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Abstract. People who attend to the problem of underwater port protection 
usually use sonar based systems. Recently it has been shown that integrating a 
sonar system with an auxiliary array of magnetic sensors can improve the 
effectiveness of the intruder detection system. One of the major issues that arise 
from the integrated magnetic and acoustic system is the interpretation of the 
magnetic signals coming from the sensors. In this paper a machine learning 
approach is proposed for the detection of divers or, in general, of underwater 
magnetic sources. The research proposed here, by means of a windowing of the 
signals, uses Support Vector Machines for classification, as tool for the 
detection problem. Empirical results show the effectiveness of the method. 
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1    Introduction 

For many years security has not been perceived by people as a necessity. 
Today, after some dramatic events such as September 11 2001, security issue 
has become a serious concern not only for governments. In this scenario the 
importance of physical security has increased; in particular, during the last 
five years, the research concerning underwater port protection has made some 
substantial achievements [1, 3-6].  
First of all the target of underwater intruder detection systems has been 
extended from a military one, such as an enemy nation navy submarine, to a 
terrorist one, such as a diver intruder. This produced a secondary effect 
concerning the up to date of the technology used to detect underwater sources: 



traditional sonar systems resulted to be insufficient to solve this task, bringing 
back importance to magnetic based systems [4, 5].  
The analysis and comparison of the performances of the two different 
approaches point out their peculiarities: acoustic arrays guarantee optimum 
volumetric control but lack in peripheral surveillance; vice versa magnetic 
subsystems achieve high peripheral security performances but partially fail in 
volumetric control. These considerations suggest the integration of both 
detection approaches into a dual system [6].  
This integration guarantees a good effectiveness to the complete system: 
overlapping of the acoustic and magnetic subsystems supplies shadow areas 
avoidance and consequently prevents possible intrusions. Moreover in the 
zone of maximum uncertainty of each method the lack in performance of one 
approach is counterbalanced by the co-occurring presence of the other 
cooperating subsystem. While acoustic systems today are a commercial 
reality, magnetic underwater surveillance is still an open research field.  
These introductions lead to the demand of proper tools able to analyze the 
magnetic subsystem output. Beside classical analysis techniques [1, 3] the 
purpose of this paper is introducing a machine learning tool, Support Vector 
Machine for classification, as a possible approach for the detection of diver 
intrusion patterns on the supplied data. In particular, machine learning 
techniques have been already successfully used when involving with sonar 
signals [7]; here the purpose is showing that an analogous approach can be 
also carried when dealing with magnetic signals. Section 2 introduces the 
magnetic subsystem architecture while Section 3 exposes SVM theory, data 
extraction and experimental results.  

2    The “MACmag” Magnetic Subsystem 

Nowadays magnetic sensors have extremely high sensitivities and are able, in 
theory, to detect signals generated by divers without any problem. This 
capability is strongly compromised in practice by the spectral content of the 
Earth’s magnetic field in high noise environments, such as port areas, 
characterized by an extremely wide band and high amplitude components, 
which often hide the target signal. Given M spectral components of the 
magnetic field, if we call iE  the energy associated with the i-th component, 
the information content Q is given by [2]:  

∑
=

=
M

i
iEQ

1

 (1) 



Whereas the information capacity iC , that is the capacity associate to the i-th 
elementary spectral component with its physical generator, is given by the 
ratio between the energy iE  and the total energy in which it is contained:  
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The range of value of iC  is between 1 (monochromatic signal) and 0 (white 
noise or insufficient target signal amplitude):  
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Given two magnetometers, one as sentinel and the other as reference, to 
protect a critical area, one indicates with N the noise measured by both the 
magnetometers. By T is indicated the target signal acquired only by the 
sentinel magnetometer. As shown in [3] it can be stated that the sentinel listen 
to N+T and the reference measures the environmental noise N. If measured 
signals are acquired with the same clock, then the filtering operation is a 
simple subtraction in the time domain; in the case of uncertainties (even 
minimal) in the clock timing, the filtering operation is performed in the 
frequency domain with an increase in numerical inaccuracy.  
This result can be obtained using two different architectures of the magnetic 
subsystem: the first employs the magnetic field acquired from the previous or 
next sensor in the array as noise reference (so that each instrument in the array 
operates both as sentinel and as reference) and is known as SIMAN-type 
network (Self-referred Integrated MAgnetic Network); the second is based on 
a sensor array and another external device used to obtain noise reference 
values (so that all the instruments in the array operate only as sentinel) and is 
called RIMAN-type network (Referred Integrated MAgnetic Network) [4, 6]. 
The system employed in the present work consists of two magnetometers in a 
SIMAN configuration. However, this configuration does not represent a full 
operational unit of the SIMAN network; a diver crossing halfway between the 
two sentinel magnetometers induces an analogous signal in both the devices 
and, consequently, this produces the target signal removal in the filtering 
process. Therefore, a full operational unit needs a third magnetometer which 
allows a comparison ∆(1,2), between the first pair of sensors, and ∆(1,3), 
between the second pair, such that the removal of the target can occur for at 
most one pair only (see Fig. 1) but not for the whole system.  
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Nevertheless the experimental configuration employed, including the two 
magnetometers, is clearly suitable for experimental validation of the 
MACmag component, with the exclusion of target crossings halfway between 
the two sensors. The magnetic signal used in ours experiments has been 
grabbed in this way from the sentinel and reference sensors in noisy 
environmental conditions and considering a civil diver as target. 

