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Abstract. Grabner basis is olle of the most important tools ill recent 
symbolic algebraic computations. Howe\'er, computing a Grobncr basis 
fo r the given polynomial ideal is lIot easy and it is lIot numcric.. .. l1y stable 
if polynomials have inexact coefficients. I n this paper, we study what we 
should get for computing a Grabner basis with inexact coefficients alld 
introduce a naive method to compute a Grabner basis by reduced row 
echelon form , for the ideal generated by the given polynomial set having 
a priori errors on their coefficients. 

1 Introduction 

Recently, cOIlIJ>uting a Grabner basis fo[' polynomials with inexact coefficients 
has been studied by several researchers ([I ], [2], [3], [4] , [5] . [6], [7]). In Sasaki 
and I<ako [I ], t his problem is classified into the fi rst and the St.'cond kinds of 
problems. The first kind is com puting a GrobneJ' basis for the ideal generated 
by t he given polynomials with exact coefficients by nUll1erical arithmetic (e.g. 
floating-poim arithmetic) . The second kind is fo r the given polynomials with 
inexact coefficients havi ng a priori errors. In this case, we have to operate with a 
priori errors whether we compute a basis by exact arithmetic or not . For exam­
ple, Sh irayanagi 's method ([3], [4J ) by stabilization techniques requi res to extend 
the inl)ut precision up to a point that the algori thm can work stably hence it 
is for the first kind since we cannot extend the input precision of inexact data 
in practice even if we can extend precisions duri ng computations. For pract ical 
computations, coefficients may have a priori errol's due to limited accuracy, rel)­
rescntational error , measuring error and so on, hence the second kind is much 
more important than the first one. In this paper , we try to interpret the second 
kind of problem with the comprehensive Gr6bner system and numerical linear 
algebra. 

We assume t hat we compute a Grabner basis or its variants for the ideal 
I £;; C[x] gencrated by a polynomial set F = {IJ , ' .. ,h} C C[x ] whcre C[x ] is 
t he polynomial ring in variables x = Xl, ..• , X l over thc complex number field 
C . However, ill our setting, coefficients may have a priori errors hence we have 
only a polynomial set t = UJ ,' .. , id C C[xJ as the givcn inexact input, which 
may be different from F. We note that the number of polynomials may be also 
different (i.c. k t= k:). The most intercsting part of this problem is what we should 
compute for the inexact input F when we are not able to d iscover the hidden 
and desirable polynomial set F. \ -\Te review some known interpretation of this 
problem in Section 2 and 3 and give another resolution in the latter sections. 



2 Comprehensive Grobner System with Inexact Input 

If we can bound the difference between F and F in some wa.y, the most fait hful 
solution for computing a Grobner basis with inexact input is the comprehensive 
Grabner basis (or comprehensive Grobner system) introduced by \Veispfennillg 
([8], [7], [9]). By representing ClTOl' parts as unknown parameters, the problem 
becomes computing a parametric Grabner basis. In this sect ion , we briefl y rmriew 
this approach in our problem setting. 

Let A = C(o ), ... , 0 '1] be t he polynomial ring in parameters 0 " ... , 0 ,. over 
the complex number field and consider the polynomial ring A [x ] in variab les 
x), . .. , Xl . For a fixed term order ~ on C [x], it is well-known that in general 
a Grabner basis in A [x] with respect to variables x will IlO longer remai n a 
Grabner basis in C [x l when the parameters 0 " .. . , 0 '1 arc specialized to some 
val lies in C . The comprehensive Grabner basis and system [8] are defined to 
overcome this sit.lIaLion. 

