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Abstract

A complete method is proposed to compute a certified, or ambient isotopic, meshing for
an implicit algebraic surface with singularities. By certified, we mean a meshing with correct
topology and any given geometric precision. We propose a symbolic-numeric method to com-
pute a certified meshing for the surface inside a box containing singularities and use a modified
Plantinga-Vegter marching cube method to compute a certified meshing for the surface inside a
box without singularities. Nontrivial examples are given to show the effectiveness of the algo-
rithm (see Fig. 1). To our knowledge, this is the first method to compute a certified meshing for
surfaces with singularities.

Keywords. Surface, curve, topology, ambient isotopic meshing, marching cube, symbolic com-
putation, interval arithmetic.

1 Introduction

Figure 1: Isotopic meshing for surfaces with singular points and singular curves

To determine the topology of a given algebraic surface and touse triangular meshes to approxi-
mately represent the surface are fundamental operations incomputer graphics and geometric model-
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ing. Meshing of surfaces could be used to display the surfacecorrectly and to perform engineering
applications on the surface, such as the finite element analysis. A survey on this topic can be found
in [5].

We consider an implicit surface defined byf(x, y, z) = 0 wheref(x, y, z) is a square free polyno-
mial with rational numbers as coefficients. There exists a large amount of work on meshing implicit
surfaces. Please see the work [1, 4, 26] and the literatures cited in them. Recent work focuses on
isotopic meshing [5]. Simply speaking, a meshing is calledisotopic if it has the same topology and
the same geometry as the surface (for definition see Section 2). A meshing is calledambient isotopic
or certified if it is isotopic and approximates the surface to any give precision. There exist four main
approaches to compute isotopic meshings for surfaces: the marching cube method, the Morse the-
ory method, the Delaunay refinement method, and the CAD (Cylindrical Algebraic Decomposition)
based method.

The famous marching cube method repeatedly subdivides the space into smaller cubes until the
structure of the surface inside each cube is known [19]. For implicit surfaces, Snyder proposed the
globally parameterizable criterion for that purpose [28].Plantinga and Vegter proposed the small
normal variation condition which leads to a better meshing algorithm [24, 25].

Hart et al proposed a method based on Morse theory [18, 23, 29]. The idea is to check when the
topology off(x, y, z) = a will change for a parametera. Whena changes from some initial value
wheref(x, y, z) = a has no solution toa = 0, the topology of the surface is found. Fortuna et al
presented improved algorithms for surfaces in the projective space [15, 14].

For a set of points on the surface, one can form the restrictedDelaunay triangles and the correspond-
ing Delaunay triangulation can be used to approximate the surface. Boissonnat and Oudot proved
that when the sample point set satisfies certain conditions,the Delaunay triangulation has the same
topology as the surface [7, 6]. Cheng et al established similar results using different strategies [12].

The CAD method proposed by Collins can be used to divide the Euclidean space into cylindrical cells
such that the given surface has the same sign on each of the cells. Then to determine the topology of
the surface, we need only give the adjacency information between the cells [3, 20]. Alone this line,
new ideas are introduced to compute the topology of surfaces[10, 22].

All the above methods except the one based on CAD work for surfaces without singularities only. In
this paper, we give a method to compute a certified meshing forimplicit algebraic surfaces with sin-
gularities. The method is a hybrid one based on the CAD approach and the marching cube approach.
We propose a CAD based method to compute a certified meshing for the surface inside a box con-
taining singularities and use a modified Plantinga-Vegter method to compute a certified meshing for
the surface inside a box without singularities. Our main contribution is how to treat the singularities.

This paper consists of three parts. The algorithms for surfaces are the main contributions. In Section
3, a new method is proposed to compute a certified meshing for aplane algebraic curve. This section
also provides preparations for algorithms about surfaces.There exist many methods to compute the
topology of plane curves, e.g., [2, 9, 13, 17]. Our contribution is to give an interval based method to
compute the adjacency information and to give an ambient isotopic meshing for a curve. The method
in [9] can also compute an ambient isotopic meshing based on root bounds of equation systems. Our
method is based on symbolic-numerical computation, which is practically more effective.
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In Section 4, a new method is proposed to compute an isotopic meshing for a surface. The method
has two advantages. First, we use symbolic computation methods to guarantee the completeness
and whenever possible use interval arithmetics to increasethe efficiency. Actually, computations of
algebraic numbers are totally avoided. The work [2, 20] usesalgebraic numbers. Second, our algo-
rithm does not change the surface to generic positions as done in [22], which is generally expensive.
Our method need only to project the surface once, while the algorithm proposed in [22] need to do
projections twice.

In Section 5, a method is proposed to compute a certified meshing for a surface. A well-known
technical to treat a singular pointP is to find asegregating boxwhich containsP but does not
intersect the surface at its bottom and top faces. We f extendthis concept to singular curve segments
and give an interval based method to compute such boxes and meshes in the boxes. Another key
ingredient is a careful analysis of the extremal points of surfaces and spatial curves. It is pointed out
in [5], that the method in [22] “makes no guarantees about thegeometric accuracy of the mesh, and
it cannot be extended in a straightforward way to provide a more accurate mesh.” To our knowledge,
the method proposed in this paper is the first one to compute a certified meshing for surfaces with
singularities.

Algorithms in Sections 3 and 4 are implemented in Maple and nontrivial examples are used to show
that the algorithm is quite effective for surfaces with singular points and curves.

2 Preparations

In this section, we give several known results and algorithms needed in this paper. Following [5], we
will compute a meshing with correct topology for a curve or a surface in the following sense.

An isotopic meshingfor a varietyS ⊂ Rn (n = 2, 3) consists of a graph/polyhedronG (for n = 2, 3)
and a continuous mappingγ : Rn× [0, 1] → Rn which, for any fixedt ∈ [0, 1], is a homeomorphism
γ(·, t) from Rn to itself, and which continuously deformsG into S: γ(·, 0) = id, γ(G , 1) = S.

For a numberǫ > 0, an ǫ-meshing for S is an isotopic meshingG for S, which gives anǫ-
approximation forS in the following sense‖ P − γ(P, 1) ‖≤ ǫ for all P ∈ G . Please note that
isotopy is stronger than homeomorphism [5].

2.1 Real root isolation of triangular system

A basic step of our algorithm is to isolate the real roots of atriangular system which consists of
equations like

Σn = {f1(x1), f2(x1, x2), . . . , fn(x1, x2, . . . , xn)} (1)

wherefi ∈ Q[x1, . . . , xi] involvesxi effectively.

We use intervals to isolate real numbers: letQ denote the set of intervals of the form[a, b] where
a < b ∈ Q. The length of an interval boxBn = [a1, b1] × · · · × [an, bn] ∈ Qn is defined to be
|Bn| = maxi(bi − ai).
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In this paper, when we say apoint, we mean a pointP = (ξ1, . . . , ξn) with real algebraic numbers
as coordinates, which is represented by a triangular systemΣn like (1) with P as a solution and an
isolation boxBn for ξ. For instance

√
2 is represented byx21 − 2 = 0 and(1, 2).

Now, we give a formal description of the root isolation algorithm.

Algorithm 2.1 RootIsol(Σn,Bn, ǫ). The input consists of a triangular systemΣn of form (1), a
boxBn ∈ Qn, and a positive numberǫ. The output is a set of isolation boxes for all the real roots
of Σn = 0 in Bn such that the length of the isolation boxes is smaller thanǫ and any two of the
isolation boxes are disjoints.

A modified version of the root isolation algorithms in [11, 27] is used in our implementation.

Let f(x1, . . . , xn) ∈ Q[x1, . . . , xn] andBn = [a1, b1] × · · · × [an, bn] ∈ Qn. Thebox operation
f(Bn) returns an interval containing all the points{f(x1, . . . , xn) | ai ≤ xi ≤ bi, i = 1, . . . , n}.

Furthermore, when|Bn| approaches to zero, the length of intervalf(Bn) also approaches to zero.
If ai > 0 andbi > 0, we can constructf(Bn) as follows

f(Bn) = f+(b1, . . . , bn)− f−(a1, . . . , an)

wheref = f+ − f− such thatf+, f− ∈ Q[x1 . . . , xn] each has only positive coefficients and
minimal number of monomials. For the general case, please consult [11]. It is clear that such an
operation satisfies the following property.

Lemma 2.2 If ξ = (ξ1, . . . , ξn) is not a zero off(x1, . . . , xn) = 0 andBn an isolation box for
ξ. Then if the length ofBn is small enough, the intervalf(Bn) will not contain(0, . . . , 0), which
means thatBn has no intersections withf = 0. We denote this asf(Bn) 6= 0.

2.2 Delineable polynomials

Delineable polynomials are important in determining the topology of algebraic surfaces. Letf(x1,
. . . , xr−1, xr) ∈ R[x1, . . . , xr] andP = (p1, . . . , pr) a point ofRr. We say thatf hasorder k at
point P , if k ≥ 0 is the least non-negative integer such that some partial derivative of total orderk
does not vanish atP . And f is said to beorder-invariant in a subsetR of Rr provided that the order
of f is the same at every point ofR.

For simplification, we denote the(r−1)-tuple(x1, . . . , xr−1) asx̄. An r-variate polynomialf(x̄, xr)
over the reals is said to bedelineableon a submanifoldR of Rr−1 if it holds that:

(1) the portion of the real variety off that lies in the cylinderR×R overR consists of the union of
the function graphs of somek > 0 analytic functionsθ1 < . . . < θk from R into R; and

(2) there exist positive integersmi such that for everyα ∈ R, the multiplicity of the root off(α, xr)
corresponding toθi is mi.

Polynomialf is said tovanish identically onR if f(P, xr) = 0 for every pointP ∈ R. In addition,
f is said to bedegree-invariant onR if the degree off(P, xr) as a polynomial inxr is the same for
every pointP ∈ R. In this situation, the following theorem holds (see [20], pp. 246).
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Theorem 2.3 (McCallum and Collins) Letf(x̄, xr) be a polynomial inR[x̄, xr] of positive degree
in xr. LetD(x̄) be the discriminant off as a univariate polynomial inxr and suppose thatD(x̄)
is a nonzero polynomial. LetR be a connected submanifold ofRr−1 on whichf is degree-invariant
and does not vanish identically, and over whichD is order-invariant. Then,f is delineable onR.

The following theorem improves the above result.

Theorem 2.4 ([8]) Let f ∈ R(x̄, xr) (r ≥ 2) be anr-variate polynomial of positive degree inxr
with discriminantD(x̄) 6= 0. Let R be a connected submanifold ofRr−1 in which D is order-
invariant, the leading coefficient off w.r.t.xr is sign-invariant, and such thatf vanishes identically
at no point inR. Then,f is degree-invariant onR.

3 Ambient isotopic meshing of plane curve

In this section, we give an algorithm to compute an isotopic meshing for an algebraic curve. The
main purpose of this section is to provide preliminary algorithms for later sections. We also give a
new and fast method to compute the adjacency information based on interval arithmetics.

3.1 Determine the topology of plane algebraic curve

We use a graph to represent the topology of a plane curve. Atopology graph is a graphG = {P, E}
where

• P is a set of plane points defined by triangular systemsΣi and isolation boxesBi,j:

P = {Pi,j = (αi, βi,j), 0 ≤ i ≤ s, 0 ≤ j ≤ si} (2)

Σi = {hi(x), gi(x, y)},Bi,j = [ai, bi]× [ci,j , di,j ]

whereα0 < α1 < · · · < αs andβi,0 < βi,1 < · · · < βi,si . When drawing the graph, we use
Mi,j = ((ai + bi)/2, (ci,j + di,j)/2) to representPi,j .

• E = {(P1, P2)|P1, P2 ∈ P, such that eitherP1 = Pi,p, P2 = Pi+1,q or P1 = Pi,p, P2 =
Pi,p+1}. In the first case, the edge is callednon-vertical. In the second case, the edge is called
x-vertical. We further assume that any two edges do not intersect exceptat the end points.

Consider a plane algebraic curveC : g(x, y) = 0whereg(x, y) ∈ Q[x, y] is a square free polynomial.
A point P0 is anx-critical point of C if g(P0) = gy(P0) = 0.

We will consider the part ofC in a bounding box

B2 = [X1,X2]× [Y1,Y2] ∈ Q2 (3)

which is denoted asCB2
= C ∩B2. In the rest part of this paper,B2 is always assumed to be of this

form.

LetP be a point on curveC, theleft (right) branch number of P , also denoted asL#(P ) (R#(P )),
is the number of curve segments ofC which pass throughP and are on the left (right) side ofP in a
small neighborhood ofP .
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We introduce the key concept of segregating box. A boxB = [a, b] × [c, d] ∈ Q2 is calledsegre-
gating w.r.t.C if

C ∩ [a, b]× [c, c] = C ∩ [a, b]× [d, d] = ∅.
A curve behaves nicely in a segregating box, as illustrated by the following lemma. See Fig. 2(a) for
an illustration.

(a) (b)

P
Q

(c)

P
Q

Figure 2: Curve segments inside a segregating box.

Lemma 3.1 LetB = [a, b]× [c, d] ∈ Q2 be a box segregating w.r.t.C and the interior ofB contains
nox−critical points ofC. LetC intersect the left and right boundaries ofB at pointsLi, i = 1, . . . , l
andRj , j = 1, . . . , r respectively. ThenC is delineable overR = (a, b) and the number of curve
segments ofC insideB equals

∑l
i=1 R#(Li) =

∑r
j=1R#(Ri). (See Figure 2(a) for an illustration)

Proof. Note that the leading coefficientC(x) of g(x, y) w.r.t. to y is a factor of the discriminant
D(x) of g(x, y) as a univariate polynomial iny. Since there exist nox-critical points ofC inside
B, C(x) is not zero. Henceg(x, y) is degree invariant overR. Also D(x) = 0 has no roots
overR. Then, by Theorem 2.3,C is delineable overR andCB consists of curve segments starting
from certainLi and ending at certainRj. Furthermore, these curve segments do not intersect. So
∑l

i=1 R#(Li) =
∑r

j=1R#(Ri). This proves the lemma.

A box B is called asegregating boxfor a pointP on C if P is insideB, B is segregating w.r.t.C,
andCB \ {P} contains nox-critical points ofC. See Fig. 3(a) for an illustration. It is known that
(Theorem 5 in [2]):

Lemma 3.2 If B = [a, b] × [c, d] ∈ Q2 is a segregating box ofP on C, thenR#(P ) andL#(P )
are the numbers of real roots ofg(b, y) = 0 andg(a, y) = 0 in (c, d) respectively. See Fig. 2(b).

The following algorithm computes the branch numbers.

Algorithm 3.3 NumCur (P). P is a set of points defined by (2). OutputR#(Pi,j) for 0 ≤ i ≤ s−1
andL#(Pi,j) for 1 ≤ i ≤ s.

1. For0 ≤ i ≤ s, if gi(x, y) has a factor of the formV (x) ∈ Q[x], let gi = gi/V (x).

2. While0 ∈ gi([ai, bi], ci,j) or 0 ∈ gi([ai, bi], di,j), repeat[ai, bi] = RootIsol(hi(x), [ai, bi],
(bi − ai)/2).

3. Let R = RootIsol(g(bi, y), [ci,j , di,j ], 1) andL = RootIsol(g(ai, y), [ci,j , di,j], 1). By
Lemma 3.2,R#(Pi,j) = |R| andL#(Pi,j) = |L|. (See Fig. 2(b))

Proof of correctness. SinceBi,j is an isolation box forPi,j, thengi(αi, ci,j)gi(αi, di,j) 6= 0. By
Lemma 2.2, the procedure in Step 2 will terminate. At the end of Step 2,gi(x, ci,j)gi(x, di,j) = 0
has no real roots in[ai, bi], that is,Bi,j is a segregating box forPi,j. The third step is clearly true.
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Remark 3.4 In Step 2 of Algorithm 3.3, the boundary points need special consideration. If the
boundary points are on the curve, that is, ifg(αi,Y1) = 0 or g(αi,Y2) = 0, we will make sure that
the following condition holds:αi is the only real root ofgi(x,Y1) = 0 or gi(x,Y2) = 0 in [ai, bi].
Then, the algorithm also works.

(a) (b) (c)

Figure 3: Compute topology graph of a curve

The following algorithm to compute a topology graph followsthe basic idea in [2]. Our main contri-
bution is to use interval arithmetics instead of algebraic numbers. Also, we do not need changing the
curve to generic positions as done in [13, 17]

Algorithm 3.5 TopCur (g(x, y),B2, ǫ). C : g(x, y) = 0 is the curve,B2 is defined in (3), andǫ > 0
is a number. Output a topology graphG = (P, E) which is anisotopic meshingfor CB2

. Further,
each isolation boxB of a point inP satisfies|B| ≤ ǫ.

1. LetE = ∅ andg(x, y) = V (x)gv(x, y), whereV (x) is the factor ofg(x, y) in x only.

2. LetD(x) = Res(gv ,
∂gv
∂y

, y) be the resultant ofgv and ∂gv
∂y

.

3. LetP =RootIsol(Σ21,B, ǫ)∪RootIsol(Σ22 ,B, ǫ), where

H(x) = (x−X1) · (x−X2) · gv(x,Y1) · gv(x,Y2) ·D(x)

Hv(x) = H(x)/ gcd(H(x), V (x)) (4)

Σ21 = {Hv(x), gv(x, y)}
Σ22 = {V (x), gv(x, y)(y − Y2)(y − Y1)}.

Assume thatP is of form (2). See Fig. 3(a) for an illustration.

4. Execute Algorithm 3.3 to computeL#(Pi,j) (1 ≤ i ≤ s) andR#(Pi,j) (0 ≤ i ≤ s− 1).

5. Add an auxiliary line atx = (bi + ai+1)/2 and construct the non-vertical edges. See Fig 2(c)
for an illustration. Fori = 0, . . . , s− 1, execute the following steps

(a) LetQi =RootIsol({x − bi+ai+1

2 , gv(x, y)},B, ǫ), whereai, bi are from (2). Arrange the
points inQi bottom up, we haveQi = {Qi,1, . . . , Qi,ui

}. SetR#(Q) = L#(Q) = 1.

(b) Let Ri be the list of pointsPi,k arranged bottom up and pointPi,k will be repeated
R#(Pi,k) times inRi. Similarly,Li is the list of pointsPi+1,t. By Lemma 3.1,Li,Ri,
andQi contain the same number of points. LetLi = (L1, . . . , Lui

),Ri = (R1, . . . , Rui
).

(c) Forj = 1, . . . , ui, add(Lj , Qi,j), (Qi,j , Rj) to E .

(d) LetP = P ∪ Qi. Still assume thatP is of form (2).

6. Add thex-vertical edges. Ifαi is a root ofV (x) = 0, add(Pi,k, Pi,k+1), k = 0, . . . , si to E .
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7. Output the topology graphG = {P, E}. The isotopy map can be constructed in the usual way
[25].

Theorem 3.6 Algorithm 3.5 computes an isotopic meshing forCB2
.

Proof. First, we prove that each edgee ∈ E represent exact one curve segment ofC, and for each
degree invariant segment ofC, there exist exact onee ∈ E presenting it. HenceE and somey-vertical
line decomposeB2 into cylindric regions .

It is clear that the curveC consists of two partsCv : gv(x, y) = 0 andV (x) = 0. The partV (x) = 0
consists of straight linesx − γi = 0, i = 1, . . . , t, whereγi are the real roots ofV (x) = 0. To
determine the topology ofC, we need only to find the topology graphGv of Cv and then to add the
linesx− γi = 0 to Gv. So we may considerCv only.

From Steps 2-4, we know thatP contains all thex-critical points of the curveCv and theboundary
pointswhich are the intersection points ofC and the boundaries ofB2. In Steps 6 and 7, we add
auxiliary pointsQi toP. Since points inQi are not critical points ofC, we haveR#(Q) = L#(Q) =
1 for Q ∈ Qi. This makes sure that all the edges(Lj , Qi,j) and(Qi,j, Rj) are distinct.

Let Bi = (αi, αi+1) × [Y1,Y2], i = 0, . . . , s − 1. We need only to show thatCv andGv have the
same topology inBi. Let Si be the interval(αi, αi+1). ThenD(x) does not vanish on any point
of Si. As a consequence,gv(x, y) must be degree invariant onSi. By Theorem 2.3,gv(x, y) is
delineable overSi andGv is obtained by replacing a curve segment ofCv in Bi by a line segment
with same end points. It is clear thatCv andGv have the same topology. We are going to make
explicit the isotopy fromE to CB2

. Let G = (P, E) be a topology graph for curveCB2
, andP of

form (2). LetPi,j = (αi, βi,j) be of form (2). LetQi,j = (τi, ρi,j) whereτi =
ai+bi

2 , ρi,j =
ci,j+di,j

2 .
ThenG decomposesB2 into cylindrical regions∪i,jRi,k, whereRi,j is bounded by[τi, τi+1] in the
x-direction and byf1 = (Qi,u, Qi+1,v) andf2 = (Qi,s, Qi+1,t) for ceratinu, v, s, t. Note thatRi,k

could be a triangle or a quadrilateral.

First, we consider one cylindrical regionRi,k defined as above. Lete1 = (Pi,u, Pi+1,v)) ande2 =
(Pi,s, Pi+1,t). Without loss of generality, assumeα1 < α2, β1,1 < β1,2. According to the correctness
prove of Algorithm 3.5,gv(x, y) is delineable over[α1, α2], we can find two root functionsθi(x) of
gv on [α1, α2] corresponding to the two curve segmentsC(e1) andC(e2). Denotey = δi(x), x ∈
[α1, α2] to be the definition functions of line segmentsei and y = ϕi(x), x ∈ [τ1, τ2] to be the
definition functions of line segmentsfi. Consider the maps:

F1 : ([α1, α2]× R)× [0, 1] → R2

defined by
(x, λδ1(x) + (1 − λδ2(x)), t)

→ (x, λ(tθ1(x) + (1− t)δ1(x)) + (1 − λ)(tθ2(x) + (1 − t)δ2(x)))

and
F2 : ([τ1, τ2]× R)× [0, 1] → [α1, α2]× R

defined by

(x, λϕ1(x) + (1− λϕ2(x)), t)
→ (x′, λ(tδ1(x

′) + (1− t)ϕ1(x)) + (1 − λ)(tδ2(x
′) + (1− t)ϕ2(x))),

8



wherex′ = α1 +
x−τ1
τ2−τ1

(α2 − α1).

The mapF2 is a homeomorphism from[τ1, τ2]×R to [α1, α2]×R andF1 is a homeomorphism from
[α1, α2]× R to itself. So the composed mapFi,k := F1 ◦ F2 is a homeomorphism from[τ1, τ2]×R

to [α1, α2] × R and it deformsfi to C(ei) continuously. Extend this map toR2 × [0, 1] by setting
it to be the identity map outsideRi,k, we obtain an isotopy from line segmentsf1 ∪ f2 to the curve
segmentsC(e1) ∪ C(e2).

Now we consider the whole topology graphG . For each cylindrical regionRi,k, we can construct an
isotopyFi,k as above. Consider the following map:

F : R2 × [0, 1] → R2

denoted by

F (P, t) =

{

Fi,j(P, t), P ∈ Ri,j ,
id, P ∈ R2 \B2

(5)

Note thatFi,j |Ri,j∩Ru,v
= Fu,v|Ri,j∩Ru,v

, andFi,j |Ri,j∩(R2\B2) = id for all i, j, u, v. (G , F ) is an
isotopy forCB2

.

As a consequence of the above proof, we have

Corollary 3.7 Let G = (P, E) be a topology graph of the curveCB2
obtained by Algorithm 3.5.

Then all the singular points ofCB2
are in P and g(x, y) is y-degree invariant over the intervals

(αi, αi+1), i = 0, . . . , s− 1.

When computing the topology of a surface, we need to introduce the concept of extended topology
graph. Anextended topology graphassociate with a boxB2 is a tripletEG = {EP , EE , EC} where
{EP , EE} is a topology graph andEC = {(P1, P2, P3) |Pi ∈ EP , (P1, P2), (P2, P3), (P3, P1)
∈ EE} is a set triangular cells inB2. We further assume that the cells inEC are disjoint except on
their edges and provide a cover forB2.

We can obtain an extended topology graph of a curve from a topology graph by adding more auxiliary
points and edges.

Algorithm 3.8 ETopCur (g(x, y),B2, ρ) The input is the same as Algorithm 3.5. The output is an
extended topology graph ofCB2

. (See Fig. 3(c) for an illustration)

1. LetG = {P, E} = TopCur(g(x, y),B2, ρ).

2. LetEP = P. For i = 0, . . . , s, add(αi,Y1) andPi,si = (αi,Y2) to EP if they are not in it.

3. For pointsPi,j, j = 0, . . . , si, let [ai, bi]× [ci,j , di,j ] be the isolation box forPi,j . AddNi,j =
(αi, (di,j + ci,j+1)/2), j = 0, . . . , si − 1 to EP . We still assume thatEP is of form (2).

4. LetEE = E . Forj = 0, . . . , s0 − 1, add the edges(P0,j , N0,j), (N0,j , P0,j+1) to EE .

5. For each0 ≤ i ≤ s − 1, add the edges(Pi,0, Pi+1,0) and (Pi,si , Pi+1,si+1
) to EE . Then

the edges inEE divide the rectangular regionB = [αi, αi+1] × [Y1,Y2] into triangular and
quadrilateral regions. We will subdivide these regions into triangular regions such that each
point inEP is the vertex of at least one triangles.
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6. LetEC = ∅. For any two adjacent edgese1 = (P1,1, P2,1), e2 = (P1,2, P2,2) insideB, execute
Steps 7 and 8.

7. If P1,1 6= P1,2, there exists one pointN1 added before in Step 3 betweenP1,1 andP1,2.
Furthermore,

• If P2,1 6= P2,2, there exists one pointN2 betweenP2,1 andP2,2. P1,1, P1,2, P2,2, P2,1

form a quadrilateral region. We can divide the quadrilateral region into four triangles.
Add the edges(P2,1, N2), (N2, P2,2), (P1,2, N2), (N1, N2), (N1, P2,1) to EE . Add the
triangles(P1,1, N1, P2,1), (N1, P2,1, N2), (N1, P1,2, N2), (P1,2, N2, P2,2) to EC.

• If P2,1 = P2,2 = P , P1,1, P1,2, P form a triangular region. We can divide the triangular
region into two triangles. Add the edges(P1,1, N1), (N1, P1,2), (N1, P ) to EE . Add the
triangles(P1,1, N1, P ), (N1, P1,2, P ) to EC.

8. If P1,1 = P1,2 = P , then there must exist a pointN2 added before in Step 3 between
P2,1 andP2,2. P,P2,2, P2,1 form a triangular region. We can divide the quadrilateral region
into two triangles. Add the edges(P2,1, N2), (N2, P2,2), (P,N2) to EE . Add the triangles
(P,P2,1, N2), (P,P2,2, N2) to EC.

9. OutputEG = {EP , EE , EC}.

Remark. The purpose to add pointsNi,j in Step 3 is to make sure that topology representation for
surfaces possible. These points has similar function as thethe auxiliary points added in Step 6 of
Algorithm 3.5. Hence, they are also calledauxiliary points . Figure 3 is an extend topology graph of
the curveG(x, y) = x · y · (16x2 + 16y2 − 49) = 0.

Let EG = {EP , EE , EC} be an extend topology graph ofCB2
ande = (P1, P2) ∈ EE . If e cor-

responds to a curve segment ofCB2
, we useC(e) to represent the corresponding curve segment;

otherwise, we useC(e) to represent the line segmentP1P2. Let I(e) = C(e) \ {P1, P2}. For a
c ∈ EC, we useR(c) andI(c) to denote the cell and interior of the cell represented byc respectively.

3.2 Computeǫ-meshing for plane curve

The meshing given in Section 3.1 has no guarantee of precision. In this section, we will show how
to compute a meshing for a curve to any given precision.

Let G = (P, E) be a topology graph for a curveC inside a boxB2 defined in (3). Assume thatP is
of form (2). Consider the two disjoint regionsS2 andN2 of B2:

S2 = ∪iS
i
2,N2 = ∪jN

j
2, where

Si
2 = (ai, bi)× [Y1,Y2], i = 0, . . . , s (6)

N
j
2 = [bj , aj+1]× [Y1,Y2], j = 0, . . . , s− 1.

Then,CB2
⊂ S2 ∪N2 and is smooth inN2.

The idea of our algorithm is to determine the topology of the curve in the regionS2 with Algorithm
3.5, to determine the topology of the curve in the regionN2 with a modified marching cube method of
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Pantinga-Vegter [24], and to compute the adjacency information on the border linesx = ai, x = bi.
We could use the marching cube method inN2 becauseC has no singular point in it.

(a)

c2

c1
A B

D C

P1

P2

(b)
A B

D C

P1

P2

(c)
A B

D CP1

P2

P3

P4

S

(d)
A B

D C
T

Figure 4: Nice boxes: (a), (b). Boxes in (c), (d) not nice.

(a)
A B

D C

P1

P2

H

N1 N2

(b)
A B

D
C

O

P1

P2

P3 Q3

P

Q1

Q2

Figure 5: Meshing curve segments

In order for the above idea to work, we need to modify the Pantinga-Vegter method such that each
output box contains only one curve segment ofC, as shown in Fig. 4(a) and (b). Such boxes are
callednice boxes.

The original Pantinga-Vegter method could output a box containing two curve segments and this will
cause problems when the box is near a singular point, as shownin Fig. 4(c). A point is called a
y-extremal point of curveC if C achieves a local extremum value at this point in they-direction.
Pantinga-Vegter’s method could output a box shown in Fig. 4(d).

To make the process precise, we introduce the following definition. An ǫ-meshing graphof a curve
C is a tripletM = {P, E ,B} where(P, E) is a graph whose vertices are with rational numbers as
coordinates and whoseedges are the meshesfor C; B is a set of nice boxes and segregating boxes
of singular points ofC such that for eache ∈ E , there exists aBe ∈ B with the property:|Be| < ǫ
andC ∩ Be is a connected curve segment ofC (See Fig. 5). In Fig. 5(a),P = {N1, N2}, e =
(N1, N2),Be = ABCD forms a meshing graph for curve segmentC(e) = P1HP2.

It is easy to show that anǫ-meshing graph for a curveC provides anǫ-meshingfor C according to
the definition given in Section 2.

Algorithm 3.9 MPV2 (g(x, y),B2, ǫ). Input: C : g(x, y) = 0 is a curve with nox-critical points
and noy-extremal points in boxB2. Output anǫ-meshing graphG = {P, E ,B} for CB2

.

We need only add some extra criterions for the boxes: (1) For each edge(A,B) of B, if 0 ∈
g((A,B)) and g(A)g(B) > 0, we continue to subdivideB. (2) For each boxB, if |B| > ǫ,

we continue to subdivideB.

SinceC has nox-critical points and noy-extremal points in boxB2, a box like the one in Fig. 4(d)
does not exist and the algorithm will terminate.

Now, we can give the meshing algorithm for curves.

Algorithm 3.10 ATopCur (g(x, y),B2, ǫ). The input is the same as that of Algorithm 3.5. Output
an ǫ-meshing graph forg(x, y) = 0.

1. Execute the first four steps of Algorithm 3.5 with input (g(x, y),B2, ǫ). We need to modify
Algorithm 3.5 as follows: Letgu(x, y) = gv(x, y)/U(y) whereU(y) is the gcd of the coeffi-
cients ofgv(x, y) as a univariate polynomial inx; and useH(x) · Res(gu,

∂gu
∂x

, y) as the new
H(x) in (4).

We needV (x), gv(x, y), andG1 = {P1,B1} from Algorithm 3.5, whereB1 is the segregating
boxes for the points inP1.
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2. ComputeG2 = {P2, E2,B2}=MPV2(g(x, y),N2, ǫ). The modification in Step 1 makes sure
thatC has nox-critical points andy-extremal points inN2.

3. Compute the connection between the boxes computed by StepS1 and Step S2. (Fig. 5(b)
shows how to meshC near a singular pointO with B = ABCD as its segregating box. Fig.
6(b) provides a global picture for meshing a curve.)Fori = 0, . . . , s, consider the adjacency
information on the border linesx = ai, bi. We only considerx = bi. For eachP ∈ P and its
segregating boxB = [a, b]× [c, d] ∈ B, do the following

(a) LetEk = [b, ck]×[ek, fk] ∈ B2 be the boxes satisfyingB∩Ek 6= ∅ andg(b, êk)g(b, f̂k) <
0, whereêk = min{ek, c} and f̂k = max{fk, d}. As a consequence,C passes through
theseEk through the interval[bi, bi]× [ek, fk].

(b) LetQ = ((a+ b)/2, (c + d)/2), mk = (êk + f̂k)/2.

(c) Add the edgee = (Q, (b,mk)) toM. AddBe = B to M.

4. Add the meshes for the straight lines defined byV (x) = 0.

5. Output the meshing graphM.

(a) (b) (c)

Figure 6:ǫ-meshing for a curve

Theorem 3.11 Algorithm 3.10 terminates and computes anǫ-ambient meshing forCB2
.

Proof. By Lemma 3.6,M∩ S2 is the isotopic meshing ofC ∩ S2. Marching cube method compute
the isotopic meshing ofC ∩ N2. Hence,M is a isotopic meshing forCB2

. Furthermore, for each
e ∈ E ∩N2, C(e) ⊆ Be, |Be| < ǫ and each part ofCB2

around the singular pointP is contained in
the segregating boxesBP , |BP | < ǫ of P . Therefore, for any pointP ∈ M, F (P, 1) andP are in
the same boxBe with |Be| < ǫ, so‖ F (P, 1)− P ‖< ǫ. This gives a proof of Theorem 3.11.

In order to compute theǫ-meshing for surfaces, we need to add more information to theǫ-meshing
graph. LetM = {P, E ,B} be a meshing graph for a curveC. Then anextended meshing graph
EM = {EP , EE , EC} for C in B can be defined similarly as the extended topology graph. The
difference is thatEC provides a triangular decomposition forB.

The following algorithm computes an extended meshing graph.

Algorithm 3.12 METopCur (g(x, y),G1,G2). G1 = {P1,B1} whereP1 is the set of points on
C : g(x, y) = 0 of form (2) andB1 is the set of their segregating boxes.G2 = {P2, E2,B2} is an
ǫ-meshing of the curveC in N2 defined in (6). Output an extended meshing graph forC in B1 ∪ B2.
(Fig. 6(c) is the extended meshing graph for the box in the center of Fig. 6(a) and its surrounding
boxes.)

S1 Let EP = ∅, EE = ∅, EC = ∅.
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S2 For anyB = [a, b] × [c, d] ∈ B1, it is the segregating box of one pointP ∈ P1. Compute the
extended topology inB1.

1. Compute

{Q1, . . . , Ql} = RootIsol({x− a, g(a, y)}, [c, d], 1)
{T1, . . . , Tr} = RootIsol({x− b, g(b, y)}, [c, d], 1).

DenoteAi, i = 1, . . . , 4 to be the four vertices ofB. DenoteBj, j = 1, . . . , p to be
the points on the edge ofB which are the vertices of boxes adjacent toB.(Note that if
l > 1(r > 1), there exists some pointBk betweenQi andQi+1(Ti andTi+1)).

2. T P = ∅. Add pointsQi, Tj , Ak, Bp into T P.

3. Denote the sets of pointsL = {L1, . . . , s} andR = {R1, . . . , Rt} whereL is the points
in T P which are on the left edge ofB sorted from bottom to up andR the points inT P
which are on on the right edge ofB sorted from bottom to up.

4. Add pointP and all points inT P into EP . Add edges(P,Li), (P,Rj) into EE . Add
triangular cell(P,Li, Li+1), (P,Ri, Ri+1) and(P,L1, R1), (P,Ls, Rt) and(Li, Li+1),
(Rj, Rj+1) to EC.

S3 For any boxesB ∈ B2. Compute the extended topology inB. For any line segmente ∈ E2 with
B = [a, b]× [c, d] ∈ B2 containing it. Doing the following operations(There are six conditions
that e divide B into two parts, see fig 4. We can distinguish them according toP2 andB2.
Here we consider the condition (a), the other conditions aredealt with in the similar way).

1. ComputeQ = RootIsol({x−a, g(x, y)},B, ǫ/4) andT = RootIsol({x−b, g(x, y)},B,
ǫ/4). Obviously,Q andT both contain only one point. We still call themQ andT .
DenoteAi, i = 1, . . . , 4 to be the four vertices ofB. DenoteBj, j = 1, . . . , p to be
points on one edge ofB which are the vertices of boxes adjacent toB.

2. T P = ∅. Add pointsQ,T,Ai, Bj into T P.

3. Add all points inT P into EP . Similar to the forth step in StepS2, we can decompose
B into triangular cells and insert these cells intoEC, and insert corresponding edges into
EE such that each point inT P connects to at least another point in this set.

S4 OutputEM = {EP , EE , EC}.

4 Topology of surface

In this section, an algorithm will be given to compute a polyhedron with triangular faces, which is
isotopic to a given surface.
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4.1 Outline of the algorithm

We use a polyhedron with triangular faces to represent the topology of a surface. Atopology poly-
hedron is a tripletP = {SP ,SE ,SF} whereSP , SE , andSF are defined below.

• SP is a set of 3D points determined by a triangular systemΣi and an isolation boxesBi,j,k:

SP = {Pi,j,k, 0 ≤ i ≤ s, 0 ≤ j ≤ si, 0 ≤ k ≤ ti,j}
Σi = {hi(x), gi(x, y), fi(x, y, z)} (7)

Bi,j,k = [ai, bi]× [ci,j , di,j ]× [ei,j,k, fi,j,k] ∈ Q
3.

wherePi,j,k = (αi, βi,j , γi,j,k) satisfyα0 < · · · < αs, βi,0 < · · · < βi,si , andγi,j,0 < · · · <
γi,j,ti,j . PointPi,j,k is said to belifted from the plane pointPi,j = (αi, βi,j). Pi,j is said to be
theprojection of Pi,j,k.

• SE = {(P1, P2)|P1, P2 ∈ SP , such that eitherP1 = Pi,u,v, P2 = Pi+1,p,q or P1 =
Pi,u,v,, P2 = Pi,u+1,t}. We further assume that any two edges do not intersect exceptat the
end points.

• SF = {(P1, P2, P3)|P1, P2, P3 ∈ SP} such that its three edges are inSE . We further assume
that any two faces do not intersect except at the edges.

Let S : f(x, y, z) = 0 be an algebraic surface, wheref(x, y, z) ∈ Q[x, y, z] is square free. A
point P0 is acritical point of S if f(P0) = fz(P0) = 0. Write f as a univariate polynomial inz:
f(x, y, z) = fd(x, y)z

d + · · ·+ f0(x, y). fd(x, y) is called theleading coefficientof f(x, y, z). We
further assume that

fd(x, y) = · · · = f0(x, y) = 0 have no common zeros. (8)

Geometrically, this means thatS does not contain a line parallel to thez-axis. We will consider
surfaces that do not satisfy this condition in Section 4.7.

Similar to the case of algebraic curves, we will consider thetopology ofS in a bounding box

B3 = [X1,X2]× [Y1,Y2]× [Z1,Z2] ∈ Q3. (9)

Let

D(x, y) = Res(f,
∂f

∂z
, z) (10)

G(x, y) = sqrfree(D(x, y)f(x, y,Z1)f(x, y,Z2)) (11)

where sqrfree(P (x, y)) is the square free part ofP (x, y). The plane curveG(x, y) = 0 is called the
projection curve of S.

To determine the topology of a surface is to find a topology polyhedron with the same topology as
the surface. We first give an outline of the algorithm, which consists of four main steps.

S1 Compute an extended topology graphEG = {EP , EE , EC} of the projection curve ofS in B2

defined in (3).
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S2 DetermineSP . For anyP ∈ EP, determine the intersection points ofS and the line segment
P × [Z1,Z2].

S3 DetermineSE . For each edgee ∈ EE , compute the intersection ofS and the cylindrical surface
patchI(e)× [Z1,Z2], which are delineable curve segments ofS whose end points are inSP.
We will use line segments inSE to represent these curve segments. See Fig. 7.

S4 DetermineSF . For eachc ∈ EC, compute the intersection ofS and the prismI(c) × [Z1,Z2],
which are delineable surface patches ofS whose edges are inSE . We will use triangular faces
in SF to represent these surface patches. See Fig. 8.

4.2 Theoretical preparations for the algorithm

In the outline of the algorithm given in the preceding section, StepS1 has been solved in Section 3.1.
StepS2 can be solved with AlgorithmRootIsol. We will explain StepsS3 andS4 below.

Roughly speaking, StepS3 is to determine the topology of the spatial curve defined byf(x, y, z) =
G(x, y) = 0. The following result, which is a consequence of Theorem 2.3,allows us to determine
the singularities of this curve easily.

Lemma 4.1 Use the notations introduced above. For each edgee = (P1, P2) ∈ EE , f(x, y, z) = 0
is delineable overI(e) = C(e) \ {P1, P2}.

Proof. Let C : G(x, y) = 0 be the projection curve ofS andD(x, y) the discriminant off w.r.t.z.
SinceI(e) is a continous curve segment ofC, G is order-invariant onI(e). From (10),D(x, y) is
order-invariant onI(e). Since condition (8) holds,f does not vanish identically on any point of
xy-plane. So,f does not vanish identically onI(e). Now, we will prove thatf is degree-invariant
on I(e). It is clear that all the singular points ofC are inEP. Thenfd(x, y) is either identically zero
on I(e) or does not vanish on any point onI(e). So we can conclude thatfd(x, y) is sign-invariant
on I(e). By Theorem 2.4,f is degree-invariant onI(e) . By Theorem 2.3,f is delineable onI(e).

As a corollary, we have

Corollary 4.2 For e = (P1, P2) ∈ EE , the intersection ofS andI(e)× [Z1,Z2] consists of disjoint
curve segments ofS whose end points are inSP .

These curve segments together with their endpoints are called thespatial cylindrical curve seg-
ments (SCCS)of S lifted from e.

To determine the edges of the topology polyhedron, an SCCS with end pointsP1 andP2 is repre-
sented by the line segmente = (P1, P2). SE is the set of these line segments. For an edgeE ∈ SE ,
we useS(E) to denote the corresponding SCCS ofS.

LetPi,j,k ∈ SP ande = (Pi,j , Pu,v) ∈ EE . We use#(Pi,j,k, e) to represent thenumber of SCCSes
which havePi,j,k as an end point and are lifted fromC(e). We use#(e) to denote thenumber of
SCCSes lifted frome. Define#(Pu,v,w, e) similarly. As a direct consequence of Lemma 4.1, the
following equation

#(e) =
∑

k

#(Pi,j,k, e) =
∑

w

#(Pu,v,w, e) (12)
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holds for eache = (Pi,j, Pu,v) ∈ EE . (See Fig. 7)

In StepS4, we find the surface patches lifted from a triangular cellc ∈ EC by identifying their
boundaries which are SCCSes ofS. As a consequence of Theorem 2.3, we have

Lemma 4.3 Let c ∈ EC. Thenf(x, y, z) = 0 is delineable overS = I(c).

Proof. For anyP = (α, β) ∈ S, f is degree-invariant and does not vanish. The discriminantD(x, y)
of f does not vanish onP . SoD is order-invariant overS. By Theorem 2.3, the lemma holds.

Lemma 4.4 S ∩ (I(c)× [Z1,Z2]) consists of disjoint surface patches whose edges are SCCSesand
whose vertices are points inSP . These surface patches with their edges and vertices are called
triangular surface patches(TSP) lifted fromc.

Proof. By Lemma 4.3, the intersection ofS andI(c) × [Z1,Z2] consists of disjoint surface patches.
The edges of a surface patchs are the intersection ofS and I(ei) × [Z1,Z2], i = 1, 2, 3, where
ei are the three sides ofc. As a consequence, the edges of these surface patches are SCCSes. If
c = (P1, P2, P3), the vertices of an intersection surface patch are the intersection points ofS and
Pi × [Z1,Z2], i = 1, 2, 3. As a consequence, the verticesQ1, Q2, Q3 of a triangular surface patch
are points inSP lifted from P1, P2, P3 respectively.

It is clear that the TSPs are the intersection ofC(e)× [Z1,Z2] andS.

For a cellc = (Pi,j , Pu,v, Ps,t) ∈ EC and an edgeE = (Pi,j,k, Pu,v,w) ∈ SE lifted from the side
e = (Pi,j, Pu,v) of c, we use#(c) to denote thebranch number of TSPs lifted fromR(c) and
#(E, c) to denote thenumber of TSPswhich pass throughS(E) and lifted fromR(c). Notations
#((Pu,v,w, Ps,t,l), c) and#((Pi,j,k, Ps,t,l), c) can be similarly defined. As a consequence of Lemma
4.4, forc = (Pi,j, Pu,v , Ps,t) ∈ EC, we have

#(c) =
∑

E1

#(E1, c) =
∑

E2

#(E2, c) =
∑

E3

#(E3, c), (13)

whereE1 = (Pi,j,k1 , Pu,v,k2),E2 = (Pu,v,k2 , Ps,t,k3),E3 = (Pi,j,k1 , Ps,t,k3) for all possiblek1, k2, k3.
(See Fig. 8)

Pu,v

P i,j

Figure 7: Mesh SCCSes Figure 8: Mesh TSPs

4.3 The algorithm

Following the analysis in the preceding section, we now givethe algorithm to construct a topology
polyhedron for a given surface.
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Algorithm 4.5 TopSur(f(x, y, z),B3). S : f(x, y, z) = 0 is the surface satisfying condition (8)
andf is square free.B3 is defined in (9). Outputan isotopic topology polyhedronP for SB3

.

1. Compute the projection curveC : G(x, y) = 0 as in (11).

2. Compute the extended topology graph: EG = {EP , EE , EC} of CB2
with Algorithm 3.8,

whereB2 is defined in (3).

3. ComputeSP . For anyPi,j ∈ EP , use Algorithm 4.7 with input(f,B3, Pi,j , 1) to compute
Pi,j,k.

4. ComputeSE . Let SE = ∅.

(a) For eachPs,t ∈ EP ande ∈ EE with Ps,t as an endpoint, use Algorithm 4.9 to compute
#(Ps,t,k, e).

(b) For anye = (Pi,j, Pu,v) ∈ EE , letL1 = (Pi,j,0, . . .,Pi,j,si,j) such that pointPi,j,k repeats
#(Pi,j,k, e) times. Similarly, defineL2 = (Pu,v,0, . . . , Pu,v,su,v).

(c) By (12), |L1| = |L2| = m. Let L1 = (P1, . . . , Pm) andL2 = (Q1, . . . , Qm). Add
(Pi, Qi) to SE . See Fig. 7 for an illustration.

5. ComputeSF . Let SF = ∅.

(a) For each cellc ∈ EC andE ∈ SE lifted from a side ofc, compute#(E, c) with Algo-
rithm 4.11.

(b) Let e1, e2, e3 ∈ EE be the three sides ofc. Let Si be the sequence of edges inSE lifted
from ei ordered bottom up and anE is repeated#(E, c) times in the sequence.

(c) By (13), |S1| = |S2| = |S3| = t. Let Si = {Ei,k, k = 1, . . . , t}. Then the three line
segmentsE1,k, E2,k, E3,k should form a trianglef = (P1,k, P2,k, P3,k). Add f to SF .
See Fig. 8 for an illustration.

6. OutputP = {SP ,SE ,SF}. The isotopic map can be computed as usual [25].

Theorem 4.6 Algorithm 4.5 computes an isotopic meshing forSB3
.

Proof. First, we prove the algorithm compute the correct topology of given surface. Note that with
the auxiliary points added in Step 6(a) of Algorithm 3.5 and Step 3 of Algorithm 3.8, the edges in
Step 4(c) and the faces in Step 5(d) are mutually different. Thus, we have a well-defined polyhedron.

The extended topology graphEG divides the rectangleB2 into triangular cells. We need only to
show that for each edgee ∈ EE and each cellc ∈ EC, P and S have the same topology on
C(e)× [Z1,Z2] andC(c)× [Z1,Z2] respectively.

For e ∈ EE , from Step 4 the SCCSes ofS on the cylindrical surfaceS1 = C(e) × [Z1,Z2] do not
intersect except at the end points. By Corollaries 4.2 and (12), the edges ofSE are the line segments
with the same end points as those SCCSes. Then, the plane graph P on e × [Z1,Z2] andS onS1

have the same topology. See Figure 7 for an illustration. Thespatial curve segments are presented by
line segments. With similar arguments, we could show that the part ofP on c × [Z1,Z2] andS on
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C(c) × [Z1,Z2] have the same topology. See Figure 8 for an illustration. This proves the topology
correctness of the algorithm.

Then we prove the topology polyhedron is a isotopic meshing of the given surface.

The extended topology graphEG = {EP , EE , EC} for the curveCB2
decomposeB2 into triangular

cells. According to Theorem 3.6,EG andC are isotopic and we can construct a homeomorphismF
from R2 to itself that deformsEE to C continuously:

F : R2 × [0, 1] → R2.

Let P = (SP ,SE ,SF) be a topology polyhedron for a surfaceSB3
which decomposesB3 into

cylindrical regions in a similar way as described in the proof of Theorem 3.6. ExtendF toR3×[0, 1]:

T1 = (F (x, y), z) : R3 × [0, 1] → R3.

The inverse transformationT−1
1 of T1 deforms all SCCSs ofS into planes{C(e) × R, e ∈ EE}

which are perpendicular to thexy-pane. DenoteS1 to be the surfaceT−1
1 (S). We need only to prove

thatS1 andP are isotopic.

We can construct a homeomorphismT2 fromR3 to itself similar to that give in the proof of Theorem
3.6 to deform thez direction such thatT2(SF , 0) = SF andT2(SF , 1) = S1.

The transformationT = T1 ◦ T2 is a homeomorphism fromR3 to itself which deformsSF to S
continuously.

We implemented Algorithm 4.5 in Maple. Two groups of experiments are done for the following five
surfaces with singularities.
S1 : f1 = x4 + y4 + z4 − x2

− y2
− z2 − x2y2

− x2z2 − y2z2 + 1 = 0, B3 = [[−1.5, 1.5], [−1.25, 1.25], [−2, 2]].

S2 : f2 = −1+ (27/2)z2y2x2
− (27/2)x2y2

− 6x2z2 − (27/2)y2z2 +3x2 +3z2 + (27/4)y2
− 3x4

− (243/16)y4
−

3z4+x6+(729/64)y6+z6+(27/4)x4y2+3x4z2+(243/16)x2y4+3x2z4+(243/16)z2y4+(27/4)z4y2
−x2z3−

(9/80)y2z3 = 0, B3 = [[−2, 2], [−2, 2], [−4, 4]].

S3 : f3 = −2y4 + 2y2z2 + y2 + z4 − 2z2 + x6 + 3x4y2
− 3x4 + 3x2y4

− 6x2y2 + 3x2 + y6 = 0, B3 =
[[−2, 2], [−2, 2], [−2, 2]].

S4 : f4 = x2y2 + y2z2 + z2x2
− 7xyz/2 = 0, B3 = [[−2, 2], [−2, 2], [−2, 2]].

S5 : f5 = 16− 2x2z2 − 8z2 +4x3
− x5 +(1/4)x6 +x4 + y4 + y2x3 + z4 + z2x3

− 2x2y2 +2y2z2 − 8x2
− 8y2 = 0,

B3 = [[−2, 2], [−3, 3], [−6, 6]].

The first experiment is to compute an isotopic polyhedron forthe surfaces without considering preci-
sion. The timings are given in the second row of Table 1. Two ofthe polyhedrons are shown in Fig.
9. In the second experiment, we continue to subdivide the intervals between[X1,X2] to compute a
more accurate meshing. The results are given in Fig. 1. The timings are given in the third row of
Table 1.#Mesh in the fourth row gives the number of meshes in these meshings. Considering that
implementations in Maple are generally slow due to overheadcosts, our algorithm is quite effective.
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Figure 9: Topology polyhedrons for surfacesS1 andS2.

Qe

e

Figure 10: Isolation intervals

TYPE S1 S2 S3 S4 S5

Topology 0.544 0.816 0.760 0.684 1.280
Meshing 11.7 11.8 22.0 51.1 92.0
#Mesh 1472 1612 3032 3658 5456

Table 1: Timings on a PC with Linux OS, 3.00G Core 2Duo CPU, and2G RAM.

4.4 Segregating box for a point onS

Assume thatSP is of form (7). ThenBi,j in (2) is an isolation box forPi,j andBi,j,k is an isolation
box forPi,j,k. It is clear that

f(αi, βi,j , ei,j,k)f(αi, βi,j , di,j,k) 6= 0 (14)

The isolating boxBi,j,k of Pi,j,k is called asegregating boxif f(x, y, z) does not intersect with the
top and bottom faces ofBi,j,k. Due to (14), when sufficiently subdividingBi,j , Bi,j,k will become a
segregating box. This leads to the following algorithm.

Algorithm 4.7 SegBoxP3(f(x, y, z),B3, P, ǫ) whereS: f(x, y, z) = 0 is the surface,B3 defined
in (9),P a plane point defined byΣ2 = {h(x), g(x, y)} and an isolation boxB, andǫ > 0. Output
the set of points{Pi} onS lifted fromP , segregating boxes forPi, and a new segregating boxB of
P .

1. Let{B1, . . . ,Bs} = RootIsol(Σ3,B×[Z1,Z2], ǫ), whereΣ3 = {h(x), g(x, y), f(x, y, z)}.

2. LetBi = B× [ei, fi] be the isolation box forPi onS.

3. Letη = ǫ. While 0 ∈ f(B× [ei, ei]) or 0 ∈ f(B× [fi, fi]) for somek ∈ {1, . . . , s}, repeat

η = η/2 andB := RootIsol(Σ2,B, η).

4. Output the pointsPi defined byΣ3 andBi, and the newB.

In Step 3, iff(αi, βi,j ,Y1) = 0 or f(αi, βi,j ,Y2) = 0, then we need to use the minimal circle method
introduced in [10] to find a segregating box in order for Lemma4.8 to be true at this boundary point.

4.5 Compute number of SCCSes adjacent to a point

Let Pi,j,k be a point lifted from pointPi,j ande = (Pi,j , Pu,v) ∈ EE . We will show how to compute
#(Pi,j,k, e).
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For any pointP on the projection curveC : G(x, y) = 0 and a segregating boxB = [a, b]× [c, d] of
P , C intersects only with the vertical boundaries ofB.

For an edgee ∈ E , consider the right boundaries ofB. We denote the intersection point ofC(e) with
line x = b asQe and

[b, b]× [ue, ve] (15)

is an isolation interval forQe on linex = b, which is called theisolation interval of C(e). See Fig.
10.

Lemma 4.8 Use the above notations. IfBi,j,k is a segregating box forPi,j,k and S is deline-
able overI(e), then#(Pi,j,k, e) equals to the number of solutions of the triangular systemΣR =
{G(bi, y), f(bi, y, z)} in the interval box[ue, ve]× [ei,j,k, fi,j,k]. Geometrically, this is the number of
intersection points of the line segment{x = bi, y = γi, ei,j,k ≤ z ≤ fi,j,k} and the surfaceS where
(bi, γi) is a point onG(bi, y) = 0. See Fig. 11 for an illustration.

Proof. From Algorithm 3.3, each SCCS passing throughPi,j,k and projecting toC(e) must pass
through the rectangle[bi, bi] × [ue, ve] × [Z1,Z2]. SinceBi,j,k is a segregating box, these SCCSes
must intersect with the the rectangleR = [bi, bi]× [ue, ve]× [ei,j,k, fi,j,k]. Further, each SCCS can
intersect with the rectangle only once since these SCCSes are delineable by Lemma 4.1. Note that
the number of solutions of the triangular systemΣR is the number of intersections of the SCCSes
and the rectangleR.

Remark. Similarly, we can compute the number of the SCCSes on the lefthand side of the point
Pi,j,k by computing the number of solutions for{G(ai, y) = 0, f(ai, y, z) = 0}. WhenG(x, y) = 0
contains vertical lines, we can compute the number of SCCSespassing throughPi,j,k and projecting
to these lines by solving{G(x,w), f(x,w, z)} for w = ci,j andw = di,j respectively.

Figure 11: Compute#(Pi,j,k, e) Figure 12: Compute#(S, c)

We now give the following algorithm to compute the number of curve branches.

The following algorithm is based on Lemma 4.8.

Algorithm 4.9 NumSCCS(f(x, y, z), Pi,j,k, e) S : f(x, y, z) = 0 is a surface delineable overI(e),
Pi,j,k ∈ SP is of form (7), ande ∈ EE is an edge withPi,j as an end point, wherePi,j is the
projection point ofPi,j,k. The output is#(Pi,j,k, e).

1. If e is anx-vertical line segment abovePi,j in the y-direction, then form the triangular sys-
temΣ22 = {gi(x, di,j), f(x, di,j , z)} and letQ = RootIsol(Σ22, [ai, bi] × [ei,j,k, fi,j,k], 1).
Output#(Pi,j,k, e) = |Q|.
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2. If e is not anx-vertical line segment, we need to compute the isolation intervals defined in
(15). We only consider the right branches. LetR = RootIsol(gi(bi, y), [ci,j , di,j ], 1) where
r = R#(Pi,j) = |R|. By Lemma 3.2, one of intervals inR is the isolation interval[ue, ve] for
e.

3. LetΣ21 = {gi(bi, y), f(bi, y, z)} be a triangular system iny andz andQ = RootIsol(Σ21,
[ue, ve]× [ei,j,k, fi,j,k], 1). Output#(Pi,j,k, e) = |Q|. See Fig. 11 for an illustration.

If there exist no SCCSes originating from a point, it is anisolated singularity.

4.6 Compute number of TSPs adjacent to an SCCS

We compute the number of TSPs originating from anE ∈ SE . That is, for anE = (Pi,j,k, Pu,v,w) ∈
SE and ac ∈ EC with e = (Pi,j , Pu,v) as an edge, we will compute#(E, c).

Use the notations in Algorithm 4.9. Denote the SCCSs passingthrough pointPi,j,k and projecting to
C(e) asS(si), i = 1, . . . ,m. Assume thatQ (Step 3 of Algorithm 4.9) is the set of isolation boxes
of m pointsQ1, . . . , Qs with Qi onS(si). Then in the planex = bi (or x = ai), the surface becomes
a plane curvef(bi, y, z) = 0 and each surface patch passing throughS(si) becomes a curve segment
of the curvef(bi, y, z) = 0 passing throughQi. We summarize this as the following lemma.

Lemma 4.10 Use the above notations. IfS is delineable overI(e) and I(c) respectively, then the
number of TSPs passing throughS(si) and projecting toR(c) is the number of curve branches
passing throughQi and projecting to the regionR(c).

According to the above discussion, we have the following algorithm.

Algorithm 4.11 NumTSP(f(x, y, z), Pi,j,k, e, c) S : f(x, y, z) = 0 is the surface delineable over
I(e) andI(c) respectively,Pi,j,k ∈ SP , e = (Pi,j , Pu,v) ∈ EE , andc ∈ EC with e as an edge. The
output is#(Ei, c) whereS(Ei) are all the SCCSes passing throughPi,j,k and projecting toC(e).

1. Execute AlgorithmNumSCCS(f(x, y, z), Pi,j,k, e).

2. If e is not anx-vertical edge, execute the following steps

(a) LetQ = {Q1, . . . , Qm} be the points obtained in Step 3 of AlgorithmNumSCCS.

(b) LetΣ21 = {g(bi, y), f(bi, y, z)} be the defining triangular system forQ. Execute Algo-
rithm 3.3 with inputQ to computeL#(Qi) andR#(Qi).

(c) Let c1 be the cell undere in the y direction andc2 the one abovee. By Lemma 4.10,
#(Sl, c1) = L#(Qi) and#(Sl, c2) = R#(Qi). See Fig. 12 for an illustration.

3. If e is anx-vertical edge, execute the following steps

(a) LetR = {R1, . . . , Rs} be the points obtained in Step 1 of AlgorithmNumSCCS.

(b) Let Σ22 = {g(x, di,j), f(x, di,j , z)} be the defining triangular system forR. Execute
Algorithm 3.3 with inputR.
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(c) Letc1 be the cell on the left hand side ofe and andc2 the cell on the right hand side ofe.
By Lemma 4.10,#(Tl, c1) = L#(Rl) and#(Tl, c2) = R#(Rl).

If there exist no TSPs connect to a SCCS, then the SCCS is anisolated spatial curve segment.

4.7 The General Case

Until now, we assume that the surfaceS does not contain straight lines parallel to thez-axis. In this
subsection, we will show how to treat surfaces that contain such lines.

The aim is to get the points on the vertical lines where the topology of the surface changed, and the
intersections between some SCCSes and the vertical lines, then the SCCSes originating from these
points, and the surface patches originating from the line segments defined by these points.

The following will show how to compute the special case whenf(α, β, z) ≡ 0 for some point
P = (α, β). It is clear thatg(x, y) = 0 has a finite number of such points sincef(x, y, z) has no
factor containingx, y only. We can solve the problem in the following way.

1. Take a coordinate system transformation such that the transformed lineL1 of the vertical line
L0 can be projected as a lineL2 on the newXY -plane.

2. Determine the topological information ofL2: the intersections ofL2 and the new projection
curve, the number of curve segments originating from each intersection on its two sides.

3. Determine the topological information ofL1: lifting the intersections ofL2 and the projection
curve of the new surface to determine the corresponding points onL1. Find the points where
the topology of surface changed onL1.

4. We can made the same coordinate system transformation forthe intersection of two surfaces
G(x, y) = 0 andf(x, y, z) = 0. Then we can decide the points on the vertical lines which are
the intersections of SCCSes and the vertical line.

5. Find the points where the topology of the original surfacechanged onL0 from L1 by coordi-
nate relationship. Determine the topological informationof L0.

Remark: It is convenient to take a transformation such thatL2 is a vertical line of the new projection
curve ifL2 can’t overlap other line(s) of the projection curve.

In this way, we can solve the special case in Algorithm 4.5. Since we have introduced the operations
we need before, we just use an example to show the effectivity.

In this special case,SE contains the edge with the from(Pi,j,k, Pi,j,k+1). Similarly,SF contain the
face with the form(Pi,j,k, Pi,j,k+1, Pu,v,w).

We will continue the same example. Let us consider the following surface insideB = [−2, 2] ×
[−2, 2] × [−2, 2] as an example.

S : f(x, y, z) = x2y2 + x2z2 + y2z2 − 7

2
xyz = 0. (16)
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It is clear thatf(0, 0, z) ≡ 0. So(0, 0) is a point in special case. SoL0 : {x = 0, y = 0,−2 ≤ z ≤
2}. The topology polyhedron of the surface is shown in Figure 14.

1. Take the system transformation

{x = X − Z, y = Y − Z, z = Z.} (17)

We get a new surface

S ′ : F (X,Y, Z) = X2Y 2 − 2X2Y Z + 2X2Z2 − 2XZY 2 + 4XZ2Y − 4XZ3 + 2Z2Y 2

−4Z3Y + 3Z4 − 7

2
ZXY + 7

2
XZ2 + 7

2
Y Z2 − 7

2
Z3

= 0.

NowL0 corresponds to the line segmentL1 : {X = Z, Y = Z,−2 ≤ Z ≤ 2} on the new surface.

1

23

4

Figure 13: Determining theVi in special case
Figure 14: Topology polyhedron
of a surface with vertical line

2. The projection curve ofS ′ is shown in the right part of Figure 13. The red line segment isthe
L2 : {X − Y = 0,−2 ≤ X ≤ 2}. It corresponds toL1. The isolation boxes of the singularities of
the projection curve ofS ′ onL2 are below.

[P1, P2, P3, P4] := [[−7
4 ,−7

4 ]×[−7
4 ,−7

4 ], [−41
64 ,− 655

1024 ]×[−41
64 ,− 655

1024 ], [0, 0]×[0, 0], [74 ,
7
4 ]×[74 ,

7
4 ]].

3. The corresponding pointsQi onL1 of these singularitiesP1, P2, P3, P4 are

[Q1, Q2, Q3, Q4] := [[t× t× t],

t = [−7

4
,−7

4
], [−41

64
,− 655

1024
], [0, 0], [

7

4
,
7

4
]].

Assume the endpoints ofL1 areQ0, Q5. Computing the SCCSes originating fromQi(i = 0, . . . , 5)
with Algorithm 4.9, we can find that:

There are no SCCSes originating fromQ0(Q5) except forQ0Q1 (Q4Q5) onL1, we can find there are
on surface patches originating fromQ0Q1 (Q4Q5) by Algorithm 4.11; Similarly,Q1 originates one
SCCS fromL1’s two sides respectively, and the SCCSes originates two surface patches in the two
cells besidesQ1Q2, soQ1 is a point we are interested;Q2 originates two SCCSes fromQ2 besides
L1 respectively, and the four SCCSes all originate one surfacepatch on the cells besidesQ1Q2 and
Q2Q3, which meansQ2 is not a point where the topology of the new surface changes onL1; Q3

originate two line segments parallelling toXY -plane as SCCSes onL1’s two sides respectively, all
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originating 2 surface patches on the cell bodies besides them, which means the SCCSes are singular
curve of the surface, soQ3 is a point we are interested;Q4 originate one SCCS onL1’s two sides
respectively,Q3Q4 originates surface patches but there is no surface patches originating fromQ4Q5,
soQ5 is a point we are interested.

So we can conclude thatQ1, Q3, Q4 are the points where the topology of the surface changed onL1.

4. Take the same coordinate system transformation as (17) forg = xy(16x2 + 16y2 − 49), We can
get a surface:

G(X,Y,Z) = (X − Z)(Y − Z)(16(X − Z)2 + 16(Y − Z)2 − 49).

We just need to decide some points on the line corresponding to the vertical line on the space curve
defined byG(X,Y,Z) = 0 andF (X,Y,Z) = 0. Use the method in [16], we can find that there
is only one point on the vertical line which is the intersection of SCCSes and the vertical line. It is
[0, 0] × [0, 0] × [0, 0].

5. Now we can get the points where we are interested onL0, we can simply call these points as
vertical points. By the coordinate relationship ofL1 andL0, we can get the points we are interested
on L0 which correspond toQi. Since the topology of the surface does not change onL1 at Q2,
we need not to consider the corresponding point onL0. Let V0, V1, V2, V3, V4 be the points onL0

corresponds toQ0, Q1, Q3, Q4, Q5 onL1. We have the points

[V0, V1, V2, V3, V4] = [[[0, 0] × [0, 0] × t],
t = [−2,−2], [−7

4 ,−7
4 ], [0, 0], [

7
4 ,

7
4 ], [2, 2]]

and the edges(V0, V1), (V1, V2), (V2, V3), (V3, V4).

Now we need to find out the SCCSes of the original surface whichoriginate from these points and
edges on vertical line. The basic idea is as below.

At first, find a separate pointWi on each vertical edge, that is, between two adjacent pointsVi−1, Vi,
then construct a planeΘWi

paralleling to XY-plane passingWi, search a rectangleRi containingWi

such that all the curve segments insideRi originate fromWi, and when projected intoXY -plane, all
this kind ofRi correspond to a same rectangleR which only contains one critical pointP . In order to
determine the number of SCCSes originating from each vertical point, we need the following lemma.

Lemma 4.12 The number of SCCSes originating from the pointVi equals the number of intersec-
tions of line{x = α, y = β} and the surfaceS between two planesΘWi

andΘWi+1
, where(α, β) is

a point onC(e) insideR.

Proof. Since there is only one vertical points betweenΘWi
andΘWi+1

, the SCCSes between two
planes originate fromVi. There is no part of the surface inRi or Ri+1 has intersection withI(e)
when projected toR. Otherwise, there exists a critical point onR besidesP . By Lemma 4.1, the
SCCS originating fromVi only intersects the line{x = α, y = β} once. So the lemma is true.

So we have the method to decide the number of SCCSes for vertical line case.

Then, we need to decide the number of surface patches originating from each vertical line segment
in each plane cell. In fact, this is done! The boundaries ofRi have some intersections with the
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surface, the number of the intersections in each cell body isthe number of surface patches originat-
ing from the corresponding vertical line segment. For our example, sinceV0, V4 are endpoints and
(V0, V1), (V3, V4) do not originate surface patch, we just need to find rectangles for(V1, V2), (V2, V3).
So we can conclude that(V1, V2) originate two surface patches in cell bodies “2” and “4” respectively,
and(V2, V3) originate two surface patches in cell bodies “1” and “3” respectively. When comput-
ing the SCCSes originating fromV1, V2, V3, we can find thatV1, V3 do not originate non-vertical
SCCSes,V2 originates four line segments as SCCSes.

In the end, we should form triangles for this case. The curve branches inRi can intersect the plane
triangles when projected toXY -plane. Use these points to subdivide the plane triangles, and then to
form triangular patches. Note that when an endpoint of a plane triangle corresponding to a vertical
line, some of the surface patches corresponding to the triangle should contain two or three TSPs.

Figure 14 is a triangular polyhedron representation of the surface defined by Equation 16 which has
a vertical line{x = 0, y = 0}.

5 Ambient isotopic meshing of surface

In this section, we will show how to compute anǫ-meshing of a surfaceS for a givenǫ > 0.

LetM1 be anǫ-meshing graph of the projection curve ofS computed with Algorithm 3.10. Consider
the two disjoint regions ofB3:

S3 = ∪e∈M1
Be × [Z1,Z2] (18)

N3 = B3 \ S3. (19)

SurfaceS has no singularities in the cylindrical regionN3, so we can use a modified Pantinga-Vegter
method [24] to compute its meshing. What we need to do is to compute the correct meshing inside
S3. To present the algorithm, we need preparations given in Sections 5.1 and 5.2.

5.1 Extremal points of surfaces and spatial curves

In order to give an ambient isotopic meshing for a surface, weneed to considerz-extremal points of
surfaces and spatial curves. A point is calledz-extremal if the surface achieves a local extremum
value at this point in thez-direction. We have

Lemma 5.1 Let f(x, y, z) =
∏

i fi(x, y, z) be a square free polynomial andfi irreducible polyno-
mials. A necessary condition for the surfacef(x, y, z) = 0 to have az-extremal point is

G1(x, y) =
∏

i

Res(fi,
∂fi
∂x

, z)
∏

i

Res(fi,
∂fi
∂y

, z) = 0 (20)

where only the nonzero resultants are included.
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The following example shows that we need to consider the irreducible factors. Letf = (z − y)(z −
x)(x2 + y2 + z2 − 1). Then Res(f, fx, z) = Res(f, fy, z) ≡ 0. But the surface indeed has an
z-extremal point at(0, 0, 1).

Lemma 5.2 Let f(x, y, z) be a square free polynomial,D(x, y) defined in (10),G1(x, y) defined
in (20), andr a fixed number. ThenD(x, y)G1(x, y) = 0 is a necessary condition for the curves
f(x, y, r) = 0, f(x, r, z) = 0, and f(r, y, z) = 0 to havex-extremal,y-extremal, orz-extremal
points.

We also need to consider thez-extremal points of spatial curves defined byg(x, y) = f(x, y, z) = 0,
whereg andf are polynomials. For this purpose, we need to decompose the curve into irreducible
ones. The leading coefficient ofg (f ) as an univariate polynomial iny (z) is called theinitial of g
(f ). Two polynomials of the formg(x, y), f(x, y, z) is called anirreducible chain if the following
conditions are satisfied [21] (pages, 297-381)

• g(x, y) is an irreducible polynomial.

• f(x, y, z) is an irreducible polynomial ofz moduleg = 0, deg(f, y) < deg(g, y), and the
initial of f is a polynomial inx.

For instance,g = y2−x, f = z2−x is not irreducible, sincef = (z−y)(z+y)+g = (z−y)(z+y)
mod (g).

For an irreducible chaing(x, y), f(x, y, z), we define itssaturation ideal to be

Sat(g(x, y), f(x, y, z)) = {P | Is1Ik2P ∈ (f, g)}

whereI1 andI2 are the initials ofg andf respectively. It is known that the saturation ideal of an
irreducible chain is a prime ideal, and thus defines an irreducible spatial curve [21] (pages, 297-381).

Any spatial curvef(x, y, z) = g(x, y) = 0 can be decomposed into the union of irreducible curves
algorithmically:

V (g(x, y), f(x, y, z)) = ∪iV (Sat(gi(x, y), fi(x, y, z))) (21)

wheregi(x, y), fi(x, y, z) are irreducible chains. We can prove the following result:

Theorem 5.3 Letg(x, y), f(x, y, z) be an irreducible chain and

I(x) = product of the initials off, g. (22)

T (x) = Res(Res(h, f, z), g, y) whereh(x, y, z) = fxgy − fygx.

LetE be the set ofz-extremal points of the curveC : f = g = 0. Then

Projx(E) ⊂ V (T (x)) ∪ V (I(x)). (23)

Furthermore, ifT (x) ≡ 0, then the curveV (Sat({f, g})) is contained in several planes perpendicu-
lar to thez-axis.

Proof. For any pointP = (α, β, γ) on C, the necessary condition ofP being az-extremal point of
C is the tangent line ofC atP is perpendicular toz-axes. IfP is neither the singular point off = 0
nor g = 0, the tangent planes off = 0 andg = 0 atP are both well defined. The tangent line ofC
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atP is the intersection of the tangent planes off = 0 andg = 0 atP . The tangent directionn of C
atP is

n = < fx, fy, fz > |P× < gx, gy, 0 > |P
= < −gyfz, fzgx, fxgy − fygx > |P .

Since the tangent planes off = 0 andg = 0 atP are:
{

(x− α)fx(α, β, γ) + (y − β)fy(α, β, γ) + (z − γ)fz(α, β, γ) = 0,
(x− α)gx(α, β) + (y − β)gy(α, β) = 0

respectively.n is perpendicular to thez-axes, that is:

n· < 0, 0, 1 > = fx(α, β, γ)gy(α, β) − fy(α, β, γ)gx(α, β)
= h(α, β, γ) = 0.

Therefore,E ⊂ V (h(x, y, z)). (23) is true.

If T (x) ≡ 0, we prove thatV ({f, g}/I) is contained in several planes perpendicular to thez-axis.

First we claim thatn is well defined onC except finite number of points, that is only finite number
of points onC are the singular points off = 0 or g = 0. If it is not true, at least one of the following
conditions occurs:

C1. V (f, g, fx, fy, fz) has 1-dimensional component.

C2. V (f, g, gx, gy) has 1-dimensional component.

If C1. occurs, it means thatfz ∈ Sat(f, g). It is impossible. Condition C2. could not take place for
the same reason. Note thath(x0, y0, z0) = 0 for any point(x0, y0, z0) onC. The tangent direction of
C at almost all points is the form(A,B, 0).

Then we prove this component ofC lies in some planesz = z0. This component ofC can be
parametrization in some segments. Assume the parametric equation isr(t). We have

r(t) = r(t0) +

∫ t

0
r′(t) = (x(t), y(t), z0),

wherer(t0) = (x0, y0, z0). It implies that this segment ofC lies in the planez = z0. Therefore,
the irreducible component ofC which contains this segment lies in the planez = z0. We prove this
theorem.

The following example shows that we need to decompose the curve into irreducible ones. Letf =
z(x2 + z2 − 1), g = y. Then Res(fxgy − fygx, f, z) ≡ 0. But the curve indeed has az-extremal
point at(0, 0, 1).

5.2 Compute segregating box for an SCCS

In Section 4.5, we showed how to compute the segregating box for a singular point. In this section,
we introduce the concept of segregating boxes for singular curve segments.
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In Algorithm 3.10, a curve segmentC(e) of the projection curveC is represented by a segmente
contained in a boxBe, as shown in Fig. 5. When liftingC to the space, we obtain a set of SCCSes
Si, i = 1, . . . , d of S represented by edgesEi ∈ SE (see Section 4.2). A boxBSi

= Be × [ei, fi] is
called asegregating boxfor Si if BSj

∩BSi
= ∅ for i 6= j andS does not intersect with the top and

bottom faces ofBSi
. In Fig. 15, we give a segregating box for the surface patchesA1B1C1D1 and

A2B2C2D2 intersecting at curve segmentP11P21 which is lifted from curve segmentP1P2.

Assume that allSi are monotonous in the direction ofz, the following algorithm shows how to
compute segregating boxes for the SCCSes:Si, i = 1, . . . , d.

P11

P21

B2

A2

D2

C2

B1

A1

D1

C1

P1

P2

Figure 15: Segregating boxes
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Figure 16: Merge meshes

Figure 17: DivideN2 into
boxes

Algorithm 5.4 SegBoxC(f(x, y, z), g(x, y),B3 ,Be, ǫ). Let S : f(x, y, z) = 0 be the surface,B3

the bounding box,Be a nice box (see Fig. 4) containing a curve segmentC(e) of the projection curve
C : g(x, y) = 0 of S, ǫ > 0.

The output is a pair(P,S). P is a set of interior-disjoint boxes contained inBe, the union of which
containsC(e). For eachPi ∈ P, there exist 3D boxesSi,j ∈ S which are the segregating boxes for
the SCCSes lifted fromC(e) ∩Pi.

1. We consider case (a) in Fig. 4. Other cases can be treated similarly. C(e) dividesBe into two
cellsc1 andc2.

2. LetP1 = {Be}, P = ∅, S = ∅. Repeat the following steps untilP1 = ∅.

(a) LetB = [a, b]× [c, d] ∈ P1 and removeB from P1.

(b) ExecuteRootIsol({g(a, y), f(a, y, z)}, [c, d]×[Z1 ,Z2], ǫ) to compute the pointsP1,i, i =
1, . . . , N1 lifted fromP1. See Fig. 15 for an illustration. Let the isolation box forP1,i be
S1,i × [e1,i, f1,i].

(c) Similarly, letP2,i, e2,i, f2,i, i = 1, . . . , N2 be the points lifted fromP2. By Lemma 4.1,
N1 = N2.

(d) LetBi = Be × [min{e1,i, e2,i},max{f1,i, f2,i}], i = 1, . . . , N1.

(e) If |Bi| < ǫ for all i, addBe toP and addBi to S.

(f) Otherwise, subdivideBe into four equal boxes and add the boxes intersecting withC into
P1.

3. Repeat the following steps until all boxes inS are segregating.
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(a) LetB̄ = B× [e, f ] ∈ S.

(b) If 0 6∈ f(B× [e, e]) and0 6∈ f(B × [f, f ]), thenB̄ is segregating, we do nothing for
B.