3    Support Vector Machines for Classification 

Support Vector Machines (SVM) constitutes a robust and well known 
classification algorithm [8]. The good classification performance of SVMs is 
due to the concept of margin maximization, whose roots are deeply connected 
with Statistical Learning Theory [8]. As usual in learning machines, SVM has 
a learning phase and a prediction phase. In the learning stage the machine sees 
the training patterns and learns a rule (an hyperplane) able to separate data in 
two groups according to data labeling. Conversely in the forward (prediction) 
phase the machine is asked to predict labels of new and unseen patterns.  
From the formal point of view the following notation will be used:  

• pn is the number of patterns used as training set 

•  X is the training set 
•  inR∈x  is  a pattern belonging to X where in  is the data dimensionality 

Fig. 1 - Operative structure of the elementary cell of the MAC mag subsystem. 
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•  )()( bsignf += wxx  is the prediction function based on the hyperplane 
defined by the normal w and the bias b  

• y  is the vector of labels of the training set, with  { }1,1−∈y  
Given these definitions the cost function to be minimized for obtaining 
optimal w  and b is:  
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Where the positive constant C controls the tradeoff between data fitting (the 
first term) and regularization (the second term that represents margin 
maximization), and where +)(k  indicates ),0max( k . 
Problem (4) can be solved via quadratic optimization algorithms; despite this 
fact, problem (4) is usually solved using its Lagrange dual formulation. The 
dual formulation makes possible to use non-linear mapping functions called 
kernel functions [8] that lead to non linear separating surfaces (see Fig. 2). 
This operation is possible observing that the only operations in which data are 
directly involved are dot products. Calling ),( mlK xx  the kernel dot product 
between lx  and mx it can be shown [8] that the dual problem of (4) is:  
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Where vector α  is of length pn and represents the set of dual variables. 
Problem (5) poses the major problem of its optimization. To this regard fast 

Fig. 2 - Non linear separating surface. 



optimization techniques has been developed [9]. One of these techniques, 
called Sequential Minimal Optimization [10], is the one that will be used for 
the following experimental section.  
Once (5) has been optimized, as a final step, one has an efficient way to 
compute the bias b [10]. Finally, provided α  and b the non linear prediction 
function can be written as:  
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4    Experimental Results 

The first addressed step is the definition of a suitable dataset for SVM based 
classification. Elaborated data refer to the problem of detecting the presence 
of a diver (class +1) or its absence (class -1).  
Two quantities must be defined: the vector data x  and its corresponding label 
y. The vector x  can be created by windowing the signals coming from the 
magnetic subsystem: in particular given the original signal of length m, for 
each sample a window of width l is grabbed. This means that the total number 
of windows (superposition of windows is allowed) is m-l. Because the signals 
coming from the subsystem are two (reference and target), for each produced 
window the final pattern is built up by the concatenation of the two windows 
derived from the two signals. This translates in having m-l patterns x  each of 
size 2l. Using l=100 the number of produced patterns is considerable; for this 
reason a sub-sampling technique has been employed. To obtain a meaningful 
dataset the sections of the signal which are characterized by an intrusion have 
been more densely windowed than the sections in which no intrusion occurs 
(see Fig 3).  

 Fig. 3 - The upper signal is the reference signal; the lower signal is the target 
signal. Dotted line in the middle represents the windowing density. 



Table 1 summarizes the statistics of training and test data after the above 
mentioned sub-sampling technique.  
 

Table 1. Dataset overview 
DataSet Class +1 Class -1 

Training Set 142 145 
Test Set 144 150 

 
After this preliminary step all data were normalized for each attribute in the 
domain [-1, +1]. The experimental session was carried by using a SVM with 
standard linear kernel [8] and SMO [10] optimizer. In particular the accuracy 
on the optimality conditions was set to 1e-3, a typical value for SVM training 
convergence (Karesh Kuhn Tucker conditions [8, 10]). The model was 
selected according to the C regularization constant (as per (4)) that led to the 
lowest test set error.  
 

 
 
 
Figure 4 depicts the obtained curve for the C values {0.01, 0.1, 1, 30, 60, 90}; 
its shape is in accordance with theory [8], showing underfitting regions (small 
C values) and overfitting regions (big C values). The best performances are 
obtained with C = 30 and C = 60; for both an error of 7.82% occurs. 
Recalling that an underfitting behavior is usually preferable to an overfitting 
one [8], the final selected parameter C was set to C = 30.  
This preliminary experiment and the proposed approach seem to be promising 
although accuracy should be further improved to consider the system 
practically usable in on-field operations. Future research may investigate: 
extensions of the current preliminary study, other neural based techniques and 
alternative data preprocessing methods.  

Fig. 4 – Model Selection curve: x axis are C values, y axis are percentage error values. 
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