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Abstract. Grobner basis is one of the most important tools in recent
symbolic algebraic computations. However, computing a Grébner basis
for the given polynomial ideal is not easy and it is not numerically stable
if polynomials have inexact coefficients. In this paper, we study what we
should get for computing a Gréobner basis with inexact coefficients and
introduce a naive method to compute a Grébner basis by reduced row
echelon form, for the ideal generated by the given polynomial set having
a priori errors on their coefficients.

1 Introduction

Recently, computing a Grobner basis for polynomials with inexact coefficients
has been studied by several researchers ([1], [2], [3]. [4], [5], [6], [7]). In Sasaki
and Kako [1], this problem is classified into the first and the second kinds of
problems. The first kind is computing a Grébner basis for the ideal generated
by the given polynomials with exact coefficients by numerical arithmetic (e.g.
floating-point arithmetic). The second kind is for the given polynomials with
inexact coefficients having a priori errors. In this case, we have to operate with a
priori errors whether we compute a basis by exact arithmetic or not. For exam-
ple, Shirayanagi’s method ([3], [4]) by stabilization techniques requires to extend
the input precision up to a point that the algorithm can work stably hence it
is for the first kind since we cannot extend the input precision of inexact data
in practice even if we can extend precisions during computations. For practical
computations, coefficients may have a priori errors due to limited accuracy, rep-
resentational error, measuring error and so on, hence the second kind is much
more important than the first one. In this paper, we try to interpret the second
kind of problem with the comprehensive Grobner system and numerical linear
algebra.,

We assume that we compute a Grobner basis or its variants for the ideal
I C C[x] generated by a polynomial set F = {fi...., fi} C Clz] where C[z] is
the polynomial ring in variables & = xy,....2; over the complex number field
C. However, in our setting, coefficients may have a priori errors hence we have
only a polynomial set F= {fi.....fi} € Clz] as the given inexact input, which
may be different from F. We note that the number of polynomials may be also
different (i.e. k # k). The most interesting part of this problem is what we should
compute for the inexact input F when we are not able to discover the hidden
and desirable polynomial set F. We review some known interpretation of this
problem in Section 2 and 3 and give another resolution in the latter sections.



2 Comprehensive Grobner System with Inexact Input

If we can bound the difference between F' and F' in some way, the most faithful
solution for computing a Grébner basis with inexact input is the comprehensive
Grébner basis (or comprehensive Grobner system) introduced by Weispfenning
([8], [7], [9]). By representing error parts as unknown parameters, the problem
becomes computing a parametric Grobner basis. In this section, we briefly review
this approach in our problem setting.

Let A= Clay,..., o, be the polynomial ring in parameters o, ..., a, over
the complex mumber field and consider the polynomial ring Afz] in variables
Bygrg a¢. For a fixed term order = on Cla], it is well-known that in general
a Grobner basis in Alz] with respect to variables @ will no longer remain a
Grobner basis in C[z] when the parameters oy, ..., a, are specialized to some

values in C. The comprehensive Grobner basis and system [8] are defined to
overcome this situation.

Definition 1 (Comprehensive Grobner Basis). Let F C Alx| be a finite
parametric polynomial set and I be the ideal generated by F'. We call a finite ideal
basis G of I a comprehensive Grabner basis of I if G is a Grobner basis of the
ideal generated by F in Clx] for every specialization of paramelers aq,.. ..o

in C. <

Definition 2 (Comprehensive Grobner System). Let F' C Alx| be a finite
parametric polynomial set, S be a subset of C7, Ay, ..., A, be algebraically con-
structible subsets of C7 such that S C AyU---UA, and G,....,G, be subsets of
Alz]. We call o finite set G = {(A1.G4), ..., (A,.G,)} of pairs a comprehensive
Gribner system for F on S if G; is a Gribner basis of the ideal generated by F
in Clz] for every specialization of parameters (e, ..., e ) in A;. Each (A, G;)

is called a seqment of G. q

Suppose that all the inexact parts on coefficients in F can be represented
by parameters iy, . .., . Then, computing a Grobner basis with inexact input
can be done by computing a comprehensive Grébner system for F' € A[z] on
S where S includes all the possible specialization of parameters (a,..., a4 ) in
C7. However, in general, a comprehensive Grébner system has a huge number of
segments and its computation time is quite slow (see [10] for example). Though
Weispfenning 7] tried to decrease the time-complexity by using only a single
parameter to represent the inexact parts, whose bounding error mechanism is
very similar to interval arithmetic and Traverso and Zanoni [6] pointed out that
an interval easily becomes too large when we compute a Grébner basis by interval
arithmetic. In the author’s opinion, this is one of reasons that many researchers
still have been studying Grobner basis with inexact input.

3 Approximate Grobner Basis with Inexact Input

As in the previous section, unfortunately, treating inexact parts of coefficients as
parameters does not give us any reasonable (w.r.t. computation time and number



of segments) answer to the second kind of problem. In this section. we review
another approach by Sasaki and Kako [1]. They tried to define approximate
Grobner basis by the following approximate-zero tests for polynomials appearing
in the Buchberger algorithm. We note that they also introduced several numerical
technigues to prevent cancellation errors and we briefly review only their concept
without their complete settings and definitions.

Definition 3 (Approximate-Zero Test). Let p(x) be a polynomial appear-
ing wn the Buchberger algorithm,. and (sy(x),....si(x)) be the syzygy for p(x)

satisfying p(x) = Ef‘zl si(@)fi(x). If Ipll < = x max{||s fil, ..., |[9;f1||} where
[[p|| denote the infinity norm of p(x). then we say p(x) is approvimately zero at
tolerance ¢, and we denote this as p(z) =0 (tole). <

Definition 4 (Practical Approximate-Zero Test). Let p(x) be a polyno-
mial appearing in the Buchberger algorithm., and (py,....pm) be all the non-zero
coefficients tuple of p(z). If max{|p1|,..-.|pm|} < . then we say p(x) is prac-
tically approvimate-zero at tolerance £, and we denote this as p(x) = 0 (tol =).

q

With one of the above definitions (computation of syzygies is time-consuming,
so they decided to use the second one in practice), they define the following ap-
proximate Grdbner basis.

Definition 5 (Approximate Grobner Basis). Let € be a small positive num-

ber, and G = {g1,..., gr} be a polynomial set. We call G an approzimate
P

Grobner basis of tolerance e, if we have S(g;,g;) = 0 (tol €) (Vi # j) where

S(gi.g;) and p° denote the S-polynomial of g; and g; and the normal form of p

by G, respectively. Q

The above definition can be considered as a numerical version of comprehen-
sive Grobner system with a single parameter by Weispfenning [7], using much
reasonably relaxed bounds instead of exact interval arithmetic. In the Buch-
berger algorithm, head terms of polynomials appearing in the procedure are
critically important hence most of known results have to take care of approx-
imate zero tests by exact interval arithmetic, parametric representation or the
ahove way for example. In the rest of the paper, we consider the second kind of
problem as a problem in numerical linear algebra instead of trying to extend the
Buchberger algorithm directly.

4 Grobner Basis for Inexact Input as Linear Space

We note again that the first and second kinds of problem are fundamentally
different. For the first kind, there exists the answer which is a Grébner basis of
the ideal I generated by F' and can be computable by exact arithmetic. On the
other hand, for the second one, there exist so many possible answers since F is
not known in practice and the given polynomials of F' have a priori errors and we



can absolutely not be able to know that they should be. Moreover, for the given
F and the unknown F, it may happen that p(z) € ideal(G) and p(x) ¢ ideal (F)
even if we can compute a Grobner basis G for ideal(F') by some method, where
ideal(S) denotes the ideal generated by the elements of a set S. Because such
a Grobner basis is only a candidate for possible so many Gribner bases for
unknown F' . It also be possible that they include {1}. Any resolution for the
second kind of problem must guarantee that p(z) € ideal(G) and p(x) € ideal (F)
are equivalent with or without some conditions since what is the most reliable
is not G but the given F' (this is the only reliable information) which does not
have any posteriori error. In the below, we give a resolution from this point of
view.

4.1 Grobner Basis as Linear Space

Some researchers studied computing a Grébner basis by reduced row echelon
form ([11]. [12]) though there are no concrete algorithms described. However,
this is not efficient since we have to operate with large matrices. Using matrix
operations partially like F4 and F5 ([13], [14], [2]) may be the best choice if we
want to decrease the computation time. We note that the matrix constructed in
the F4 algorithm is essentially the same as in this paper and is more compact
and well considered. On the other hand, for the second kind of problem, it
may be useful since we can use so many results from numerical linear algebra
for the situation where we must inevitably operate with a priori errors. Hence
we sunumarize an algorithm for computing Grobner basis with exact input by
reduced row echelon form in this subsection. We note that we use the following
definition though there are several equivalents (see [15] or other text books).

Definition 6 (Grobner Basis). G = {gy,....9,} C I'\ {0} is a Gribner basis
for I w.r.t. a fized term order = if for any f € I\ {0}, there exists g; € G such
that ht(g;)|ht(f) where ht(p) denotes the head term of p(x) € Clz] w.r.t. =. <

We consider the linear map ¢7 : Clz|r — C™ such that ¢7(t;) = & where
Clz]7 is the submodule of Clz] generated by an ordered set (the most left
element is the highest) of terms 7 = {t,..., tm}~ and & (i =1,...,m) denotes
the canonical basis of C™. The coefficient vector 7 of p(x) € C[z] is defined to
be satisfying 7" = o7 (p) and p(x) = (f).}‘(?’). With a fixed 7, we consider the
following subset Fz of I.

J.,
Fr = {ZS-:(w)ff(w) | si(x) fi(x) € Clz|7, si(z) € C[ﬂ?]} :

i=1

The Buchberger algorithm guarantees that G C Fr if 7 has a large enough
number of elements. To compute a Grébner basis for I, we construct the matrix
Mz (F) whose each row vector 7 satisfies ¢7' (7) € Pr(f) for f(z) € F where



By this definition, F7 and the linear space Vr generated by the row vectors of
M (F) are isomorphic.

We note that a matrix is said to be in reduced row echelon form if it satisfies
the following four conditions.

1. All nonzero rows appear above zero rows,

2. Each leading element of a row is in a column to the right of the leading
element of the row above it.

3. The leading element in any nonzero row is 1.

4. Every leading element is the only nonzero element in its column.

Lemma 1. Let My (F) be the reduced row echelon form of M« (F). If gi(x) €
Fr for a fizedi € {1,..., r}, Mz (F) has a row vector T satisfying ht(g;) =
ht(o7' (7))- <

Proof. Since the linear map ¢7 is defined by the ordered set 7, each leading
element of a row vector T of My (F) is corresponding to ht(eﬁ}l(T)’)). The
lemma follows from the facts that F7 and V7 are isomorphic and all the leading
entries of nonzero rows are disjoints since M (F) is in the reduced row echelon
form. 0

Lemma 2. Let M (F) be the reduced row echelon form of M+ (F). If T has a
large enough number of elements, the following Gt is a Grébner basis for I.

Gr = {d)}l(?) | 7 is a row vector ofM-r(F)} ;
<

Proof. The Buchberger algorithm guarantees that G C Fy if T has a large
enough number of elements. Therefore, G satisfies the condition of Definition
6 since we have g;(z) € Gr,i={1,..., r} by Lemma 1. 0

The above lemmas lead us to the following algorithm directly.

Algorithm 1. (Grdbner Basis by Row Echelon Form)
Input: a term order >~ and a set F of polynomials,

. d — max;—y__ tdeg(f;) (the total degree of fi(x)).
. T «— the ordered set of the terms of total degrees < d.
. M7 (F) < the reduced row echelon form of Mz (F).
.Gr — {qi.}]{ﬁ’) | 7 is a row vector of MT(F)}.
.G —Gr\{g€ Gr|3h € G\ {g} s.t. ht(h)[ht(g) }.
. Outputs & if the following conditions satisfied:
@1.erF,EG=0, ‘
6-2. Vgi,g9; € G, S(gi,9;) =0,

otherwise d < d + 1 and goto Step 2. 4

ct



Algorithm 1 is not optimized. For example, we should optimize the algo-
rithm as follows. In Step 1. it is better that we start with a larger d (e.g.
max;—, ., tdeg(f;) + 1 or a large enough d such that all the S-polynomials
of F' can be calculated in C[z]7). Moreover, we can use the rectangular degree
(bounding each variable separately and also called the multi degree) instead of
the total degree. In Step 6, it is better that we increment d by A, such that
S(gi.g;) can be calculated in Fr for any pair of elements of G and 7 with
d — d+ Ay.

Lemma 3. Algorithm 1 computes the reduced Grobner basis for the ideal gen-
erated by the given polynomial set F. <

Proof. The condition 6-1 guarantees that the ideals generated by F and G are
the same. Hence, if 7 has a large enough number of elements, Algorithm 1
outputs a Grébner basis for the ideal generated by F since the condition 6-2
means that G is a Grébner basis for the ideal generated by G. Step 5 deletes
verbose polynomials by Definition 6 hence G is a minimal Grobner basis. The
lemma follows from the fact that M+ (F) is in the reduced row echelon form so
that all the polynomials corresponding to row vectors are already reduced by
other rows (polynomials). In this algorithm, we use total degree bounds for 7
hence 7 must have a large enough number of elements in finite steps. O

Ezample 1. We compute the reduced Grobner basis w.r.t. the graded lexico-
graphic order for the ideal generated by the following polynomials. We note that
we show only very simple example since it is difficult to show the whole matrices
for nontrivial cases.

F = {2z + 3y, zy — 2}.
In this case, we construct the following matrix M+ (F') with d = 3 and compute
its reduced row echelon form Mz (F).

(2300[}00 0 0 0 (10000“{,0_2 {]\
02300000 0 0 01000000 3 0
00002300 0 0 00100000 -2 0
00230000 0 0 | 00010000 £ 0
Mz(F)=100000230 0 0 |, Mz (F) = g
o el 00001000 0 3
00000100 0 —2

0100000-20 0 00000010 0 4
0010000 0 =2 0 3 5

IAKOETT o 0 1) \00000001 2 0

Hence, we have the following candidate G+ for a Grébner basis.

9 4; 4 31
{;1‘3 - % ye? + 3y, zy® — 2y, v* + Eg._.rz +3, zy-2, >+ 3 T+ ?‘U} 5

We delete all the verbose elements and test the conditions in Step 6. Since they
pass the conditions, we obtain the following reduced Grobner basis.

G:{a'+3—;._ y2+§}.



4.2 Definition of Numerical Gréobner Basis as Linear Space

Let Mq-(f ,p) be the matrix whose row vectors are of Mf[f ) and o7 (p) of a
polynomial p(z). We denote the numerical rank of matrix M by rank. (M) which
satisfies
rank.(M) = min  rank(M’)
[[M =2 ||2<e
where rank(M) denotes the conventional matrix rank of M. We note that for
any k < rank(M), we have
: LA

. |M = M'||2= 041
where &; denotes the i-th largest singular value of M.

The difference of the ideal membership of p(x), between ideal(G) 2 F and
ideal(F") may increase with increasing the total degree or the number of terms
of p(x). Hence, we consider the equivalence of ideal(G) and ideal( F') by limiting
the total degree or the number of terms that must be the lowest value satisfving
G C Fr since we wish to keep the relations between G and F. We note again
that F is only reliable since F' is not known.

Definition 7 (Numerical Membership). For a polynomial p(x), a polyno-
mial set F' and an ordered set of terms T, we say that p(x) is numerically a mem-
ber ofideal(F) w.r.t. T and the tolerance € if rank(M7(F)) = rank. (M7 (F, p)).
We denote this by p(x) €7 - ideal(F). <

By this definition, we say ideal(F) and ideal(G) are numerically equivalent if
and only if Vf(zx) € F, f(x) €7 ideal(G) and Vg(x) € G. g(x) €7 ideal (F).
On may think that with this definition some strange situations can happen. For
example, it is possible that every polynomials numerically belong to an ideal
or that sifi + safe does not numerically belong to an ideal even if f; and fo
numerically belong to it. This is correct and inevitable for the second kind of
problem. F' are just one of possible sets for F' so we cannot ignore the extreme
case: 1 € ideal(F'). Moreover, even if we use exact arithmetic as in Section 2,
after any computation (e.g. s1f1 + s2f2). the difference from F usually becomes
larger hence some strange situations may happen.
— @

The above definition cannot be used for testing S(g:,g;) = 0 (gi,9; €
G) since it usually happens that S(gi,g;) €7, ideal(G), depending on 7. We
suppose g;(x) = gi(z) (j < 7) and construct the matrix Ry (G) whose each row
vector 7 satisfies ¢ (7)) € Pr(g:) for gi(x) € G where

Pr(g:) = {t: X gi € Clz|1 | t; = ¢7'(&2), i=1,...,m,
39 € Pr(g;) (7 < i), ht(g) = ht(t; x gi)}.

Similar to Mg (F, p). R (G, p) is defined as the matrix whose row vectors are
the vectors of Ry (G) and ¢7(p) of a polynomial p(a).



Definition 8 (Numerical S-Polynomial Check). For polynomials g;(x) and
gi(x) of a set G and an ordered set of terms T, we say that the S-polynomial
S(gi.g;) is numerically reduced to 0 by G w.r.t. T and the tolerance ¢ € R> if

rank(R7(G)) = rank.(R1(G,S(gi,9;))). We denote it by S(gi,g;) =70, <

Definition 9 (Numerical Grébner Basis). We say that G = {guseeigr) 18
a numerical Grébner basis for ideal(F') w.r.t. a fived term order = and a toler-
ance £ € Rxo if the following conditions are satisfied.

1. Vi, j € {l,...,r}. lem(ht(g;),ht(g;)) € T,

2.Vi,j e {1......_.:-"}, S(g{gJ) =70

where T is an ordered set of terms such that idcal[ﬁ' ) and ideal(G) are numeri-
cally equivalent. In addition, minimal and reduced Gréobner basis are also defined
in the ordinary way. 4

We note that the above definition is compatible with the conventional Grobner
basis since they are the same if ¢ = 0. Moreover, any conventional Grébner basis
is always a numerical Grébner basis w.r.t. any tolerance. One may think that this
definition for the second kind of problem is not well-posed which is the notion
introduced by Hadamard and should have three properties: a solution exists, is
unique, and continuously depends on the data. Analyzing the definition from
this point of view is postponed for future work.

4.3 How to Compute Numerical Grébner Basis

Computing a numerical Grobner basis defined in the previous subsection is not
easy. In this subsection, we give a naive method using the reduced row echelon
form. Though Algorithm 1 uses only the reduced row echelon form, for the
numerical case, we separate it into the forward Ganssian elimination and back-
substitution. Let &7 (F) be the upper triangular matrix by the forward Gaussian
elimination with partial pivoting, using an unitary transformation (i.g. givens
rotation), of MT(F ), and L{q-_s(}:" ) be the same matrix but neglecting elements
and rows that are smaller than the given tolerance £ in absolute value and 2-
norm, respectively.

Algorithm 2. (Numerical Grobner Basis)
Input: a tolerance £ < 1, a term order > and a set F,
F={fi@)..... (@)} C Clal.
Output: a numerical Grébner basis G for ideal(F"),
G={g(x),....g.(x)} C Clz] or “failed”.
1. d «— max;— ., tdeg(f;) and e «— 1.
2. T « the ordered set of the terms of total degrees < d.
3 Hﬂr‘s(ﬁ“ ) « the upper triangular matrix by the forward Gaussian elimination
with partial pivoting, using an unitary transformation of My (F).
4. Ur - (F) « the reduced row echelon form of Uz .(F)
by back-substitution without scaling pivots to one.



B G {rj);](ﬁ’) | 7 is a row of Ur o (F), [|Pl2> :}
Gr — {o7'(F) | 7 is axow of Ur(F), | F[l2> .
6. G — Gr\{g€ Gr|Fh € Gr\ {g} s.t. ht(h)|ht(g) }.
G —Gr\{g9€Gr2h € G7 \ {g} s.t. ht(h)[ht(g) }.
7. Outputs G or G whichever satisfies the conditions:
7-1. Ygi. g; € G, lem(ht(g,). ht(g;)) € T.
7-2.Yf € F, f(x) €. ideal(G),

——

7-3. Vgi.g; € G. S(gi.g;) =71, 0.
8. Outputs “failed” if 3% > 1.
9.d«—d+1, e — e+ 1 and goto Step 2. <

Lemma 4. Throughout Algorithm 2, we have
¥g € G (2 G), g(x) €75 ideal(F)
where § =|Uz -(F) — U (F)||. <

Proof. Let Ur(F,g) be the matrix whose row vectors are of Uz (F) and
o7 (g), and Ur(F, g) be the matrix whose row vectors are of L{-;r(ﬁ‘ ) and é7(g).
By the assumption of the lemma and rank(Ur .(F,g)) = rank(Ur (F)), we
have | Uz (F,g) — Ur(F,g) |2< 6. Since Uz (F) is calculated by only wni-
tary transformations, we have L{T(ﬁ’ )i ="TF, M—;(I:" ) where U denotes the prod-
uct of such transformations. Let U " be the following unitary matrix satisfying
Ur(F,g) = U'Mx(F,g).

The lemma follows from the facts that all the singular values of Mz (F.g) and
U'M+(F.g) are the same since U is unitary. 0O

Lemma 5. Throughout Algorithm 2, we have
Vg € Gr (2 @), g(x) €15 ideal(F)
where § =|Uz -(F) — U (F)||. <

Proof. Since for any row vector p of Hq-__s(ﬁ‘). 7 is a linear combination of row
vectors of Uy .(F), we have rank(Ur -(F,g)) = rank(Ur -(F)). The lemma is
proved by the same way in the above proof. O

Lemma 6. Throughout Algorithm 2, we have
Vf € Fr, f(z) €1 s ideal(Gr)
where 8 =|Ur (F) — Uz (F)|. q



Proof. The lemma follows from the fact Uz -(F. f) —Ur(F, f)|[>< & as in the

above proves. 0

Unfortunately, the above lemmas do not guarantee that Algorithm 2 always
terminates with a numerical Grobner basis. However, they suggest 32 > 1 in
Step 8 as follows. One of the reasons that Algorithm 2 can fail to terminate with
a numerical Grobner basis is 3g € G. t € T, tg €7.. Gr. For a proper superset
T' of T, by the above lemmas, we have

“ HT’,E{}?JQ) _MT’.E(_F) “2 5 by = -
= [|Ur o (F,tg) — Ur (F,tg) + Ur (F,tg) —Ur (F) + Ur/(F) —Ur £ (F) |2
< “L{T'E(Frg) '—MT'(FrQ) ||2 T “ MT’(F‘. tg) _-UT'(F) ]2_' N
+ | Uz (F) — Uz (F) ||2
< 34

where &' :||qu-r,g(ﬁ‘) - M-g-e(ﬁ‘)”. This means that the distance between G and
G 7 increases by a factor of 3 in the worst case, even if we decrease § and 4’ such
that 8, &' =~ e.

In our preliminary implementation, due to accumulating numerical errors,
we use the following G+ and Gr instead of the above.

Gr — {67 () | 7 is a row of Uro(F), | F]l2>/2}.

G7 — {67 () | 7 is arow of Ur.(F), | 7]l2> "2}

In Step 7, we test GG and G. However, it is better that we test the all subset of G-+
and G if we do not consider the computing time though we do not implement
this. According to our experiments, we could detect a suitable tolerance £ as
follows.

= = 1010810 akHlog g ok1)/2 (4.1)

where o; denotes the i-th largest nonzero singular value of M7 (F') and k is the
largest integer maximizes oy /ok1. Moreover, in our preliminary implementa-
tion, we use matrices N7 (F) and Nz (F,p) instead of Mz (F) and M (F, p),
respectively, whose row vectors are normalized in 2-norm. This normalization
is not necessary for our definition, however this makes numerical computations
more stable.

Ezample 2. We compute a numerical Grobner basis w.r.t. the graded lexico-
graphic order and the tolerance £ = 107 for the ideal generated by the following
polynomials that are the same polynomials in Example 1 but slightly perturbed.

F= {2.0000052 + 3.000001y, 0.999999xy — 2.000003}.

In this case, we construct the matrix N (F) with d = 3 and compute the reduced
row echelon form of N7 (F). In Step 5. we have the following candidate for a

10



numerical Grébner basis.
G7 = { 0.55470123 — 2.49615y, 0.712525yx2 + 2.13758y,
0.883413xy? — 1.76683y, 0.647575y> + 0.863437y,
0.55470122 + 1.6641, 0.712525xy — 1.42505,
0.522232y2 + 0.696312, 0.716116x + 1.07417y }.

We delete all the verbose elements and test the conditions in Step 7. Since they
pass the conditions, we obtain the following numerical Grobner basis that are
very similar to the result in Example 1.

G = {1.0y* + 1.33334, 1.0z + 1.5y} .

For the lexicographic order and £ = 1077, we start with the rectangular degree
bound d = {2,2} and we have the following G 7.

Gt = { 0.4472132%y% — 1.78886, 0.712525y2> + 2.13758y.
0.55470122 + 1.6641, 0.68755zy% — 1.3751y,
0.7125252y — 1.42505, 0.7161162 4+ 1.07417y, 0.522232y2 + 0.696312 }.

We delete all the verbose elements and test the conditions in Step 7. Since they
pass the conditions, we obtain the following numerical Grébner basis.

G = {1.0z + 1.5y, 1.0y* + 1.33334}. (4.2)

Our method can work for the following polynomials having a small head coeffi-
cient w.r.t. the lexicographic order.

F= { 0.000000122 + 2.0000052 + 3.000001y, 0.999999xy — 2.000003 }.

With the tolerance £ = 6.95972 x 10~ calculated by (4.1) and the rectangular
degree bound d = {5.4}, we have the following numerical Grébner basis. We note
that the head term of the first element is smaller than £ during inner calculations
hence it is not reduced. Moreover, Algorithm 2 outputs the same as in just above
(4.2) if we specify £ = 1079,

{ 0.000861698y* + 1.5y + 1.0z + 0.00114879, 1.0y* — 0.0000001y + 1.33334 }.

]

5 Remarks

Our approach uses a huge matrix so that it is not effective if we try to compute
a Grobmer basis for polynomials with exact coefficients. However, as noted in the
beginning of Section 4, it is natural that we use several tools in numerical linear
algebra since we have to handle a priori errors and most of symbolic-numeric
algorithms for polynomials also use them from necessity. From this point of view,
instead of row echelon form by the Gaussian elimination in Algorithm 2, one can
use the QR decomposition or the singular value decomposition (SVD) to improve
the algorithm though we've not yet analyzed their effectiveness. We note that
for all the example in this paper, we use our preliminary implementation on
Mathematica 6.
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