(c) Otherwise, removeB fromP andB̄ fromS. SubdivideB into four equal boxesC1,C2,
C3,C4, add eachCi intersecting withC into P, and addCi × [e, f ] into S.

4. ReturnP andS.

Proof of correctness.We need only prove the termination of the algorithm. According to the as-
sumption, allSi are monotonous in thez direction. So Step 2 terminates in a finite number of steps.

At the beginning of Step3, for anyC(e) ⊂ B = [a, b] × [c, d] ∈ P wheree = (P1, P2), P1 =
(a, α), P2 = (b, β), let C(sj) be a curve segment lifted frome andBi = [a, b] × [c, d] × [ei, fi] be
the corresponding box wheresi = (P1,i, P2,i), P1,i = (a, α, γi), P2,i = (b, β, τi), we have|Bi| < ǫ
and

f(a, α, ei)f(a, α, fi)f(b, β, ei)f(b, β, fi) 6= 0.

Furthermore,si does not intersect with the top nor bottom faces ofBi sincesi is monotonous in the
direction ofz. That is0 6∈ f(C(e)× [ei, ei])f(C(e)× [fi, fi]). So there exists a positive numberδ
such that

0 6∈ f(d(C(e), δ) × [ei, ei])f(d(C(e), δ) × [fi, fi])

whered(C(e), δ) is a zonal region inR2 containing the pointsQ such that the distance betweenQ
andC(e) is less thanδ. We can get the set of sub-boxes ofB in a finite steps such that all boxes in it
are contained in the regiond(C(e), δ). Then the algorithm clearly terminates.

5.3 Computeǫ-meshing of surface

Similar to the case of curves, we need to modify the Pantinga-Vegter method. A boxB is called a
nice box if each face ofB is a nice 2D box. For an illustration, see the 2D case in Fig. 4.To make
the process precise, we introduce the following definition.

A meshing polyhedronof a surfaceS is a four-tupleM = {P, E ,F ,B} where(P, E ,F) is a
polyhedron whose vertices are with rational numbers as coordinates and whosefaces are the meshes
for S; B is a set of nice boxes and segregating boxes of singular points of S s.t. for eachF ∈ F ,
there exists aBF ∈ B with the property that the surface patchS ∩BF is connected.

A meshing polyhedronM is called anǫ-meshing polyhedronif each boxB in B satisfies|B| < ǫ. It
is easy to show that anǫ-meshing polyhedron for a surfaceS provides anǫ-meshingfor S according
to the definition given in Section 2.

Algorithm 5.5 MPV3 (f(x, y, z),N3, ǫ). S : f(x, y, z) = 0 is the surface.N3 is a box contains no
zero ofD(x, y)G1(x, y) = 0 whereD(x, y) is defined in (10) andG1(x, y) is defined in (20). Output
an ǫ-meshing polyhedron forSN3

.

1. SubdivideN3 into boxesBi at the corner lines (Fig. 17 shows how to subdivide the region
N1

2 in Fig. 6(a), where the dotted lines are newly added.) and execute the Pantinga-Vegter
algorithm with initial values{Bi}. LetS be the output.
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2. For each cubeB ∈ S, repeat subdividingB until all of the following statements are false.

(a) There exists an edge(A,B) of B s.t.0 ∈ f((A,B)) andf(A)f(B) > 0.

(b) There exists a faceABCD of B s.t. f(A)f(B) < 0 ∧ f(B)f(C) < 0 ∧ f(C)f(D) <
0 ∧ f(D)f(A) < 0.

(c) |B| > ǫ.

Termination of the algorithm is guaranteed by Lemma 5.2.

Now we can compute theǫ-meshing forSB3
.

Algorithm 5.6 ATopSur (f(x, y, z),B3, ǫ). The input is the same as Algorithm 4.5. The output is
an ǫ-meshing polyhedronfor SB3

.

S1 Compute the critical points of the projection curve and their segregating boxes.

1. Let
G(x, y) = sqrfree(G(x, y)G1(x, y)), (24)

whereG is defined in (11) andG1 is defined in (20).

2. Execute the first four steps of Algorithm 3.5 with input (G(x, y),B2, ǫ) to compute a
set of pointsP1 and the segregating box for each point inP1. We need to modify the
algorithm as follows. In Step 3 of Algorithm 3.5, we use the new projection polynomial:

H(x) := H(x)
∏

i

Ii(x)
∏

i

Ti(x), (25)

whereH(x) is defined in (4),Ii(x) andTi(x) are defined in (22) with decomposition
(21). Only the nonzeroTi are considered.

S2 ComputeSP0 and the setSB0 of segregating boxes for points inSP0. For anyPi,j ∈ P1,
use Algorithm 4.7 with input(f,B3, Pi,j , ǫ) to compute the points lifted fromPi,j and their
segregating boxes. LetB1 be the set of all updated segregating boxesBi,j of Pi,j . LetM1 =
{P1,B1}.

S3 Compute anǫ-meshing graph for the non-singular part of CB2
in N2 defined in (6). Let

M0 = MPV2(G(x, y),N2, ǫ), whereN2 is defined in (6).

S4 Compute segregating boxes for SCCSs:

1. AssumeM0 = {P0, E0,B0}. LetSB1 = P2 = E2 = B2 = ∅.

2. For eachB ∈ B0, execute the following steps:

(a) Compute{P,S}=SegBoxC(f(x, y, z), G(x, y), B3,B, ǫ).1

(b) SB1 = SB1 ∪ S and updateP2, E2,B2 according toP which subdividesB.

3. LetM2 = {P2, E2,B2}.

S5 Compute the extended meshing graphEGS of C with Algorithm ?? with inputM1 andM2.

1Step S1 ensures allz-extremal points of the curveC : f = 0, G = 0 are inS3. Hence the SCCS inB is monotonous
in the direction ofz.
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S6 Meshing the singular part ofS in S3.

1. Let{SP1,SE1,SF1}=TopSur(f(x, y, z),B3). Modify Algorithm TopSur as follows:
useG(x, y) defined in (24) in Step 1, useEGS in the Step 2, and useSP0 in Step 3. We
actually only run Steps 4 and 5 of AlgorithmTopSur.

2. LetM1 = {SP1,SE1,SF1,SB0 ∪ SB1} whereSB0 andSB1 are from Steps S2 and
S4 respectively.M1 is anǫ-meshing polyhedron forSS3

.

S7 Meshing the non-singular part ofS in N3. Let M2 = {MP2,ME2,MF2,MB2} =
MPV3(f(x, y, z),N3, ǫ), whereN3 is defined in (19).

S8 MergeM1 andM2 to obtain an ǫ-meshing polyhedron forS. OutputMerge(M1,M2) (with
Algorithm 5.8).

Theorem 5.7 Algorithm 5.6 computes anǫ-AIMESH forSB3
.

Proof. The prove is similar to the proof of Theorem 3.11.

In principle, there exist no difficulties to implement the algorithm. But, it will take a lots of time, since
we need to incorporate algorithms from symbolic computation, interval arithmetics, and marching
cube into one program. This will be our further work,

In the final step of Algorithm 5.6, we need to merge two meshingpolyhedrons, which will be done
by the following algorithm.

Algorithm 5.8 Merge(M1,M2). M1 = {MP1,ME1,MF1, MB1} andM2 = {MP2,ME2,
MF2,MB2} are theǫ-meshing polyhedrons ofS in S3 andN3 respectively. The algorithm merges
M1 andM2 and outputs anǫ-meshing polyhedronM = {MP ,ME ,MF} for the surface.

S1 LetMBt = MB1.

S2 While MBt 6= ∅, repeat

1. RemoveB = [a, b] × [c, d] × [e, f ] from MBt. Insert boxBi = [b, bi] × [ci, di] ×
[ei, fi] ∈ MB2 which is connected withB according toS and adjacent to the face
F = [b, b] × [c, d] × [e, f ] into Ba and insert correspondingV (Bi) into Pa . Pick out
boxesBi satisfyingdi = minBj∈Ba

{dj}. Rename them to beB1, . . . ,Bm. Sort the
residual boxes inBa as{Bm+1, . . . ,Br} such thatcm+1 ≤ cm+2 ≤ . . . ≤ cr and for
eachBk, k > m, Bk is connected with someBj , j < m according toS(Note that the
result is not unique, and anyBk, 0 < k < m only overlaps withB on the vertical edge
[b, b]× [di, di]× [ei, fi]).

2. Fori from 1 tor do

(a) Remove the pointsP from V (Bi) and insert pointsQ ∈ SP ∩ (B∩Bi) into V (Bi)
if P ∈ L∪R whereL = [b, b]× [c, c]× [e, f ], R = [b, b]× [d, d]× [e, f ]. Remove
edge(P,Pi) from ME2 which are the edges withP as an ending point and insert
(Q,Pi) into MF2. Remove triangular faces(P,Pi, Pj) from MF2 which are the
faces with(P,Pi) as an edge and insert(Q,Pi, Pj) into MF2.
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(b) If there existP ∈ Ri whereRi = [b, b]× [di, di]× [ei, ei] andRi ∩L∩R = ∅, add
P into MP1. goto (e).

(c) If there existP ∈ Di ⊂ F whereDi = [b, b]× [ci, di]× [ei, ei]. AddP in SP . goto
(e).

(d) If there existP ∈ Ui ⊂ F whereUi = [b, b]× [ci, di]× [fi, fi]. AddP in SP . goto
(e).

(e) Assume the other point contained in the face[b, b]× [ci, di]× [ei, fi] of Bi isQ and
(Q,S, T ) ∈ MF1 is the triangular face withQ as a vertex whereS ∈ R. Remove
(Q,S) from ME1 and insert(Q,P ), (P, S) into ME1. Remove triangular faces
(Q,S, T ) from MF1 and insert(Q,P, S), (P, S, T ) into MF1(The four edges of
this face ofBi contains two points. We can always assume that we have dealt with
the other one point, sinceBi, i > m is connected with someBj we have dealt with).

(f) UpdateMB2 according to the newV (Bi).

3. Determine the connection information of the other three faces ofB in the similar way.

S3 OutM = {MP ,ME ,MF} whereMP = MP1 ∪MP2,ME = ME1 ∪ME2, andMF =
MF1 ∪MF2.

A box B1 is said to beadjacent to a boxB2 w.r.t. the surfaceS if B1 andB2 are interiorly disjoint
andS intersectsB1 ∩B2. We need only consider how to merge the meshes in two adjacentboxes.

We use the example in Fig. 16 to explain the algorithm. The large boxB is in S3 and contains
singularities. We consider the right faceF of B. LetBi, i = 1, . . . , 5 be the boxes inN3 adjacent to
B at faceF. By Step 1 of Algorithm 5.5,Bi must be completely between linesAB andCD. We will
adjust the meshes inB and leave the meshes inBi unchanged. Since all the meshes are triangular,
letOPQ be the mesh ofS in B, andNiPi−1Pi the mesh ofS in Bi. We will replace the meshOPQ
with the meshesMi = OPi−1Pi, i = 0, . . . , 4. If Pi is aboveBC, Pi is taken to be the intersection
of BC and the line passing throughPi and parallel toAB. Other cases can be treated similarly.

6 Conclusion

This paper proposes complete methods to compute isotopic and ambient isotopic meshings for im-
plicit algebraic curves and surfaces. We use symbolic computation to achieve completeness and
whenever possible use interval arithmetics to achieve practical effectiveness. Note that an isotopic
meshing without precision and anǫ-meshing are quite different and can be used for different pur-
poses.
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