthermore, there are at most doubly exponentially many different possible

setsXx and thus the number of possible states ofB is at most doubly exponential
in the size of QA. Using standard space saving techniques, B can be constructed
in space |ΣA| · 2O(|QA|). ⊓⊔

6 Conclusion

We have shown how to extend branching-time logics with hybrid machinery
without blowing up complexity non-elementarily. The key to this result was the
restriction to a single state variable proposed in [18].

We studied the satisfiability problem for the hybrid versions of several branch-
ing-time logics, ranging from UB to ECT L +Past. We proved 2EXPTIME-
completeness of the satisfiability problem in all cases. The lower bound was
additionally explained by the succinctness of hybrid branching-time logics.

To abtain the upper complexity bound, we extended the automata-theoretic
approache to hybrid branching-time logics: We proved non-emptiness of alter-
nating one-pebble Büchi tree automata to be 2EXPTIME-complete.

We want to give some open problems and directions for further research.

– There are a lot of open problems concerning the expressive power of hybrid
branching-time logics. E.g., is HB(X,F) a strict fragment of HB(X,U)?



– We only considered satisfiability, leaving out the model-checking problem.
This gap has to be filled in future work.

– We restricted to CT L-like branching-time logics, not allowing Boolean com-
binations and nesting of temporal operators inside a path-quantifier. Ex-
tending our results to such logics is a challenging problem. In particular, the
complexity and expressiveness of hybrid CT L∗ should be investigated.

– On the purely automata-theoretic side, the result on one-pebble tree au-
tomata should be extended to k-pebble tree automata.

References

1. M. Adler and N. Immerman. An n! lower bound on formula size. ACM TOCL,
4(3):296–314, 2003.

2. C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for hybrid
logics. In Proc. of 13th CSL, volume 1683 of LNCS, pages 307–321. Springer,
1999.

3. C. Areces, P. Blackburn, and M. Marx. Hybrid logics: Characterization, interpo-
lation and complexity. Journal of Symbolic Logic, 66(3):977–1010, 2001.

4. C. Areces and B. ten Cate. Hybrid logics. In Handbook of Modal Logic, volume 3
of Studies in Logic, pages 821–868. Elsevier, 2007.

5. M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time. Acta
Informatica, 20:207–226, 1983.

6. B. S. Chlebus. Domino-tiling games. J. Comput. Syst. Sci., 32(3):374–392, 1986.
7. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons

using branching-time temporal logic. In Proc. Logic of Programs, volume 131 of
LNCS, pages 52–71. Springer, 1981.

8. E. A. Emerson and J. Y. Halpern. “sometimes” and “not never” revisited: on
branching versus linear time temporal logic. J. ACM, 33(1):151–178, 1986.

9. E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In
Proc. of 32nd IEEE FOCS, pages 368–377. IEEE, 1991.

10. M. Franceschet and M. de Rijke. Model checking hybrid logics (with an application
to semistructured data). Journal of Applied Logic, 4(3):279–304, 2006.

11. M. Franceschet, M. de Rijke, and B.-H. Schlingloff. Hybrid logics on linear struc-
tures: Expressivity and complexity. In Proc. of 10th TIME / 4th ICTL, pages
192–202. IEEE, 2003.

12. V. Goranko. Temporal logic with reference pointers. In Temporal logic, volume
827 of LNCS, pages 133–148. Springer, 1994.

13. O. Kupferman and M. Y. Vardi. Memoryful branching-time logic. In Proc. of 21st
LICS, pages 265–274. IEEE, 2006.

14. F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal logic with forgettable
past. In Proc. of 17th LICS, pages 383–392. IEEE, 2002.

15. F. Laroussinie and P. Schnoebelen. A hierarchy of temporal logics with past. Theor.
Comput. Sci., 148(2):303–324, 1995.

16. M. Mundhenk, T. Schneider, T. Schwentick, and V. Weber. Complexity of hy-
brid logics over transitive frames. In Proc. of M4M-4, volume 194 of Informatik-
Berichte, pages 62–78. Humbold-Universität Berlin, 2005.

17. M. Rabin. Weakly definable relations and special automata. In Proc. Symp. Math.
Logic and Foundations of Set Theory, pages 1–23. North Holland, 1970.

18. T. Schwentick and V. Weber. Bounded-variable fragments of hybrid logics. In
Proc. of the 24th STACS, volume 4393 of LNCS, pages 561–572. Springer, 2007.



19. L. J. Stockmeyer. The complexity of decision problems in automata theory and
logic. PhD thesis, MIT, 1974.

20. B. ten Cate and M. Franceschet. On the complexity of hybrid logics with binders.
In Proc. of 19th CSL, volume 3634 of LNCS, pages 339–354. Springer, 2005.

21. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, Vol. B: Formal Models and Sematics, pages 133–
192. Elsevier, MIT Press, 1990.

22. M. Y. Vardi. Alternating automata and program verification. In Computer Science
Today, volume 1000 of LNCS, pages 471–485. Springer, 1995.

23. M. Y. Vardi. Reasoning about the past with two-way automata. In Proc. of
ICALP’98, volume 1443 of LNCS, pages 628–641. Springer, 1998.

24. M. Y. Vardi. Automata-theoretic techniques for temporal reasoning. In Handbook
of Modal Logic, volume 3 of Studies in Logic, pages 971–989. Elsevier, 2007.

25. W. Zielonka. Infinite games on finitely coloured graphs with applications to au-
tomata and infinite trees. Theoretical Computer Science, 200:135–183, 1998.


	Hybrid Branching-Time Logics
	Volker Weber

