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Abstract

A complete method is proposed to compute a certified, or amlisetopic, meshing for
an implicit algebraic surface with singularities. By chetil, we mean a meshing with correct
topology and any given geometric precision. We propose asjiminumeric method to com-
pute a certified meshing for the surface inside a box comtgigsingularities and use a modified
Plantinga-Vegter marching cube method to compute a cettifieshing for the surface inside a
box without singularities. Nontrivial examples are givershow the effectiveness of the algo-
rithm (see Fig[L). To our knowledge, this is the first methmddmpute a certified meshing for
surfaces with singularities.

Keywords. Surface, curve, topology, ambient isotopic meshing, magcbube, symbolic com-
putation, interval arithmetic.

1 Introduction

Figure 1: Isotopic meshing for surfaces with singular poend singular curves

To determine the topology of a given algebraic surface andsttriangular meshes to approxi-
mately represent the surface are fundamental operaticz@mputer graphics and geometric model-
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ing. Meshing of surfaces could be used to display the sudacectly and to perform engineering
applications on the surface, such as the finite element sisaljx survey on this topic can be found
in [5].

We consider an implicit surface defined Iy, y, z) = 0 where f(z,y, z) is a square free polyno-
mial with rational numbers as coefficients. There existggelamount of work on meshing implicit
surfaces. Please see the wark[[1], 4, 26] and the literatitexs in them. Recent work focuses on
isotopic meshing [5]. Simply speaking, a meshing is caléedopic if it has the same topology and
the same geometry as the surface (for definition see Sedtignrieshing is callediambient isotopic

or certified if it is isotopic and approximates the surface to any giveigien. There exist four main
approaches to compute isotopic meshings for surfaces: #nehing cube method, the Morse the-
ory method, the Delaunay refinement method, and the CAD i{@ytal Algebraic Decomposition)
based method.

The famous marching cube method repeatedly subdividespeesinto smaller cubes until the
structure of the surface inside each cube is knawn [19]. fRgficit surfaces, Snyder proposed the
globally parameterizable criterion for that purposel [2B]Jantinga and Vegter proposed the small
normal variation condition which leads to a better meshiggrithm [24,25].

Hart et al proposed a method based on Morse theory [18, 23, Tt%4 idea is to check when the
topology of f(z,y, z) = a will change for a parameter. Whena changes from some initial value
where f(x,y,z) = a has no solution ta = 0, the topology of the surface is found. Fortuna et al
presented improved algorithms for surfaces in the projectpace [15, 14].

For a set of points on the surface, one can form the restrig&daunay triangles and the correspond-
ing Delaunay triangulation can be used to approximate thiacel Boissonnat and Oudot proved
that when the sample point set satisfies certain conditibiesDelaunay triangulation has the same
topology as the surfacel[7), 6]. Cheng et al established aimaékults using different strategies [12].

The CAD method proposed by Collins can be used to divide tlndidaan space into cylindrical cells
such that the given surface has the same sign on each of theTden to determine the topology of
the surface, we need only give the adjacency informatiowéen the cells [3, 20]. Alone this line,
new ideas are introduced to compute the topology of surfddk22].

All the above methods except the one based on CAD work foasasfwithout singularities only. In
this paper, we give a method to compute a certified meshingniglicit algebraic surfaces with sin-
gularities. The method is a hybrid one based on the CAD appraad the marching cube approach.
We propose a CAD based method to compute a certified meshingdsurface inside a box con-
taining singularities and use a modified Plantinga-Vegtethod to compute a certified meshing for
the surface inside a box without singularities. Our maintigbation is how to treat the singularities.

This paper consists of three parts. The algorithms for sagfare the main contributions. In Section
3, a new method is proposed to compute a certified meshingdiang algebraic curve. This section

also provides preparations for algorithms about surfathsre exist many methods to compute the
topology of plane curves, e.d./[2,/9./13] 17]. Our contitiuis to give an interval based method to
compute the adjacency information and to give an ambietdpgomeshing for a curve. The method

in [9] can also compute an ambient isotopic meshing basedairbpunds of equation systems. Our
method is based on symbolic-numerical computation, whgiractically more effective.



In Section 4, a new method is proposed to compute an isotopghimg for a surface. The method
has two advantages. First, we use symbolic computationadstto guarantee the completeness
and whenever possible use interval arithmetics to incrdesefficiency. Actually, computations of
algebraic numbers are totally avoided. The waork [2, 20] @dgsbraic numbers. Second, our algo-
rithm does not change the surface to generic positions asidd82], which is generally expensive.
Our method need only to project the surface once, while therdhm proposed in [22] need to do
projections twice.

In Section 5, a method is proposed to compute a certified mgdbir a surface. A well-known
technical to treat a singular poirt is to find asegregating boxwhich containsP but does not
intersect the surface at its bottom and top faces. We f extéaadoncept to singular curve segments
and give an interval based method to compute such boxes asidesién the boxes. Another key
ingredient is a careful analysis of the extremal points ofemes and spatial curves. It is pointed out
in [B], that the method in [22] “makes no guarantees aboug#wmetric accuracy of the mesh, and
it cannot be extended in a straightforward way to provide aemagcurate mesh.” To our knowledge,
the method proposed in this paper is the first one to compugetdied meshing for surfaces with
singularities.

Algorithms in Sections 3 and 4 are implemented in Maple armitmaal examples are used to show
that the algorithm is quite effective for surfaces with silag points and curves.

2 Preparations

In this section, we give several known results and algortheeded in this paper. Followind [5], we
will compute a meshing with correct topology for a curve oudace in the following sense.

An isotopic meshingfor a varietyS C R" (n = 2, 3) consists of a graph/polyhedréh(for n = 2, 3)
and a continuous mapping: R™ x [0, 1] — R™ which, for any fixed: € [0, 1], is a homeomorphism
~(-,t) from R™ to itself, and which continuously defornginto S: v(-,0) = id, v(¥4,1) = S.

For a numbere > 0, ane-meshing for S is an isotopic meshing/ for S, which gives ane-
approximation forS in the following sense| P — v(P,1) ||< eforall P € 4. Please note that
isotopy is stronger than homeomorphism [5].

2.1 Real root isolation of triangular system

A basic step of our algorithm is to isolate the real roots tfiangular system which consists of
equations like

Yo = {fi(®1), fo(®1,22), -, ful@1, 22, ..., 0) } 1)
wheref; € Q[z1, ..., ;] involvesz; effectively.

We use intervals to isolate real numbers:0&t denote the set of intervals of the forjm b] where
a < b € Q. Thelength of an interval boxB,, = [a1,b1] X -+ X [an,b,] € OQ™ is defined to be
|B,,| = max;(b; — a;).



In this paper, when we saymint, we mean a poinP = (&1,...,&,) with real algebraic numbers
as coordinates, which is represented by a triangular syStefike (1) with P as a solution and an
isolation boxB,, for £. For instance/2 is represented by? — 2 = 0 and(1, 2).

Now, we give a formal description of the root isolation algun.

Algorithm 2.1 Rootlsol(X,,,B,,,¢). The input consists of a triangular systeéiy of form (1), a
boxB,, € 0Q", and a positive numbet. The output is a set of isolation boxes for all the real roots
of ¥, = 0in B,, such that the length of the isolation boxes is smaller th@md any two of the
isolation boxes are disjoints.

A modified version of the root isolation algorithms in [11] 27used in our implementation.

Let f(z1,...,2n) € Qlx1,...,z,] @andB,, = [a1,b1] X - -+ X [ay,b,] € OQ™. Thebox operation
0f(By,) returns an interval containing all the poirtg(x1,...,x,) |a; < x; < bj,t = 1,...,n}.
Furthermore, whefB,,| approaches to zero, the length of intefg(B,,) also approaches to zero.
If a; > 0 andb; > 0, we can construdt f(B,,) as follows

Df(Bn) :f+(b1>--->bn)_f_(alv"'>an)

where f = f* — f~ such thatf*, f~ € Q[z;...,z,] each has only positive coefficients and
minimal number of monomials. For the general case, pleassutio[11]. It is clear that such an
operation satisfies the following property.

Lemma22If ¢ = (&,...,&,) is not a zero off (zy,...,z,) = 0 and B,, an isolation box for
¢. Then if the length oB,, is small enough, the intervalf (B,,) will not contain (0, ... ,0), which
means thaB,, has no intersections witfi = 0. We denote this asf(B,,) # 0.

2.2 Delineable polynomials

Delineable polynomials are important in determining theotogy of algebraic surfaces. Létx,
ces Tp1, %) € Rlz1,...,2,] and P = (p1,...,p,) a point of R". We say thatf hasorder & at
point P, if k > 0 is the least non-negative integer such that some partialadiee of total orderk
does not vanish @. And f is said to beorder-invariant in a subsef? of R” provided that the order
of f is the same at every point &.

For simplification, we denote tHe —1)-tuple (x4, ..., x,_1) asz. An r-variate polynomialf (z, x,)
over the reals is said to lelineableon a submanifoldk of R™—! if it holds that:

(1) the portion of the real variety of that lies in the cylindeR x R over R consists of the union of
the function graphs of some> 0 analytic function®; < ... < 8, from R into R; and

(2) there exist positive integers; such that for every € R, the multiplicity of the root off («, x;)
corresponding t@; is m;.

Polynomial f is said tovanish identically on R if f(P,z,) = 0 for every pointP € R. In addition,
f is said to bedegree-invarianton R if the degree off (P, x,.) as a polynomial irx,. is the same for
every pointP € R. In this situation, the following theorem holds (seel[2G], 246).



Theorem 2.3 (McCallum and Collins) Leff (z, z,) be a polynomial inR|z, x,.| of positive degree
in z,. Let D(Z) be the discriminant of as a univariate polynomial i:, and suppose thab(z)
is a nonzero polynomial. L&k be a connected submanifold&f~! on whichf is degree-invariant
and does not vanish identically, and over whighs order-invariant. Thenf is delineable orR.

The following theorem improves the above result.

Theorem 2.4 ([8]) Let f € R(z,z,) (r > 2) be anr-variate polynomial of positive degree ifn
with discriminantD(z) # 0. Let R be a connected submanifold Bf ~! in which D is order-
invariant, the leading coefficient gfw.r.t. z,. is sign-invariant, and such that vanishes identically
at no point inR. Then,f is degree-invariant orR.

3 Ambient isotopic meshing of plane curve

In this section, we give an algorithm to compute an isotopéshing for an algebraic curve. The
main purpose of this section is to provide preliminary aions for later sections. We also give a
new and fast method to compute the adjacency informatioedbas interval arithmetics.

3.1 Determine the topology of plane algebraic curve

We use a graph to represent the topology of a plane curtepdlogy graphis a graph¢ = {P, £}
where

e P is a set of plane points defined by triangular systéimand isolation boxe8, ;:
P = {Pj=(pBi;),0<i<s0<j< s} 2)
Y = A{hi(x),9i(x,y)}, Bij = [ai, bi] x [cij,dij]

whereag < a1 < --- < asandB;o < B;1 < -+ < Bi . When drawing the graph, we use
M; ; = ((ai +b;)/2, (cij + d; 5)/2) to represent,; ;.

o £ = {(Pl,Pg)‘Pl,Pg € P, such that either?, = PZ‘J,,PQ = Ijy1,4 OF P = PZ‘J,,PQ =
P; ,+1}. Inthe first case, the edge is calledn-vertical. In the second case, the edge is called
x-vertical. We further assume that any two edges do not intersect eatép end points.

Consider a plane algebraic cu@e g(x,y) = 0 whereg(z,y) € Q[z,y] is a square free polynomial.
A point Py is anz-critical point of C if g(Fy) = g,(Fo) = 0.

We will consider the part of in a bounding box
B = [A1, X x [V1, )] € 0Q? 3

which is denoted aSg, = C N Bs. In the rest part of this papdB. is always assumed to be of this
form.

Let P be a point on curvé, theleft (right) branch number of P, also denoted ab#(P) (R#(P)),
is the number of curve segmentsivhich pass througl® and are on the left (right) side @f in a
small neighborhood aP.



We introduce the key concept of segregating box. A Box [a,b] x [c,d] € 0Q? is calledsegre-
gating w.r.t.C if
CNla,b] x [¢,¢] =CNJa,b] x [d,d] = 0.

A curve behaves nicely in a segregating box, as illustrayeithé following lemma. See Fi@] 2(a) for
an illustration.
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Figure 2: Curve segments inside a segregating box.

Lemma 3.1 LetB = [a, b] x [¢, d] € DQ? be a box segregating w.rd.and the interior ofB contains
no x—critical points ofC. LetC intersect the left and right boundaries Bfat pointsZ;,i = 1,...,1
andR;,j = 1,...,r respectively. Thed is delineable ove? = (a,b) and the number of curve
segments af insideB equalszﬁ:1 R#(L;) = Z;zl R#(R;). (See Figurél2(a) for an illustration)

Proof. Note that the leading coefficierit(z) of g(z,y) w.r.t.toy is a factor of the discriminant
D(z) of g(x,y) as a univariate polynomial ig. Since there exist na-critical points ofC inside

B, C(z) is not zero. Hence(z,y) is degree invariant oveR. Also D(z) = 0 has no roots
over R. Then, by Theorerh 2.3; is delineable oveiz andCg consists of curve segments starting
from certainL; and ending at certai®;. Furthermore, these curve segments do not intersect. So
Sty R#(L;) = Y7_) R#(R;). This proves the lemma. I

A box B is called asegregating boxfor a point P onC if P is insideB, B is segregating w.r.t,
andCp \ {P} contains nac-critical points ofC. See Fig[B(a) for an illustration. It is known that
(Theorem 5 in[[2]):

Lemma 3.2 If B = [a,b] x [¢,d] € 0Q? is a segregating box aP onC, then R#(P) and L#(P)
are the numbers of real roots 9fb, y) = 0 andg(a,y) = 0in (¢, d) respectively. See Figl 2(b).

The following algorithm computes the branch numbers.

Algorithm 3.3 NumCur (P). P is a set of points defined byl (2). Outgig:(P; ;) for 0 <i < s—1
andL#(P; ;) for1 <i <s.

1. For0 < i < s, if g;(z,y) has a factor of the form () € Q[z], letg; = ¢;/V (z).
2. While0 Dgi([ai, bl], Cm’) orQ e Dgi([ai, bl], di,j); repeat[az-, bl] = ROOtISOl(hZ'(:L'), [ai, bl],

3. LetR = ROOtISOl(g(bi, y), [Ci,j> d@j], 1) and L = ROOtISOl(g(ai, y), [Ci,ja di,j]a 1) By
Lemmd32 R#(P; ;) = |[R| andL# (P, ;) = |L|. (See Fig[2(b))
Proof of correctness. SinceB; ; is an isolation box forP; ;, theng; (o, ¢; j)gi(cu, d; j) # 0. By

Lemma 2.2, the procedure in Step 2 will terminate. At the einBitep 2,¢;(x,¢; ;)gi(x,d; ;) = 0
has no real roots ifu;, b;], that is,B; ; is a segregating box faP; ;. The third step is clearly truq.



Remark 3.4 In Step 2 of Algorithni_3]3, the boundary points need spe@akicleration. If the
boundary points are on the curve, that isg{fv;, Y1) = 0 or g(«;, Y2) = 0, we will make sure that
the following condition holdsuy; is the only real root ofy;(z, Y1) = 0 or g;(z,)2) = 0in [a;, b;].
Then, the algorithm also works.
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Figure 3: Compute topology graph of a curve

The following algorithm to compute a topology graph follothe basic idea iri[2]. Our main contri-
bution is to use interval arithmetics instead of algebraimhbers. Also, we do not need changing the
curve to generic positions as donelinl[13}, 17]

Algorithm 3.5 TopCur (g(x,y),Ba,¢€). C : g(z,y) = 0is the curveBs is defined in[(B), and > 0
is a number. Output a topology graph = (P, E) which is anisotopic meshingfor Cg,. Further,
each isolation bo:B of a point inP satisfiegB| < e.

1. Let€ = andg(x,y) = V(x)gy(z,y), whereV (z) is the factor ofy(x, y) in  only.
2. LetD(z) = Regg,, %2, y) be the resultant of, and 2.

3. LetP =Rootlsol(Xs;, B, €)URootIsol(X92, B, €), where

H(z) = (z—X) (z—A2) gu(x, 1) gu(z,V2) - D(z)

Hy(z) = H(z)/gcd(H(z),V(z)) (4)
Yo1 = {Hy(2),g9.(2,y
Yo = {V(x),90(x,y)(y — V2)(y — 1)}

Assume thaP is of form (2). See Fid.]3(a) for an illustration.
4. Execute Algorithnl 3]3 to compute#(P; ;) (1 < i < s)andR#(P; ;) (0 <i < s—1).

5. Add an auxiliary line at: = (b; + a;+1)/2 and construct the non-vertical edges. SedFig 2(c)
for an illustration. For = 0,...,s — 1, execute the following steps

(a) LetQ; =Rootlsol({x — m#,gv(aj,y)},B, €), wherea;, b; are from|[2). Arrange the
points inQ; bottom up, we hav&®; = {Q; 1, ..., Qiw, }- SEtR#(Q) = L#(Q) = 1.

(b) LetR; be the list of pointsP; ;, arranged bottom up and poid ;, will be repeated
R#(P, ) times inR;. Similarly, £; is the list of pointsP;;1 ;. By Lemma31L;, R;,
andQ; contain the same number of points. Igt= (L1,..., Ly;), Ri = (R1,..., Ry,).

(c) Forj =1,...,u;,add(L;, Qi ), (Qij, Rj) O E.
(d) LetP =P U Q,. Still assume thaP is of form (2).
6. Add thez-vertical edges. Ity is a root ofV(z) = 0, add(P; i, P 44+1),k =0,...,s; t0 €.



7. Output the topology graphi = {P, £}. The isotopy map can be constructed in the usual way
[25].

Theorem 3.6 Algorithm[3.5 computes an isotopic meshingdey, .

Proof. First, we prove that each edge= £ represent exact one curve segment pand for each
degree invariant segment©@f there exist exact onec £ presenting it. Hencé and somey-vertical
line decompos®; into cylindric regions .

It is clear that the curvé consists of two part§,, : g,(z,y) = 0andV (z) = 0. The partV/(z) =0
consists of straight lines — ~; = 0,7 = 1,...,t, where~; are the real roots oF (z) = 0. To
determine the topology df, we need only to find the topology gragh of C, and then to add the
linesz — v; = 010 ¥,. So we may conside?, only.

From Steps 2-4, we know th@& contains all ther-critical points of the curv€,, and theboundary
pointswhich are the intersection points 6fand the boundaries d8». In Steps 6 and 7, we add
auxiliary pointsQ; to P. Since points irQ; are not critical points of, we haveR#(Q) = L#(Q) =

1 for @ € Q;. This makes sure that all the eddds;, Q; ;) and(Q; ;, R;) are distinct.

Let B; = (a;, aj+1) X [M1,M2],7 = 0,...,s — 1. We need only to show that, and¥, have the
same topology inB;. Let S; be the intervala;, «;+1). ThenD(z) does not vanish on any point
of S;. As a consequencey,(x,y) must be degree invariant o#}. By Theoren{2Bg,(x,y) is
delineable ovelS; and¥, is obtained by replacing a curve segmentpfin B; by a line segment
with same end points. It is clear théf and¥, have the same topology. We are going to make
explicit the isotopy fron€ to Cp,. Let¥ = (P, &) be a topology graph for curvég,, andP of
form (@). LetP; ; = (o, B;,;) be of form [2). LetQ; ; = (7;, pi ;) wherer; = “ijbi,pivj = %
Then¥ decompose®, into cylindrical regionsJ; ; R; », whereR; ; is bounded by;, 7;,1] in the
z-direction and byf; = (Qiu, Qi+1,) and fo = (Qi s, Qit+1+) for ceratinu, v, s, t. Note thatR, j,
could be a triangle or a quadrilateral.

First, we consider one cylindrical regid®; ;, defined as above. Lef = (P, ,, Pi+1,)) andey =
(Pi s, Piy1,). Without loss of generality, assumg < az, 51,1 < f1,2. According to the correctness
prove of Algorithm 3.5y, (x,y) is delineable ovefa,, a], we can find two root functiong; (x) of
gy ON [a1, ag] corresponding to the two curve segme@ts:;) andC(e2). Denotey = §;(x),x €
[a1, 2] to be the definition functions of line segmertsandy = ¢;(z),z € [r1, 7] to be the
definition functions of line segmengs. Consider the maps:

F1 : ([011,0[2] X R) X [0, 1] — Rz

defined by
(z, A1 (z) + (1 — Ad2(x)), )
= (z, A(t01(z) + (1 — t)01(z)) + (1 — N)(t02(x) + (1 — t)d2(x)))
and
F2 : ([’7’1,’7’2] X R) X [0, 1] — [011,012] x R
defined by

(@, A1 (x) + (1 = Apa(2)), 1)
= (@ A01(2") + (1 = t)pa(2)) + (1 = A)(t62(2) + (1 — t)p2(x))),



wherez’ = a1 + 2= (g — ).

T2—T1
The mapF; is a homeomorphism froijmy, 7o) x R to [a1, ag] x R and Fy is a homeomorphism from
[a1, 2] x Rtoitself. So the composed mdf, := F, o F; is a homeomorphism frorr;, 7] x R
to [, ] x R and it deformsf; to C/(e;) continuously. Extend this map ®?* x [0, 1] by setting
it to be the identity map outsid&; ;,, we obtain an isotopy from line segmenfisuU f to the curve
segments’(e;) U C(e2).

