Skip to main content

An Estimation of Distribution Algorithm for Flowshop Scheduling with Limited Buffers

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 250))

Abstract

Most of the works that address the flowshop scheduling problem presume unlimited buffers between successive machines. However, with the advent of new technologies in the manufacturing systems, limited capacity storage between machines has become profitable. Aimed at makespan minimization, the flowshop scheduling problem with buffer constraints is NP-hard in the strong sense. Therefore, several approximate algorithms have been proposed in the literature. In this chapter, we propose an Estimation of Distribution Algorithm for solving a flowshop scheduling problem with buffer constraints. The main characteristics of the problem, such as the order of jobs and similar blocks of jobs in the sequence, are taken into account while building the probabilistic model. In order to enrich the search procedure of the algorithm, a skewed variable neighbourhood search algorithm is embedded into it, restricted by a calculated probability which depends on the quality of the created offspring. The computational results show that our algorithm outperforms genetic algorithm and particle swarm algorithm, and can obtain several optimal solutions in a short time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baluja, S.: Populationbased incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical Report N°CMU-CS-94-163. Carnegie Mellon University, Pittsburgh (1994)

    Google Scholar 

  2. Baluja, S., Davies, S.: Using optimal dependencytrees for combinatorial optimization: Learning the structure of the search space. In: Proceedings of the 14th International Conference on Machine Learning, pp. 30–38. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  3. Carlier, J.: Ordonnancements a contraintes disjonctives. RAIRO-Operations Research 12, 333–351 (1978)

    MATH  MathSciNet  Google Scholar 

  4. De Bonet, J.S., Isbell, C.L., Viola, P.: MIMIC: Finding optima by estimating probability densities. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, pp. 424–431. The MIT Press, Cambridge (1997)

    Google Scholar 

  5. Dutta, S.K., Cunningham, A.A.: Sequencing two-machine flow-shops with finite intermediate storage. Management Science 21, 989–996 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  6. Etxeberria, R., Larrañaga, P.: Global optimization with Bayesian networks. In: II Symposium on Artificial Intelligence. CIMAF 1999. Special Session on Distributions and Evolutionary Optimization, pp. 332–339 (1999)

    Google Scholar 

  7. Hansen, P., Mladenovic̀, N.: Variable neighborhood search: principles and applications. European Journal of Operational Research 130, 449–467 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Harik, G.: Linkage learning via probabilistic modeling in the ECGA. University of Illinois Genetic Algorithms Laboratory, Urbana (January 1999) IlliGAL Report No. 99010

    Google Scholar 

  9. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. In: Proceedings of the IEEE Conference on Evolutionary Computation 1998 (ICEG 1998), pp. 523–528. IEEE Service Centre, Piscataway (1998)

    Google Scholar 

  10. Jarboui, B., Eddaly, M., Siarry, P.: An estimation of distribution algorithm for minimizing the total flowtime in permutation flowshop scheduling problems. Computers and Operations Research (2008) doi: 10.1016/j.cor, 11.004

    Google Scholar 

  11. Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Combinatorial optimization by learning and simulation of Bayesian networks. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, Stanford, pp. 343–352 (2000)

    Google Scholar 

  12. Larrañaga, P., Lozano, J.A. (eds.): Estimation of distribution algorithms: a new tool for evolutionary computation. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  13. Leisten, R.: Flowshop sequencing problems with limited buffer storage. International Journal of Production Research 28, 2085–3100 (1990)

    Article  MATH  Google Scholar 

  14. Liu, B., Wang, L., Jin, Y.H.: An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers. Computers and Operations Research 35, 2791–2806 (2008)

    Article  MATH  Google Scholar 

  15. Lozano, J., Larraanaga, P., Inza, I., Bengoetxea, E.: Towards a New Evolutionary Computation: Advances in the Estimation of Distribution Algorithms. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  16. Montgomery, D.C.: Design and analysis of experiments, 5th edn. Wiley, New York (2000)

    Google Scholar 

  17. Mühlenbein, H., Mahnig, T.: Convergence theory and applications of the factorized distribution algorithm. Journal of Computing and Information Technology 7, 19–32 (1999a)

    Google Scholar 

  18. Mühlenbein, H., Mahnig, T.: FDA - A scalable evolutionary algorithm for the optimization of additively decomposed functions. Evolutionary Computation 7, 353–376 (1999b)

    Article  Google Scholar 

  19. Mühlenbein, H., Paaß, G.: From Recombination of Genes to the Estimation of Distributions I. Binary Parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  20. Nowicki, E.: The permutation flow shop with buffers: a tabu search approach. European Journal of Operational Research 116, 205–219 (1999)

    Article  MATH  Google Scholar 

  21. Papadimitriou, C.H., Kanellakis, P.C.: Flow shop scheduling with limited temporary storage. Journal of Association Computing Machine 27, 533–549 (1980)

    MATH  MathSciNet  Google Scholar 

  22. Pelikan, M.: Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  23. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian optimization algorithm. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 1999, vol. 1, pp. 525–532. Morgan Kaufmann Publishers, San Francisco (1999)

    Google Scholar 

  24. Pelikan, M., Mühlenbein, H.: The bivariate marginal distribution algorithm. In: Roy, R., Furuhashi, T., Chawdhry, P.K. (eds.) Advances in Soft Computing Engineering Design and Manufacturing, pp. 521–535. Springer, London (1999)

    Google Scholar 

  25. Qian, B., Wang, L., Huang, D.X., Wang, W.L., Wang, X.: An effective hybrid DE-based algorithm for multi-objective flow shop scheduling with limited buffers. Computers and Operations Research 36, 209–233 (2009)

    Article  MATH  Google Scholar 

  26. Reddi, S.S.: Sequencing with finite intermediate storage. Management Science 23, 216–227 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  27. Reeves, C.R.: A genetic algorithm for flowshop sequencing. Computers and Operations Research 22, 5–13 (1995)

    Article  MATH  Google Scholar 

  28. Ronconi, D.P.: A branch-and-bound algorithm to minimize the makespan in a flowshop with blocking. Annals of Operations Research 138, 53–65 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ruiz, R., Maroto, C., Alcaraz, J.: Two new robust genetic algorithms for the flowshop scheduling problem. Omega 34, 461–476 (2006)

    Article  Google Scholar 

  30. Tasgetiren, M.F., Sevkli, M., Liang, Y.C., Gencyilmaz, G.: Particle swarm optimization algorithm for permutation flowshop sequencing problem. LNCS, pp. 382–389. Springer, Heidelberg (2004)

    Google Scholar 

  31. Wang, L., Zhang, L., Zheng, D.Z.: An effective hybrid genetic algorithm for flow shop scheduling with limited buffers. Computers and Operations Research 33, 2960–2971 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eddaly, M., Jarboui, B., Siarry, P., Rebaï, A. (2009). An Estimation of Distribution Algorithm for Flowshop Scheduling with Limited Buffers. In: Chiong, R., Dhakal, S. (eds) Natural Intelligence for Scheduling, Planning and Packing Problems. Studies in Computational Intelligence, vol 250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04039-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04039-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04038-2

  • Online ISBN: 978-3-642-04039-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics