Partially-commutative context-free processes*

Wojciech Czerwinski!, Sibylle Froschle?, and Stawomir Lasotal

! Institute of Informatics, University of Warsaw
2 University of Oldenburg

Abstract. Bisimulation equivalence is decidable in polynomial time for
both sequential and commutative normed context-free processes, known
as BPA and BPP, respectively. Despite apparent similarity between the
two classes, different techniques were used in each case. We provide one
polynomial-time algorithm that works in a superclass of both normed
BPA and BPP. It is derived in the setting of partially-commutative context-
free processes, a new process class introduced in the paper. It subsumes
both BPA and BPP and seems to be of independent interest.

We investigate the bisimulation equivalence of the contezt-free processes, i.e.,
the process graphs defined by a context-free grammar in Greibach normal form.
In process algebra, there are two essentially different ways of interpreting such
grammars, depending on whether the concatenation is understood as the sequen-
tial or parallel composition of processes. These two process classes are known as
BPA (Basic Process Algebra) and BPP (Basic Parallel Processes) [1].

The bisimulation equivalence is decidable both in BPA and BPP [2,7]. Un-
der the assumption of normedness the polynomial-time algorithms exist [5, 6].
These surprising results were obtained basing on the strong unique decomposi-
tion property enjoyed by both classes. Despite the apparent similarity of BPA
and BPP, the algorithms are fundamentally different; cf. [1] (Chapt. 9, p. 573):

“These algorithms are both based on an exploitation of the decomposition
properties enjoyed by normed transition systems; however, despite the appar-
ent similarity of the two problems, different methods appear to be required.”

In [4] a decision procedure was given for normed PA, a superclass of both BPA
and BPP. It is however very complicated and has doubly exponential complexity.
In [8] a polynomial-time algorithm was proposed for the normed BPA vs. BPP
problem. It transforms a BPP process into BPA, if possible, and then refers to
a BPA algorithm.

This paper contains a polynomial-time algorithm for a superclass of normed
BPA and BPP. The algorithm simultaneously applies to BPA and BPP, thus
confirming the similarity of the two classes. Our contributions are as follows.

In Section 1 we introduce a new class of partially-commutative context-free
processes, called BPC, build on the underlying concept of (in)dependence of

* The first and the last author acknowledge a partial support by Polish government
grants no. N206 008 32/0810 and N N206 356036.

elementary processes. BPA (no independence) and BPP (full independence) are
special cases. Our main motivation was to introduce a common setting for both
BPA and BPP; however, the BPC class seems to be of independent interest and
may be applied, e.g., as an abstraction in program analysis.

Our first main result is the proof of the unique decomposition property for
normed BPC with a transitive dependence relation (Thm 1 in Section 2).

Then in Sections 3-5 we work out our second main result: a polynomial-time
algorithm for the bisimulation equivalence in the feasible fragment of normed
BPC, to be explained below. It clearly subsumes both normed BPA and BPP
but allows also for expressing, e.g., a parallel composition of inter-dependent
BPA processes. It seems thus suitable for applications, e.g., for modeling of
multi-core recursive programs. We sketch the main technical points below.

Recall the classical idea of approximating the bisimulation equivalence from
above, by consecutive refinements R — R Nexp(R), where exp(R) denotes the
bisimulation expansion wrt. the relation R. The crucial idea underlying the BPP
algorithm [6] was to ensure that the approximant R is always a congruence, and
to represent it by a finite base; the latter requires a further additional refinement
step. Our starting point was an insight of [3] that this latter step yields the
greatest norm-reducing bisimulation contained in R N exp(R).

The feasibility condition requires the bisimulation expansion to preserve con-
gruences. It appears sufficient for the above scheme to work, after a suitable
adaptation, in the general setting of BPC. Roughly speaking, we demonstrate
in particular that the BPP algorithm works, surprisingly, for BPA just as well!

Our algorithm efficiently processes both multisets and strings over the set of
elementary processes, of pessimistically exponential size. One of technical con-
tributions of this paper is to devise a way of combining the BPP base refinement
of [6] with the BPA procedure based on compressed string algorithms [10].

1 Partially commutative context-free processes

BPA and BPP are defined by a context-free grammar in Greibach normal form.
The former class is built on sequential composition of processes, while the lat-
ter one on parallel composition. Thus BPA processes are elements of the free
monoid generated by non-terminal symbols; and BPP processes correspond to
the free commutative monoid. Our aim in this section is to define a process class
corresponding to the free partially-commutative monoid.

A grammar in Greibach normal form consists of a set of non-terminal symbols
V, which we call variables or elementary processes, and a finite set of productions,
which we call rules, of the form

X% Qa, (1)

where o € V*, X € V, and a is an alphabet letter. Additionally assume a symmet-
ric irreflexive relation I C VxV, called the independence relation. For convenience
we will also use the dependence relation D C V x V defined as D= (Vx V) \ I.D
is thus symmmetric and reflexive.

The independence induces an equivalence in V* in a standard way: two
strings over V are equivalent, if one can transform one into another by a se-
quence of transpositions of independent variables. Formally, the equivalence
~1 C V* x V* is the reflexive-transitive closure of the relation containing all pairs
(wXYv,wY Xv), for w,v € V¥, (X,Y) € I; or equivalently, ~1 is the smallest
congruence in V* relating all pairs (XY,Y X) where (X,Y) € I. We work in
the monoid V¥ = V*/~1 from now on; we call V¥ the free partially-commutative
monoid generated by I. The subscript is usually omitted when I is clear from
the context. Elements of V< will be called partially-commutative processes, or
processes in short, and usually denoted by Greek letters «, 3, Composition
of @ and /3 in V® is written a. Empty process (identity in V) will be written
as €. Our development is based on the decision to interpret right-hand sides «
of productions (1) as elements of V, instead of as words or multisets over V.
The induced class of processes we will call BPC (Basic Partially-Commutative
algebra).

Formally, a BPC process definition A consists of a finite set V of variables, a
finite alphabet A, an independence relation I C VxV, and a finite set of rules (1),
where o € V¥, X € V, and a € A. The induced transition system has processes
as states, and transitions derived according to the following rule:

X3 -2 af whenever (X - a)e A, Be VP,

Note that when (X,Y) € I it may happen that X3 = Y3’ in V. In such case
the rules of both X and Y contribute to the transitions of X3 = Y 3. Particular
special cases are BPA (I is empty), and BPP (D is the identity relation).

Ezample 1. Let I contain the pairs (B,C), (T,C), (B,U), (T,U), and the sym-
metric ones. In the transition system induced by the rules:

P-“WBCT W -"WBC T-e¢ B¢

w-=U U e C—S¢

there are, among the others, the following transitions:
3 3 3
P S W(BC)PT -5 U(BC)3T ~1 B3TUC? 25 TUC? 1% 03 s e

Definition 1. A bisimulation is any binary relation R over processes such that
R C exp(R), where exp(R), the bisimulation expansion wrt. R, contains all pairs
(c, B) of processes such that for all a € A:

1. whenever o —% o/, there is §' with § % 8’ and (¢/, 3') € R,
2. the symmetric condition holds,

The bisimulation equivalence, written as ~, is the union of all bisimulations.

An equivalence ~ C V¢ x V¢ is a congruence if it is preserved by composition:
a~ o and B~ (' implies a8 ~ o/ #'. Bisimulation equivalence is a congruence
both in BPA and BPP; however it needs not be so in BPC, as the following
simple example shows:

Ezample 2. Consider D = {(A, B), (B, A)} (plus identity pairs) and the rules
below; AB # A'B’, despite that A ~ A’ and B ~ B':

a a b b
A—c¢ A —— ¢ B —¢ B — €.

2 The unique decomposition for normed processes

Assume that A is normed, i.e., for every variable X € V, there is a sequence of
transitions X 5 o ... —% a;, = € leading to the empty process e. The length
of the shortest such sequence is the norm of X, written |X|. Norm extends
additively to all processes. By the very definition of norm, a transition may
decrease norm by at most 1. Those transitions that do decrease norm will be
called norm-reducing (n-r-transitions, in short). The rules of A that induce such
transitions will be called norm-reducing as well.

We will need a concept of norm-reducing bisimulation (n-r-bisimulation, in
short), i.e., a bisimulation over the transition system restricted to only norm-
reducing transitions. The appropriate norm-reducing expansion wrt. R will be
written as n-r-exp(R). Every bisimulation is a n-r-bisimulation (as a norm-
reducing transition must be matched in a bisimulation by a norm-reducing one)
but the converse does not hold in general.

Proposition 1. Fach n-r-bisimulation, and hence each bisimulation, is norm-
preserving, i.e., whenever o and B are related then |a| = |3].

Assume from now on that variables V.= {Xj,..., X,,} are ordered according
to non-decreasing norm: | X;| < |X;| whenever ¢ < j. We write X; < X; if i < j.
Note that | X7] is necessarily 1, and that norm of a variable is at most exponential
wrt. the size of A, understood as the sum of lengths of all rules.

We write X<, for a subset X C V of variables, to mean the free partially-
commutative monoid generated by X and the independence relation restricted
to pairs from X. Clearly, X< inherits composition and identity from V<.

Let = be an arbitrary norm-preserving congruence in V¢. Intuitively, an
elementary process X; is decomposable if X; = af for some o, # €. Note
that |al, |8] < |X;| then. For technical convenience we prefer to apply a slightly
different definition. We say that X; is decomposable wrt. =, if X; = « for some
process a € {X7,... ,Xi_l}o; otherwise, X; is called prime wrt. =. In particular,
X, is always prime.

Denote by P the set of primes wrt. =. It is easy to show by induction on
norm that for each process o there is some v € P® with o = ~; in such case v
is called a prime decomposition of a. Note that a prime decomposition of X; is
either X; itself, or it belongs to {Xj, ... ,Xi,l}o. We say that = has the unique
decomposition property if each process has precisely one prime decomposition.
While the set P of primes depends on the chosen ordering of variables (in case
X, = Xj, i # j), the unique decomposition property does not.

In general ~, even if it is a congruence, needs not to have the unique decom-
position property, as the following example shows:

Ezample 3. Let I = {(B,(),(C, B)} and the rules be as follows:
ASB A-%Cc BLe -5

Consider two equivalent processes AC ~ A’B. As all four variables are prime
wrt. ~, we have thus a process with two different prime decompositions wrt. ~.

The situation is not as bad as Example 3 suggests. We can prove the unique
decomposition property (Thm 1 below) assumed that D is transitive (hence D is
an equivalence). Abstraction classes of D we call threads. Intuitively, a process
(i.e., an abstraction class of ~1) may be seen as a collection of strings over V,
one for each thread. For convenience, each of the strings will be called thread as
well. This concrete representation will be extensively exploited in the sequel.

For o,y € V¢ we say that o masks v if any thread nonempty in v is also
nonempty in . A binary relation =~ is called:

— strongly right-cancellative if whenever ay &~ 87 then a =~ 3;
— right-cancellative if whenever ay =~ (v and both « and 8 mask 7y then a = .

Proposition 2. If a congruence has the unique decomposition property then it
1s strongly right-cancellative.

Proposition 3. If = is strongly right-cancellative then exp(=) and n-r-exp(=)
are right-cancellative.

A counterexample to the unique decomposition property of =, if any, is a pair
(v, B) of processes from P¢ with o = 3, a # 3. If there is a counterexample, there
is one of minimal norm; we call it a minimal =-counterexample. A congruence
= is weakly right-cancellative if whenever oy = (v and both « and (§ mask
and (v, f7) is a minimal =-counterexample then o = .

Theorem 1. AssumeD to be transitive. Then each weakly right-cancellative con-
gruence that is a n-r-bisimulation has the unique decomposition property.

It is a generalization of the unique decomposition in BPA and BPP (cf. [5]
and [6], resp.), in two respects. Firstly, we consider a wider class of processes.
Secondly, we treat every n-r-bisimulation that is a weak right-cancellative con-
gruence, while in the two cited papers the result was proved only for the bisim-
ulation equivalence ~ (cf. Prop. 10 in Section 3.2, where we consider the unique
decomposition property of ~). The rest of this section is devoted to the proof.

Proof of Thm 1. Fix a weakly right-cancellative congruence = that is a n-r-bi-
simulation; = is thus norm-preserving. Let P C V denote primes wrt. =, ordered
consistently with the ordering < of V. For the sake of contradiction, suppose
that the unique decomposition property does not hold, and consider a minimal
=-counterexaple (a, 3).

We say that a transition of one of «, B is matched with a transition of the
other if the transitions are equally labelled and the resulting processes are related

by =. Clearly, each norm-reducing transition of one of «, 3 may be matched with
a transition of the other. Due to the minimality of the counterexample («, 8), any
prime decompositions of the resulting processes, say o/ and 3, are necessarily
identical. For convenience assume that each right-hand side of A was replaced
by a prime decomposition wrt. =. Thus o/, 3’ must be identical.

Let ¢ be the number of threads and let V.= V; U ... UV; be the partition of
V into threads. A process « restricted to the ith thread we denote by «; € V;*.
Hence a = a1 ...a; and the order of composing the processes «; is irrelevant.

A (n-r-)transition of a, or (3, is always a transition of the first variable in some
«;, or (;; such variables we call active. Our considerations will strongly rely on
the simple observation: a n-r-transition of an active variable X may ’produce’
only variables of strictly smaller norm than X, thus smaller than X wrt. <.

In Claims 1-6, to follow, we gradually restrict the possible form of («,).

Claim 1. For each ¢ < t, one of o, (; is a suffix of the other.

Proof. Suppose that some thread i does not satisfy the requirement, and consider
the longest common suffix v of «; and §;. Thus ~ is masked in o and 3. As =
is weakly right-cancellative, v must be necessarily empty — otherwise we would
obtain a smaller counterexample. Knowing that the last letters of «; and ;, say
P,, Pg, are different, we perform a case-analysis to obtain a contradiction. The
length of a string w is written ||w]].

CASE 1: |la;]| > 2, ||5i]] > 2. After performing any pair of matching n-r-
transitions, the last letters P,, Pz will still appear in the resulting processes o,
(', thus necessarily o # 3 — a contradiction to the minimality of («, 3).

CASE 2: Jlay|| = 1, ||Bi]] = 2 (or a symmetric one). Thus a; = P,. As
P, is prime, some other thread is necessarily nonempty in «. Perform any n-r-
transition from that other thread. Irrespective of a matching move in 3, the last
letters P, and Pjg still appear in the resulting processes — a contradiction.

CASE 3: ||yl = ||Bi]]| = 1. Thus o; = Py, f; = Pg. Similarly as before, some
other thread must be nonempty both in a and 8. Asssume wlog. |P,| > |Ps].
Perform any n-r-transition in a from a thread different than . Irrespective of a
matching move in 3, in the resulting processes o/, 8’ the last letter P, in o’; is
different from the last letter (if any) in 8, — a contradiction. O

Claim 2. For each i < t, either a; = 3;, or a; = €, or §; = €.

Proof. By minimality of (a, 3). If oy, say, is a proper suffix of g;, then a n-r-
transition of «; may not be matched in . O

A thread i is called identical if o; = 3; # e.

Claim 8. A n-r-transition of one of o, 3 from an identical thread may be matched
only with a transition from the same thread.

Proof. Consider an identical thread i. A n-r-transition of «; decreases |o;|. By
minimality of (a, 3), |5;] must be decreased as well. O

Claim 4. There is no identical thread.

Proof. Assume thread ¢ is identical. Some other thread j is not as a # 3; wlog.
assume |a;| > |5;|, using Claim 1. Consider a n-r-transition of the active variable
in a; = (; that maximises the increase of norm on thread j. This transition,
performed in a, may not be matched in (3, due to Claim 3, so that the norms of
a; and 3; become equal. O

Claim 5. One of a, (3, say «a, has only one nonempty thread.

Proof. Consider the greatest (wrt. <) active variable and assume wlog. that it
appears in . We claim « has only one nonempty thread. Indeed, if some other
thread is nonempty, a n-r-transition of this thread can not be matched in 8. 0O

Let a; be the only nonempty thread in «, and let P; be the active variable in
that thread, a; = P;y;. The process ; is nonempty by primality of P;.

Claim 6. |P;| is greater than norm of any variable appearing in ~;.

Proof. Consider any thread 8; = Pj7y; nonempty in 5. We know that |P;| > |P;|.
As the thread i is empty in 3, the norm of P; must be sufficiently large to
"produce” all of ; in one n-r-transition, i.e., |P;| > |vi|. Thus |P;| > |v;|. O

Now we easily derive a contradiction. Knowing that P; has the greatest norm in
«, consider the processes P;a = P;3, and an arbitrary sequence of | P;|4+1 norm-
reducing transitions from P;3. We may assume that this sequence does not touch
P; as |B| = |a| > |Pi|. Let 8’ be the resulting process, and let o/ denote the pro-
cess obtained by performing some matching transitions from P;a = P; P;7y;. The
variable P; may not appear in o’ while it clearly appears in 3. Thus o = [,
o # (" and |o'| = || is smaller than |a| = |8] — a contradiction to the mini-
mality of the counterexample («, 3). This completes the proof of the theorem.

3 The algorithm

From now on we only consider normed BPC process definitions A with a tran-
sitive dependence relation D. Such A is called feasible if it satifies the following:

Assumption 1 (Feasibility). Whenever = is a congruence, then the relations
= Nexp(=) and = N n-r-exp(=) are congruences as well.

Clearly, not all normed BPC process definitions are feasible (cf., e.g., Example 2
and the smallest congruence = such that A=A’ and B = B').

Proposition 4. Every normed BPA or BPP process definition is feasible.

We prefer to separate description of the algorithm from the implementation
details. In this section we provide an outline of the algorithm only. In Section 4
we explain how each step can be implemented. Without further refinement, this
would give an exponential-time procedure. Finally, in Section 5 we provide the
polynomial-time implementation of crucial subroutines. Altogether, Sections 3—5
contain the proof of our main result:

Theorem 2. The bisimulation equivalence ~ is decidable in polynomial time
for feasible BPC' process definitions.

The algorithm will compute a finite representation of ~. From now on let A be
a fixed feasible process definition with variables V and dependence D; we also fix
an ordering of variables V= {Xy,..., X, }.

3.1 Bases

A base will be a finite representation of a congruence having the unique decom-
position property. A base B = (P,E) consists of a subset P C V of variables, and
a set E of equations (X; = a) with X; ¢ P, a € (PN {X;L,...,Xi,l})O and
| X;| = || We assume that there is precisely one equation for each X; ¢ P.

An equation (X; = «) € E is thought to specify a decomposition of a variable
X; ¢ Pin P®. Put dg(X;) = a if (X; = a) € E and dp(X;) = X; if X; € P.
We want dg to unambiguously extend to all processes as a homomorphism from
V¢ to PY. This is only possible when, intuitively, decompositions of independent
variables are independent. Formally, we say that a base B is I-preserving if
whenever (X;, X;) € I, and ds(X;) = a, d(X;) = 3, then a3 = Ba in P°.

The elements of P are, a priori, arbitrarily chosen, and not to be confused
with the primes wrt. a given congruence. However, an I-preserving base B nat-
urally induces a congruence =5 on V¥: a =g 3 iff dg(a) = dg(B). It is easy to
verify that primes wrt. =g are precisely variables from P and that =g has the
unique decomposition property. Conversely, given a congruence = with the latter
property, one easily obtains a base B: take primes wrt. = as P, and the (unique)
prime decompositions of decomposable variables as E. B is guaranteed to be I-
preserving, by the uniqueness of decomposition of XY =Y X, for (X,Y) € L.
As these two transformations are mutually inverse, we have just shown:

Proposition 5. A norm-preserving congruence in V¥ has unique decomposition
property iff it equals =g, for an I-preserving base B.

This allows us, in particular, to speak of the base of a given congruence, if it
exhibits the unique decomposition property; and to call elements of P primes.
3.2 Outline of the algorithm

For an equivalence = over processes, let gnrb(=) denote the greatest n-r-bisi-
mulation that is contained in =, defined as the union of all n-r-bisimulations
contained in =. It admits the following fix-point characterization:

Proposition 6. («,) € gnrb(=) iff o = 8 and («, 8) € n-r-exp(gnrb(=)).

Proposition 7. (i) if = is a congruence then gnrb(=) is a congruence as well.
(ii) if = is right-cancellative then gnrb(=) is weakly right-cancellative.

Proof. (i) gnrb(=) is the intersection of the descending chain of relations =; :=
= N nr-exp(=), =2 := =; N n-r-exp(=1), Due to Assumption 1 each =; is
a congruence, hence gnrb(=) is a congruence too.

(ii) Consider a minimal gnrb(=)-counterexample (a7, vy) such that ~ is
masked both by a and . Hence each n-r-transition of « () is matched by a
transition of § («); the resulting processes have the same prime decompositions,
due to minimality of (ay, 37), and thus are related by gnrb(=). This proves that
(a, B8) € n-r-exp(gnrb(=)). Due to right-cancellativity of = we have also a = (3.
Now by the if implication of Prop. 6 we deduce («, 5) € gnrb(=). O

Here is the overall idea. We start with the initial congruence =g that re-
lates processes of equal norm, and then perform the fixpoint computation by
refining =g until it finally stabilizes. The initial approximant has the unique
decomposition property. To ensure that all consecutive approximants also have
the property, we apply the refinement step: =g — gnrb(=g N exp(=)). By
Assumption 1, =g N exp(=3) is a congruence, and by Prop. 2 and 3 it is right-
cancellative. Thus Prop. 7 applies to gnrb(=g N exp(=g)) and in consequence of
Thm. 1 we get:

Proposition 8. gnrb(=g N exp(=p)) is a congruence with the unique decompo-
sition property.

Outline of the algorithm:

(1) Compute the base B of 'norm equality’.

(2) If =g is a bisimulation then halt and return B.

(3) Otherwise, compute the base of the congruence gnrb(=p N exp(=3)).
(4)

This scheme is a generalization of the BPP algorithm [6]. As our setting is more
general, the implementation details, to be given in the next sections, will be
necessarily more complex than in [6]. However, termination and correctness may
be proved without inspecting the details of implementation:

Proposition 9 (termination). The number of iterations is smaller than n.

Proof. In each iteration the current relation =g gets strictly finer (if B did not
change in one iteration, then = would necessarily be a bisimulation). Therefore
all prime variables stay prime, and at least one non-prime variable becomes
prime. To prove this suppose the contrary. Consider the smallest X; wrt. <
such that its prime decomposition changes during the iteration. X; has thus two
different prime decompositions (wrt. the ’old’ relation =g), a contradiction. 0O

Proposition 10 (correctness). The algorithm computes the base of ~.

Proof. The invariant ~ C =g is preserved by each iteration. The opposite inclu-
sion =g C ~ follows when =g is a bisimulation. O

The unique decomposition property of ~ is thus only a corollary, as we did not
have to prove it prior to the design of the algorithm! A crucial discovery is that
the unique decomposition must only hold for the relations gnrb(=g N exp(=3))
and that these relations play a prominent role in the algorithm (cf. [3]).

4 Implementation

Step (1) is easy: recalling that |X;| = 1, initialize B by P := {X 1}, E := {X; =
XXl i =2...n}. On the other hand implementations of steps (2) and (3) re-
quire some preparation. We start with a concrete characterization of I-preserving
bases B = (P,E). Distinguish monic threads as those containing precisely one
prime variable. B is called pure if for each decomposition (X; = «) € E, «
contains only variables from the thread of X; and from (other) monic threads.

Proposition 11. A base B is I-preserving if and only if it is pure.

Proof. The if implication is immediate: if B is pure and the decompositions
a = dpg(X;), f = dg(X;) of independent variables X;, X; both contain a prime
from some thread, then the thread is necessarily monic. Thus af = fa. This
includes the case when any of X;, X; is prime. The only if implication is shown
as follows. Consider a decomposition (X; = «) € E and any prime X, appearing
in «, from a thread different than that of X;. As B is I-preserving, X;a = aXj.
Hence a, restricted to the thread of X, must be a monomial X;*. As X; was
chosen arbitrary, we deduce that this thread must be a monic one. a

Let B = (P,E) be a pure base. Two variables X;, X; ¢ P are compatible if either
they are independent, or (X;,X;) € D, (X; = a), (X; =) € E and o and 3
contain primes from the same threads. That is, o contains a prime from a thread
iff § contains a prime from that thread. Note that it must be the same prime
only in case of a (necessarily monic) thread different from the thread of X; and
X. B is compatible if all pairs of non-prime variables are compatible.

Proposition 12. Let B be pure. If =g is a n-r-bisimulation then B is compatible.

Proof. Assume (X;, X;) €D, (X; = a) and (X; =) € E. For the sake of con-
tradiction, suppose that some thread ¢ is nonempty in « but empty in 8: a; # €,
B = €. We know that (X, X;, Ba) € nr-exp(=g). Hence a norm-reducing transi-
tion of (Bar), = oy is matched by a transition of X, so that the decompositions
of the two resulting processes are equal. In the decomposition of the left process
the norm of thread ¢ is at least |ay|, as X; was not involved in the transition.
On the right side, the norm decreased due to the fired transition, and is thus
smaller than |a:| — a contradiction. O

Step (2) may be implemented using the fact stated below. It is essentially
an adaptation of the property of Caucal base [1] to the setting of partially-
commutative processes, but the proof requires more care than in previously
studied settings.

10

Proposition 13. Let B = (P,E) be pure and compatible. Then =g is a bisimu-
lation if and only if (X, a) € exp(=s) for each (X = a) € E.

Proof. We only need to consider the if direction. For any pair «, 8 of processes
such that o =g (3, we should show that (a, 8) € exp(=g). Let 7 := dg(a) = dg(5)
be the prime decomposition of « and . It is sufficient to prove that («,7) €
exp(=g), as exp(=g) is symmetric and transitive. We will analyse the possible
transitions of a and 7y, knowing that all decompositions in E are pure.

First consider the possible transitions of a. Let X; be an active variable in
a, ie., a = X;ao' for some ', and let ¢ := dg(X;). Then v may be also split
into v = 67/, where v/ = dg(a’). Thus, any transition of @ may be matched by
a transition of v, as we know, by assumption, that (X;,d) € exp(=s).

Now we consider the possible transitions of . Let a prime X; be active in
. Choose a variable X; such that X; appears in the decomposition § = dg(X;).
Due to compatibility of B we may assume that the chosen X; is active in a, i.e.,
a = X;d/, for some . Similarly as above we have v = §7/. A transition of X
is necessarily a transition of §, hence may be matched by a transition of X;, by
the assumption that (X;,) € exp(=s). O

Proposition 14. The base B is pure and compatible in each iteration.

Proof. Initially B is pure and compatible. After each iteration B, being the base
of gnrb(=p Nexp(=g)), is pure by Prop. 11, 8 and 5, and compatible by Prop. 12.
O

Therefore in step (2), the algorithm only checks the condition of Prop. 13.

Implementation of step (3). We compute the base B' = (P, E’) of the greatest
n-r-bisimulation contained in =g Nexp(=g). As only norm-reducing transitions
are concerned, the base is obtained in a sequence of consecutive extensions, by
inspecting the variables according to their ordering, as outlined below.

In the following let = denote the relation =g Nexp(=g). The algorithm below
is an implementation of the fix-point characterization of gnrb(=) (cf. Prop. 6).

Implementation of step (3):

Start with the set P’ = {X;} of primes and the empty set E' of decom-
positions. Then for 7 := 2,...,n do the following:

Check if there is some o € P’ such that
(a) (X;,a) € nr-exp(=p), and (b) X; = a.

If one is found, add (X; = «) to E'. Otherwise, add X; to P’ and
thus declare X; prime in B’.

Before explaining how searching for a decomposition « of X; is implemented, we
consider the correctness issue.

11

Proposition 15 (correctness of step (3)). The base B’ computed in step (3)
coincides with the base of gnrb(=).

Now we return to the implementation of step (3). Seeking « € (P’)<> appro-
priate for the decomposition of X; is performed by an exhaustive check of all
‘candidates’ computed according to the procedure described below. The compu-
tation implements a necessary condition for (a) to hold: if (X;, a) € n-r-exp(=p/)
then « is necessarily among the candidates.

Computing candidates o:

Fix an arbitrarily chosen norm-reducing rule X; —— 3 (hence 8 €
{X1,... ,Xi_l}o) and let ' := dg/(B) be a decomposition of § wrt. B’
(hence §' € (P')Q). For any j < i such that X; € P/, for any norm

i

reducing rule X; — v, do the following: let v/ := dp/ (7); if 3’ = vy,
for some +"”, then let o := X ;7" € (P’)<> be a candidate.

We will write v <g/ 8 to mean that dp:(7) is a prefix of dp/(3).

5 Polynomial-time implementation

The algorithm performs various manipulations on processes. The most important
are the following ’subroutines’, invoked a polynomial number of times:

(i) Given a, 8 € V¢ and B, check if o =3 3.
(ii) Given o, 8 € V¢ and B, check if o <g f3. If so, compute 7 such that ay =g 3.

Recall that the processes involved in the algorithm are tuples of strings over
prime variables, one string for each thread, of pessimistically exponential length
and norm. We need thus to consider two inter-related issues:

— a succint representation of processes in polynomial space; and
— polynomial-time implementations of all manipulations, including subroutines
(i) and (ii), that preserve the succint representation of manipulated data.

The special case of BPP is straightforward: the commutative processes are
essentially multisets, may be thus succintly represented by storing exponents in
binary, and effectively manipulated in polynomial time.

In the general case of BPC, and even in BPA, we need a more elaborate ap-
proach. To get a polynomial-time implementation, we need to use a method of
‘compressed’ representation of strings. Moreover, all the operations performed
will have to be implemented on compressed representations, without ’decom-
pressing’ to the full exponential-size strings. After preparatory Section 5.1, in
Section 5.2 we explain how to implement steps (1)—(3) in polynomial time.

12

5.1 Compression by an acyclic morphism

Let A be a finite alphabet and S = {z1,..., 2, } a finite set of non-terminal
symbols. An acyclic morphism is a mapping h : S — (SUA)” such that

h(Z,) S (AU {2’1, .. .,Zi_l})*.

We assume thus a numbering of symbols such that in string h(z;), only z; with
smaller index j < i are allowed. Due to this acyclicity requirement, h induces a
monoid morphism A* : 8* — A*, as the limit of compositions h,h? = hoh,....
Formally, h*(z;) = h*(z;), for the smallest k with h*(z;) € A*. Then the extension
of h* to all strings in S* is as usual. Therefore each symbol z; represents a
nonempty string over A. Its length |h*(2;)|| may be exponentially larger than
the size of h, defined as the sum of lengths of all strings h(z;).

Action of h* on a symbol z may be presented by a finite tree, that we call
the derivation tree of z. The root is labeled by z. If a node is labeled by some 2/,
then the number of its children is equal to the length of h(z"). Their labels are
consecutive letters from h(z’) and their ordering is consistent with the ordering
of letters in h(z’). Nodes labeled by an alphabet letter are leaves. By acyclicity
of h the tree is necessarily finite; the labels of its leaves store h*(z).

Lemma 1 ([9]). Given an acyclic morphism h and two symbols z,z' € S, one
may answer in polynomial-time (wrt. the size of h) the following questions:

— s h*(z) = h*(2)?

— 48 h*(2) a prefix of h*(2')?
A relevant parameter of a symbol z, wrt. an acyclic morphism h, is its depth,
written depth(z), and defined as the longest path in the derivation tree of z.
A depth of h, depth(h), is the greatest depth of a symbol.

An acyclic morphism h is binary if ||h(z;)| < 2, for all z; € S. Any acyclic
morphism A may be transformed to the equivalent binary one: replace each h(z;)
of length greater than 2 with a balanced binary tree, using ||h(z;)|| — 2 auxiliary
symbols. Note that the depth d of h may increase to dlogd.

Lemma 2. Given a binary acyclic morphism h, a symbol z € 8, and k <
[Ih*(2)|l, one may compute in polynomial-time an acyclic morphism h' extending
h, such that one of new symbols of h' represents the suffix of h*(z) of length k,
and size(h') < size(h) + O(depth,(z)) and depth(h’) < depth(h).

Proof. By inspecting the path in the derivation tree of z leading to the “cutting
point”, that is, to the first letter of the suffix of length k. For each symbol y
appearing on this path, we will add its copy y to S. Our intention is that y
represents a suitable suffix of h*(y). This is achieved as follows. Assume that
h(y) = y1y2. If the path to the cutting point traverses y and y;, we define h for
¥ as: h(y) = g1y2. Otherwise, if the path traverses yo, we put h(y) = go.

The total overhead in increase of size of h is constant. Hence by repeating this
procedure along the whole path from the root, labelled by z, to the cutting point,
the size of h will increase by O(depth,(z)). Clearly, z represents the required
suffix of h*(z). The new acyclic morphism is an extension of A, in the sense that
value of h* is preserved for all symbols that were previously in S. ad

13

5.2 Representation of a base by an acyclic morphism

We focus on the case of BPA first, V¢ = v*. Extension to BPC, being straight-
forward, is discussed at the end of this section. The complexity considerations
are wrt. the size N of A, i.e., the sum of lengths of all rules. The subroutines (i)
and (ii) may be implemented in polynomial time due to Lemma 1 and 2.

In each iteration of the algorithm, a base B = (P,E) will be represented
succinetly by a binary acyclic morphism h. For each X; ¢ P, the right-hand side
of its decomposition (X; = «;) € E will be represented by a designated symbol
x; € S. Thus dp(X;) = a; = h*(x;). The set P of primes will be the alphabet.

In the initial step (1), cf. Section 4, it is easy to construct such h of size O(N)
and depth O(N log N). Implementation of step (2) will be similar to checking
the conditions (a) and (b) in step (3) (cf. Sect. 4), to be described now.

Given a ’compressed’ representation h of B, we now show how to construct a
representation b’ of B’ in each execution of step (3) of the algorithm; h’ will be
of size O(N?log N) and depth O(N log N). The alphabet A will be P’.

We construct k' by consecutive extensions, according to step (3) of the algo-
rithm. Initially, A’ is empty and A = {X;}. For the extension step, suppose that
each non-prime X; ¢ P’, j < 4, has already a designated symbol x; in k' that
represents ¢, where (X, = a;) € E'. The most delicate point is the size of the
representation of a ’candidate’ « in step (3), as the decomposition «; of X, if
any, is finally found among the candidates.

Let X; — 3 be a chosen norm-reducing rule. Replace occurences of non-
prime X,’s in 3 by the corresponding z;’s. Extend h' by h'(y;) = (3, for a fresh
auxiliary symbol y;, and transform A’ to the binary form (we say that we encode
the rule in A'). This increases the size of h' by O(N) and its depth by at most
log N. To compute a representation of a candidate o, we extend h’ similarly as
above, to encode a rule X 5 5, by 1 (y;) := ~. Then we apply Lemma 1 to
check whether h*(y;) is a prefix of h*(y;), and if so, apply Lemma 2 to y;, so
that the newly added symbol g; represents the required suffix of h*(x;). This
increases the size of h' by O(depth(h’)) and keeps its previous depth. Finally,
we compose X, represented by x;, with g;: h(x;) = x;¥;, according to step (3)
of the algorithm. The cumulative increase of size and depth, after at most N
repetitions of the above procedure, fits the required bounds, O(N?log N) and
O(Nlog N), on the size and depth of h/, respectively.

To test the conditions (a) and (b) we invoke the subroutine (i) for the suc-
cessors of X; and the candidate a. This involves encoding the rules of X; and
X, in I/, in the similar way as above. The condition (b) refers to B, so we need
to merge h’ with h. As the total number of candidates is polynomial, it follows
that the whole algorithm runs in polynomial time.

Remark 1. The input process definition may be well given in a compressed form,
i.e., by an acyclic morphism representing the right-hand sides of all rules.

Implementation for BPC. The only difference is that there may be more
threads than one. Hence instead of single symbol x;, representing decomposition

14

of X;, we need to have a tuple of symbols, x},..., 2!, where ¢ is the number of
threads, to represent the content of each thread separately. The overall idea is
that the algorithm should work thread-wise, i.e., process separately the strings
appearing in each thread. E.g., the subroutines (i) and (ii) may be implemented
analogously as for BPA, by referring to Lemma 1 and 2 for each thread.

6 Conclusions

We have provided an evidence that the bisimulation equivalence in both normed
BPA and BPP can be solved by essentially the same polynomial-time algorithm.

The algorithm works correctly in a feasible fragment of normed BPC. An in-
teresting open question remains whether the procedure may be extended to work
for all of BPC with transitive D. This would probably require a quite different
method, as the core ingredient of the approach of this paper is that the bisimula-
tion equivalence is a congruence, which is not the case in general. Another open
question is whether our setting can solve the normed BPA vs. BPP problem
(disjoint union of normed BPA and BPP needs not be feasible, cf. Example 2).

It also remains to investigate possible applications of the BPC framework as
an abstraction of programs, e.g., of multi-core computations.

Concerning the expressibility, normed BPC class and normed PA seem to be
incomparable, even with respect to the trace equivalence (e.g., the process in
Example 1 is not expressible in normed PA).

References

1. O. Burkart, D. Caucal, F Moller, and B. Steffen. Verification of infinite structures.
In Handbook of Process Algebra, pages 545-623. Elevier, 2001.

2. S. Christensen, H. Hiittel, and C. Stirling. Bisimulation equivalence is decidable
for all context-free processes. Inf. Comput., 121(2):143-148, 1995.

3. S. Froschle and S. Lasota. Normed processes, unique decomposition, and complex-
ity of bisimulation equivalences. In Proc. INFINITY’ 06, ENTCS. To appear.

4. Y. Hirshfeld and M. Jerrum. Bisimulation equivalence is decidable for normed
process algebra. In ICALP’99, volume 1644 of LNCS, pages 412-421, 1999.

5. Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding
bisimilarity of normed context-free processes. Theor. Comput. Sci, 158(1-2):143—
159, 1996.

6. Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial time algorithm for de-
ciding bisimulation equivalence of normed Basic Parallel Processes. Mathematical
Structures in. Computer Science, 6:251-259, 1996.

7. P. Jancar. Bisimilarity of Basic Parallel Processes is PSPACE-complete. In Proc.
LICS’03, pages 218-227, 2003.

8. P. Jancar, M. Kot, and Z. Sawa. Normed BPA vs. normed BPP revisited. In Proc.
CONCUR’08, volume 5201 of LNCS, pages 434-446. Springer-Verlag, 2008.

9. M. Karpinski, W. Rytter, and A. Shinohara. An efficient pattern-matching algo-
rithm for strings with short descriptions. Nord. J. Comput., 4(2):172-186, 1997.

10. S. Lasota and W. Rytter. Faster algorithm for bisimulation equivalence of normed
context-free processes. In Proc. MFCS’06, volume 4162 of LNCS, pages 646—657.
Springer-Verlag, 2006.

15