D efinition 1 (Compre he nsive Grabner Bas is ). Let F ~ A [x ] be a finite 
pammetric polynomial set and 1 be the idealgenemted by F. We call a finite ideal 
basis G of I a comp1T~hellsive Grobne1' basis of I if G is a G1'obner basis of lhe 
i(iC(ll gellemted by F in C [x ] for eve1-Y specialization of vammeters 0 ), . .. , 0 '1 

in C . <l 

Definition 2 (Compre he nsive Grabne r System). Let F ~ A [x] be a finite 
pammetTic polynomial set, S be a subset of C 'l, A " .. . , A r /)e algebmically con­
st1'uctib/e subsets oJ C 'l such that S ~ A ) U···UA,. anti G), ... ,C r be subsets of 
A[x ]. We call a finite set G = {(AI, Cd, ... ,(A,., Grn of pairs a comprehensive 
Grobne1' system for F on S if G; is a G1'obnm' basis of the ideal genemted by F 
in C [x ] for eve1-Y specialization of pammete1'S (0)., ... , 0 '1) in A;. Each (A;, Ci ) 

is callal a segment of G. <l 

Sup pose that all t.he inexact parts on coefficients in t can be represented 
by purameters 0 " . .. , Ct'l ' T hen, com pu ting a Grabner basis with inexact input 
can be done by comput.ing a comprehensive Grabner system for F E A [x ] OIl 

S where S includes all the possible speciali~ation of parameters (0), ... , 0 ,.) in 
C 'l . However, in general , a comprehensive Grobncr system has a huge number of 
segments alld its computation time is qllite slow (see [101 for example). T hough 
Weispfenning [7] trie<1 to decrease the time-complexity by lIsing only a single 
parameter to represent the inexact parts, whose bounding error mcchanism is 
very similar to interval arithmetic and Traverso and Zanoni [6] pointed out that 
an interval easily becomes too large when we compute a Crobner basis by intel'val 
arithmet ic. In the <luthor's opinion, this is one of reasons that many researchers 
still havc been studying Crabner basis with inexact input. 

3 Approximate Grobner Basis with Inexact Input 

As in the previous section, unfor tunately, treating inexact parts of coefficients as 
parameters docs not give us any reasonable (w.r.t. computation time and number 
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of segments) answcr to the second kind of pmblcm. In t his section, wc review 
anot her Ilpproach by Sasaki and ({ ako [II. They tried to define approximate 
Grabner basis by the following approximate-zero tests for polynomials appearing 
in the Buchberger algorithm. We note that they also intmduccd several numerical 
tcchniq llcslo prcve nt canccllat.ion c rrors and we briefly review only t.heir concept. 
without t heir complete settings and defini t ions. 

D efinition 3 (Approx ima te-Ze ro Test ). Let p(x) be a polynomial appear­
mg in the Buchbe1yer· algorithm, and (8[( X), . .. ,8k(x)) be lhe syzygy for p(x) 

i. - --
satisfyin91J(X) = 2: ,"=1 8i(x )f;(x ) . If IIplI < e x max{ lI slfdl. · ·· , II si.h ll l whe1Y~ 
11 ])11 denote the infinity norm ofp(x), then we say rex) is appmximately zem at 
tolemnce f:, a7ld we denote this as p(x ) := 0 (tol €) . <J 

D efinition 4 (Practical Approximate-Zero Test ) . Let p(x ) be a polyno­
mial appearing in the Buchberge,· algorithm, and bJ[ , . .. , Pm) be all the non-zem 
coefficients tuple of ])(x) . If max{1IJI I, .. ·,11'", I} < e, then we say p(x ) is Innc­
tically apJ)mximatc-zem at tolerance e, and we denote this as 1J(X) := 0 (tol e) . 

< 

Wi t h Olleofthe above defi ni t ions (computation of syzygiC!:i is time-consuming, 
so they decided to use the second one in pract ice) , they define the following ap­
proximate Grobner basis. 

D efinition 5 (Approximate G r obner Ba sis) _ Let e be a small positive num­
ber, and G = {g[, .. . ,gr } be a lJolynomial set. We call G an approximate 

C7:--:c'C'C G,·obner basis of tolerance E, if we have S(g"Yj) =: 0 (tol E) (Vi ¥ j) whm~ 
S(g;, gj) and pC denote the S-polyrlOmial of g; and gj and th.e normal fonn of]J 
by G, respectively. <J 

T he above definition can bc considered as a numerical version of comprehen­
s ive Grabner system wit.h a single parameter by Weispfellning [7], using much 
reasonably relaxed bounds instead of exact interval arithmetic. In the Buch­
berger algorithm, hea.d terms of polynomials appearing in the procedure arc 
critically important hence most of known results have to take care of approx­
imate zero tests by exact interval arithmetic, parametric representation or the 
ahove way for examplp.. In t.i[e n>st of t.lll'! Jlaper , Wf' c.orl."ider the Sec.Ollri k ind of 
problem as a problem in numerical linear algebra instead of trying to extend the 
Buchberger algorithm directly. 

4 Grabner Basis for Inexact Input a s Linear Space 

\Ve note again that t he first and second kinds of problem are fundamentally 
different. For the first. kind 1 t.here exists the answer which is a Grabner basi s of 
the ideHI 1 generated by F and can be computable by exact arit.hmet.ic. On the 
other hand, for the second Olle, there exist so ma ny possible answers since F is 
not known in practice and the given polynomials of t have a priori errors and we 
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can absolutely not be able to knmv that they should be. Moreover , for the given 
F and the unknown F , it may happen that p(x) E idenl(G) and p(x ) 1. ideal(F) 
even if we can com pute a Grabner basis G for ideal(F) by some method , where 
ideal (S) denotes the ideal generated by the clements of a set S. Because such 
a Grabner basis is only a candid ate for possible so many Grabner basl.'S for 
unknown F . It also be possible that they include {I}. Any resolution for the 
second kind of problem must guarantee that p(x ) E ideal(G) and p(x ) E idcal(F) 
are eQuivalem with or without some conditions since what is the most reliable 
is not C but the given F (this is the only reliable information) which does not 
have any posteriori error. In the below, we give u resolution from this point of 
view. 

4.1 G robner Basis as Linear Space 

Some researchers studied computing a Grabner basis by reduced row echelon 
form ([J I], [12]) though there are no concrete algorithms described. However, 
this is Ilot efficient since we have to operate with large matl·ices. Using matrix 
operations paltially like F'4 and F'5 ([13], [14] , [2]) may be the best choice if we 
want to decrease the computation time. We note that the matrix constructed in 
the F4 algorithm is essentially the same as in this paper and is more compact 
and well considered . On t he other hand , for the second kind of problem , it 
may be useful since we can use so many results from numerical linear algebra 
for the situation where we must inevitably operate with a priori errors. ('(cnce 
we summarize an algorithm for computing Crabner basis with exact input by 
reduced row echelon form in this subsection. We note that we use the following 
definition though there are several equivalents (see [15] or other text books). 

D efin it io n 6 (G r obner Basis). G = {gl , '" ,9T} ~ J\ {O} is a Cn'ibne7' basis 
lor 1 w.r.t. a fixed term order r illor any I E J \ {OJ, there exists g; E G such 
that ht(g;)lht (.f) where ht(p) denotes the head term olp(x) E C[x ] '/I).r.t . >- . <l 

We consider the lineal' map ¢T : C [X ]T -. e'" such thai ch- (td = et where 
C[xh is the submodule of C[x] generated by an ordered set (the most left 
element is the highest) of terms T = {t l , ... , t",}>- and e:(i = J , ... , m ) denotes 
the canollical basis of C m

• The coeflkient vector r of p(x) E C[x] is defined to 
bc satis fying J1 = ¢T(P) and l)(X) = rP:r I (J1). With a fixed T , we consider the 
following subset FT of 1. 

FT ~ {t. , ,(x )/,(x) I s,(x)/,(x) E C[xlT, s,(x) E C[x1} . 

The Buchberger algorithm guarantees that G ~ FT if T has a large enough 
Ilumber of elements. To compute a Crabner basis for J, we construct the matrix 
MT (F) whose each row vector 11 satisfies ¢:r' (]1) E PT(f) for I(x) E F where 

PT(P) ~ (I, x p(x) E c[xiT I t; ~ 1,,' (et), ; ~ I, ... ,m) . 
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By this definition, FT and t.he linear space VT generated by the row vectors of 
MT (F) are isomorphic. 

We note that a matrix is said to be in reduced row echelon form if it satisfies 
the following four conditions. 

\. All non/':ero rows appear above /':ero rows. 
2. Each leading element of a row is in a column to the right of the leading 

elemellt of the row above it. 
3. The leading clement. in ally nonzero row i:s 1. 
4. Every leading element is the only Ilon/':ero elcrnent ill its column. 

Lemma 1. Let MT (F) be lhe 1educed row echelon form of MT(F). If 9i(3;) E 
FT for a fixed i E {I, ... , 1"}, MT (F) has a 1"OW vector p sat'isfying ht(g;) = 
ht(rpTI (It)). <J 

P1lJoj. Si nce the linear map 1rr is defined by the ordered sct T , each leading 
clement of a row vector p of MT (F) is corresponding to ht(rpT I(P». The 
lemma follows from the facts that FT and VT arc isomorphic and a ll the leading 
ent.ries of nonl'£ro rows are disjoints since M T( F ) is in t.he reduced row echelon 
form. o 
Le mma 2. Let MT (F ) be lhe redltced row echelon form of A;fT(F). 1fT has a 
large enough number of elements, lite following GT is a G1'obner bas'is for I. 

P1'00j. The Buchberger algorit.hm guarantees that G ~ FT if T has a large 
enough numbcr of clements. Therefore, GT satisfies the condition of Defi nition 
Gsince wehave g;(x) E GT,'i = {I , . .. ,r} by Lemma I. D 

The above lemmas lead us to the following algorithm directly. 

Algorithm 1. (Gri:ibner Basis by Row Echelon Form) 
Input: a term order ~ and a set F of polynomials, 

F ~ {j, (x ), ... , Jk(x )) C C [x ). 
Output: a Crooner basis G for the ideal gencrated by F J 

G ~ {g, (x), . .. ,g,(x)) c C[x). 
1. d _ max i=I, ... ,1. tdeg(Ji) (the total degree of f ,(x )). 
2. T _ the ordered set of the terms of total degrees ::; d. 
3. MT (F) _ the reduced row echelon form of M T(F). 

4. GT _ { rPT 1(P) I p is a row vector of MT (F)}. 

5. G _ GT \ (g E GTI3h E GT \ {g) ,.,. h'(h)[ h'(g) l· 
6. Outputs G if the following conditions satisfied: 

-,,-G 
6-1. "I/f E F, fi = 0, 

C 
6-2 . "I/gi,gj E G, S(9i,9j) = 0, 

otherwise d +- d + 1 and golo Step 2. <0 



Algorithm 1 is not optimized. For example, we should optimize the algo­
rithm as fo llows. ]n Step 1, it is bettcr that we start with a larger d (e.g. 
maxi= l, ... ,k tdt'g(J;) + 1 or a large enough d such that all the S-polynomiais 
of F can be calculated in C[xJr ). fo.'loreovcr, we can usc the rectangular degree 
(bound ing eacb variable separately and also called the llluili degree) instead of 
the total degree . In Step 6, it is better that we increment d by ad such that 
S(g; ,gj) can be calculated in Fr for any pair of clements of G and T with 
d +- d+ .dr/. 

Lemma 3. AIgo1ilhm 1 computes lhe re(illced G1'obne1' basis for the ideal gen­
erated by the !}i.ven polynomial set F . <l 

Proof. The condition 6-1 guarantees that the ideals generated by F and G are 
the same. Hence, if T has a large enough number of elements, Algorithm I 
outputs a Grabnel' basis for the ideal generated by F since the condition 6-2 
means that G is a. Grabner basis fo r the ideal generale<l by G. Step 5 deletes 
verbose polynomia.ls by Defi nition 6 hence G is a minimal Grabner basis. T he 
lemma follows from the fact that Mr(F) is in the reduce<i row echelon form so 
that all the polynomials corresponding to row vectors are already red uced by 
other rows (polynomials). III this algorithm, we usc lotal degree bounds for T 
hence T must have a large enough number of elements in nnite steps. D 

Example 1. We compute the reduced Grabner basis \V.r.t. the graded lexico­
graphic order for the ideal generated by the followi ng polynomials. We Hote that 
we show only \'ery simple example since it is difficult to show the whole matrices 
for nontrivial cases. 

F = {2x +3y, xy - 2}. 

In this case, we construct t he follow ing matrix Mr(F) with II = 3 and compute 
its reduced row echelon forlll Mr(F). 

2300000 0 0 0 
10000000 - ~ 

0 230 00 0 0 0 0 
0000230 0 0 0 

010000003 
00100 00 0 - 2 

0 0230 0 0 0 0 0 0 0 0 1 00 0 0 
, 

MT (F) ~ 0 000023 0 0 0 , MT(F) -
, 

0 000 00 0 2 3 0 
0000 100 0 0 
00000 10 0 0 

0100 00 0 - 2 0 0 00000010 0 0 010 00 00 - 2 0 
00000001 

, 
0 000 0 100 0 -2 , 

l'lence, we have the following candidate Gr for a Grabner basis. 

{
3 9Y2 23 4Y2 24 x - "2 ' Yx + 3y , xy - 2y, y + 3 ' X + 3,xy - 2, "!i + 3" ' 

0 
0 
0 
0 
3 

- 2 , 
" 0 

\Ve delete all the \Ccrbose clements and t{.'St the conditions in Step 6. Since t hey 
pass the condiciolls, we obtain the following reduced Grabucr basis. 
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4.2 D e finition of Numerical Grabne r Basis as Linear Space 

Let M7(F,p) be t.he matrix whose row vectors are of MT(F) and ¢T(P) of a 
polynomial p(x ). We denote the numerical rank of matrix A1 by rankd AI) which 
satisfies 

rank~ (A1) = min rank(M') 
II AI - Al'lb9 

where rank (AI) denotes t he conventional matrix rank of M. We note that. for 
any I\. < rank(.H), we have 

where a ; denotes t.he i-t.h largest singular value of AI. 
The difference of t.he ideal membership of p(x) , bet.ween ideal(G) 2 F and 

ideal(F) may increase wit.h increasing the total degree or the number of terms 
of p(x). Hence, we consider the equivalence of idea\(G) and ideal(F) by limitiug 
the total degree 01" the nmnber of terms that must be the lowest value satisfying 
G C F7 since we wish to keep the relat.ions between G and F. We note again 
that F is only reliable since F is not known. 

Definition 7 (N umerical Membership). For a polynomial p(x ), a polyno­
mial set P and an ordered set of tenlls T , we say thatp(x ) is Ilumerically a mem­
ber ojidcal(F) W.r. t. T and the tolemllcee ifrank(M T(P» = rank~ (Atf T(F, ,)) . 
We denote thii by p(x) ET.~ idea l(F) . <J 

By this definition, \ve say ideal(F) and ideal(G) are numerically IXluivalellt if 
and only ifVJ lx ) E P , f(x) ET., idcal(G) and IIg{x) E G , g(x ) ET.~ ideal(F). 
On may thi nk that with this definition some st.range situations can happen . For 
example, it is possible that cvery polynomials numerically bclong to an ideal 
or that 51 h + S2h. docs not numerically belong to an ideal even if fl and 12 
numerically belong to it. This is correct and inevitable for the second kind of 
problem. F are just. one of possi ble sets for F so we cannot ignore the extreme 
case: I E ideal(F). r.,'loreover, evcn if we lISC exact arithmetic as in Section 2, 
after any computation (e.g. 5]h + 52h), the differcnce from F usually becomes 
larger hence some strange situations may happen. 

C;::--:-"G The above definition cannot be used for testing S(9;, f!j) = 0 (9; , 9j E 
G) since it usually happens that S{9i ,9j) E T.~ idcal(G) , depending on T. We 
suppose 9j(X) >- 9i.(X) (j < -i) and construct the matrix RT(G) whosc each row 
vector p satisfies ¢:rtv) E PT(9;) for gi (X) E G where 

P7(9;) = {t; x 9; E c[XlT I t ; = ¢:rl (e;) , i = l , ... , m., 
!3g E PT(g;) (j < i ), ht(g) = ht(t; x g;)) . 

Similar to M7(F,p) , RT(G,P) is defined as the matrix whose row vectors are 
the vectors of 'RT(G) and ¢7(P) of a polynomial p(x). 
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D efinition 8 (Numer ical S-Polynomial Check). For polynomials g.(x) and 
9j{X) of a set G and an ordered set of terms T , we say that the S-polynomial 
S(9j ,9j) is nmnerirolly reduced to 0 by G w.r.t. T and the tolerance ~ E R~o if 
rank(R.T(G» = ra.nk~ (nT(G)S(gi,gj))). We denote it by S(g;,gj)G =T,~ O. <J 

D efin it ion 9 (Numerical Grobner Basis). We say that G = {Yl, .. . , g,.} is 
a mLflW1'ical Grabner basis for idcal(F) 1/J. r . t . a fixed term on1e1' >- and a toler­
ance e E R >o if the following conditions an~ satisfied. 
1. Vi, j E {~ ... , T} , Jcm (ht(g;), ht(gj» E T , 

= -'-'i<a 2. '<ii,j E {I" .. , 1'} , 5(9j,9) =T,~ 0 
when! T is an ordered set of tenns such that idea-I(t) and idcal (G) are numeri· 
cally equivalent. In addition, minimal and red~lced G1'iibneJ' basis are also defined 
in the onlinary way. <J 

We note that LiLC above definition is compatible with the conventional Grabner 
basis since they are the same if e = O. ivlorcover, any conventional Grabner basis 
is always a numerical Grabner bas is w.r.t. any tolerance. One may think that this 
definition for the second kind of problem is not well-posed which is the notion 
introduC<!d by Hadamard and should have three properties: <l solution exists, is 
unique, and continuously depends on the data. Analyzing the definition from 
t his point of vicw is postponed for future Kork. 

4.3 How to Compute Numerical Grobne r Bas is 

Computing a Ilumerical Grabner basis defined in the previolls subsection is not 
easy. In this subsection , we give a naive method using t he reduced row echelon 
form. Though Algorithm I uses only the red uced row eclwlon form , for the 
numerical CU$C, we scparate it into the forward Gau$Siun elimination and back­
substitution . Let UT(F) be the upper t riangular matrix by the forward Gaussian 
e limination with partial pivoting, using an unitary tnmsfor mation (Lg. givens 
rotation), of M T(F) , and UT,d F) be the same matrix but neglecting elements 
and rows t hat arc smaller than the given tolerance e in absolute vallie and 2-
norm , respectively. 

A lgorithm 2. (Numerical Grobner Basis) 
Input: a tolerance e« 1, a term order >- and a set t , 

F ~ (J.{x ), .. . ,!,{x)) c C[xJ. 
Output : a numerical Grabner basis G for ideal (F), 

G = {gl (x ), ... ,gr'(x)} C C[x] or "failed". 
L d +--- llWXi= l... .. " t.deg(f;} and e +--- 1 
2. T _ the onlcroo set of t he terms of total degrees :0:::; d. 
3. UT.~( F) +--- t he upper triangular ma.trix by t he forward Gaussian elimina.tion 

with partial pivoting, using an unitary transformation of MT (P ). 

4. UT,~( fr) +--- t he reduced row echelon form of UT,~ (F) 
by back-substitution without scaling pivots to one. 
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5. GT +- {rP:r\]t) I Jt is fi. row of UTA P), IIJtI12 > .~} 

GT - { ¢i" (")1) I ")1 is a row of UT,,(F), 11")111,> <}, 
6. (; ~ GT \ {g E GTI3h E GT \ (gl s.c. ht (h )l ht (g) }. 

G ~ GT \ {g E GTI3h E GT \ (gl s.c. ht (h)l ht (g) }. 
7. Outputs G or G whichever satisfies the conditions: 

7-1. Vg" Yj E G , Icm (ht (Yi), ht(Yj)) E T , 
7-2. "If E t , f( :r. ) ET.c id p.~ l ( G) , 

= --:-;'0 7-3 . "19;, Yj E G, S(9;,9j) = T ,(: O. 
8. Outputs "failed" if 3c E ~ 1 . 
9. d ..... d+ 1, C ..... e+ 1 and goto Step 2. 

Le mma 4. Th7'Oug!wut A 19o)'itlnn 2, we have 

Vg E GT (2 C), g(x ) ET,li ideal( F ) 

wi"," J ~IIUT,,(F) - UT( F)II. 

P7'Oof. Lct UTA F ,9) be thc matrix whose row vectors are of UT ,(: (F} and 
¢T(g), and UT(F, g) be the matrix whose row vectors are of UT(F) and o/T(g). 
By the assumption of the lemma and rank(UT.~ (F, 9)) = rank(UT.(:( F )), we 
have II UTAF,g) - UT (F ,g) IbS: o. Since UT( F} is calculated by only uni­
tary t ransformations, we have Ur(F ) = UMr(F) where U denotes t he prod­
uct of such transformat ions. Let V' be the following un itary matrix satisfying 
UT(F,g) ~ U'MT (F, g). 

( 
0) V'= u : 

0 .. · 0 ~ 
The lemma follows from t he facts that all the singular valucs of M T(F, g) and 
U' M T(F,g) arc thc samc sincc U' is unitary. D 

Le mma 5 . Throughout Algorithm 2, we have 

V9 E Cr (2 C ), g(x } Er.{} idcD.l (F ) 

whm J ~IIUT.,(F) - UT(F )II· 

Pmof. Since for ally row vector r of UT.~ (F), 'jJ is a linear combination of row 
vectors of UT AF), we have ra nk(UT.~(F, g)) = rank(UT,~(F)). The lemma is 
proved by the same way in thc above proof. D 

Le mma 6. Th1'Oughout Algo1'ithm 2, we have 

"If E FT , f( x ) ET ,li idea.l (GT ) 

where J ~ IIUT.,(F) - UT(F)II. 
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Pmo[. The lemma follows from t.he fact IIUr, .. (F ,f) -U-r(F,J)lk':; 5 as in the 
above proves. 0 

Unfortunately, the above lemmas do not guarantee that Algorithm 2 always 
terminotes with a numerieo.l Grab ner basis. However, they suggest 3"'c ~ 1 in 
Step 8 as follows. One of the reasons that Algorithm 2 can fajl to terminate with 
a numerical Grabner basis is 3g E C, t E T , Lg ¢.T.~ GT. Fo)' a propel' superset 
T' of T , by t he above lemmas, we have 

II UT" ,(F , tg) - UT,. , (F) II , 
~ II UT,., (F ,ty) - UT ,(F , tg) + UT,(F , tg) - UTO(F ) + UT,(F) - UT' .,(F ) II, 
:5 II UT, .,(F ,tg) - UT'(F, tg) 112 + II UT,(F, tg) - UT ,(F ) 12 

+ II UT, ( F ) - UT' .,(F ) 112 
::::: 36' 

where 6' =IIUT, ... (F ) -UT,(F)II. This Illeans that the distance between C £Iud 
GT incl'eases by a factor of 3 in the worst case, even if we decrease 6 and 6' such 
that 6, 6' .:::: c. 

In our preliminary implementation , due to accumulating numerical errors, 
we use the following GT and GT instead of the above. 

G'T <- {¢"T1nn I -V is a row of U'T ,c(F ), II -V ll z> c1/Z}, 

GT <- {¢i-] (-V) I -V is a row ofUT,c(F) , II -v ll z> c1
/
Z

} . 

In Step 7, we test G and C. However, it is better that we test the all subset of GT 

and Gr if we do not consider the computing time though we do not implement 
this. Accordiug to 0Ui' experiments, we could detect a suitable tolerance c as 
follows. 

(4 .1 ) 

where (7; denot es the i-th larges t nonzero singular value of MT{F ) and k is the 
largest integer maximizes (Ik/ak+l' Moroover, in Ollr preliminary implementa­
tion , \\'c use matrices lVT(F) and NT(F, p) instead of A1T(F) and MT (F ,p), 
respe<:t.ivp.ly, whosp. row vectors it]'e normalized in 2-nOl'l1l. This normalization 
is not necessary for OUl' defini~ion , however this makes numerical computations 
more stable. 

Exam1J1e 2. We com pute a numerical Grabner basis W .Lt. the graded lexico­
graphic order and the tolerance c = 10- 5 for the ideal generated by tho fo llowing 
polynomials tlmt are the same polynomials in Exomple 1 but slightly perturbed . 

F ~ {2.000005x + 3.00oo0I y, 0.999999xy - 2.oo0oo3}. 

In this case, WE con.struct the matrix JVT (F) with d = 3 and compute t he reduced 
row echelon form of N'T(F). In Step 5, we have the following candidate for a 
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numerical Grabner ba<;is. 

GT = { 0.554701 x 3 - 2 .49615y, 0.712525yx 2 + 2.13758y , 
0.883413x y2 - 1.76683y, 0.647575yJ + 0.863437y , 
0.55470 1x 2 + 1.6641 , 0.712525x y - 1.42505 , 
0.522232y2 + 0.696312 , O. 716116x + 1.074 17y }. 

\-\Te delete all the verbose clements and test the conditions in Step 7. Since they 
pass the conditions, we obtain the following numerical Grabner basis that are 
very similar to t.he result in Example 1. 

C = {LOy2 + 1.33334, 1.0:1: + J.5y} . 

For the lexicographic order and c = 10- 5, we start with the rectangular degree 
bound d = {2,2} and we have the following CT. 

CT = {0.44721 3x 2 y2 - 1.78886, O.712525yx 2 + 2. 1 3758y, 
0.554701x 2 + 1.6641, 0.68755x y2 - 1.3751y, 
0.712525x y - 1.42505, 0.716116x + 1.074 i7y, 0.522232y2 + 0.G9G312 }. 

\-\Te delete all the verbose elements and test the conditions in Step 7. Since they 
pass the condiciollS, we obtain the following numerical Grobner basis. 

C = {1.0:1: + 1.5y, 1.0y2 + 1.33334} . (4 .2) 

Our method can work for the following polynomials having a small head coeffi­
cient \V .r. t . the lexicographic order. 

F = { 0.000000 Ix2 + 2.000005x + 3.000001 y, 0.999999x y - 2.000003}. 

With the tolerance e = 6.95972 x 10- 9 calculated by (4.1 ) and the rectangular 
degree bound d = {5, 4} , we have the following numerical Grabner basis . \Ve note 
that the head term of the first element is smaller than e during inner calculations 
hence it is not reduced. i\'!oreover, Algorithm 2 outputs the same as in just above 
(4.2) if we specify E. = 10-6. 

{ 0.0008GI G98y2 + 1.5y + 1.0x + 0.00 114879, I.OyZ - O.OOOOOO l y + 1.33334 }. 

5 R emarks 

Our approach uses a huge matrix so that it is not effective if we t ry to compute 
a Grabner basis fot' polynomials with exact coeHicients. However, as noted in the 
beginning of Section 4, it is natural that \\'e use several tools in numerical linear 
algebra since we have to handle a priori errors a nd most of symbolic-numeric 
algorithms fo r polynomials also use them from necessity. From this point of view, 
instead of row echelon form by the Gaussian elimination in Algorithm 2, one can 
use t he QR decom position or the singular value decomposition (SVD) to improve 
the algorithm t.hough we've not yet analyzed their effectiveness. We note t hat 
for all the example in this paper , we use our preliminary implementation on 
Malhemati ca G. 
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