Now we consider the whole topology grafgh For each cylindrical regiof; ., we can construct an
isotopy F; ;. as above. Consider the following map:

F:R?x[0,1] — R?

denoted by
o E,j(P>t)> P e Ri,jv
F(P7t)_{2d7 PGRZ\BZ (5)
Note thatF j|r, ;nR... = FuulRijnRu.s andFi,j\Ri_’jm(Rz\BQ) = id for all 4, j,u,v. (¢4, F)is an
isotopy forCg,. I

As a consequence of the above proof, we have

Corollary 3.7 LetG = (P, &) be a topology graph of the cun@s, obtained by Algorithni_3]5.
Then all the singular points afg, are in P and g(z,y) is y-degree invariant over the intervals
(i, it1),1=0,...,8 — 1.

When computing the topology of a surface, we need to intredhe concept of extended topology
graph. Anextended topology graphassociate with a boB; is a triplet€G = {EP, £E, EC} where
{573,55} is a topology graph andC = {(Pl,Pg,Pg) | P, € &P, (Pl,PQ), (Pg,Pg), (P3,P1)

€ £E} is a set triangular cells iB,. We further assume that the cellsd@ are disjoint except on
their edges and provide a cover Bs.

We can obtain an extended topology graph of a curve from ddgp@raph by adding more auxiliary
points and edges.

Algorithm 3.8 ETopCur (g(x,y), B2, p) The input is the same as Algoritim13.5. The output is an
extended topology graph 6f,. (See Fig[B(c) for an illustration)

1. Let¥ = {P,E} = TopCur(g(x,y),Ba, p).
2. LetéP =P. Fori =0,...,s,add(c;, V1) andP; 5, = (a;, Vo) to EP if they are not in it.

3. ForpointsP; ;,j = 0,...,s;, let[a;, b;] x [¢; j,d; ;] be the isolation box foP; ;. Add N; ; =
(qs, (dij +¢ij+1)/2),7 =0,...,5 —1to EP. We still assume tha P is of form (2).

4. LetEE =E.Forj =0,...,s0 — 1, add the edge&Py ;, No ;), (No ;, Po,j+1) to EE.

5. For eachd < i < s — 1, add the edgesP; o, Pi110) and (P s;, Piy1,5,,,) t0 EE. Then
the edges Ir€€ divide the rectangular regioB = [, ;1] X [V1, )] into triangular and
quadrilateral regions. We will subdivide these regions imiangular regions such that each
point in £P is the vertex of at least one triangles.



6. LetEC = (). For any two adjacent edges = (P11, P».1),e2 = (P12, P»2) inside B, execute
Steps 7 and 8.

7. If Piy # P2, there exists one poinV; added before in Step 3 betweét ; and P .
Furthermore,

o |f Pg,l 75 P272, there exists one pOiWQ betvveenPQJ and P2’2. P171,P1’2,P272,P2’1
form a quadrilateral region. We can divide the quadrildtezgion into four triangles.
Add the Edges‘{Pg,l,Ng), (NQ, Pg,g), (PLQ, NQ), (Nl,Ng), (N17P271) to ££. Add the
triangles(Py 1, N1, Po1), (N1, Po1, N2), (N1, P12, N2), (P12, N2, P2 2) t0 EC.

o If o1 =Py =P, P11, P2, Pform atriangular region. We can divide the triangular
region into two triangles. Add the edgéB; 1, N1), (N1, P12), (N1, P) to EE. Add the
tl’iang|ES(P171, Ny, P), (Nl, PLQ, P) to EC.

8. If 1 = Pi» = P, then there must exist a poii¥, added before in Step 3 between
P, and P, 5. P, P>, Py form a triangular region. We can divide the quadrilatergiioe
into two triangles. Add the edg€d 1, N2), (N2, P 2), (P, N2) to £. Add the triangles
(P, P271, NQ), (P, PQ’Q, NQ) to EC.

9. OutputeG = {EP,EE,ECH.

Remark. The purpose to add poinfs; ; in Step 3 is to make sure that topology representation for
surfaces possible. These points has similar function athéhauxiliary points added in Step 6 of
Algorithm[3.5. Hence, they are also calladxiliary points. Figure[3 is an extend topology graph of
the curveG(z,y) = = -y - (1622 + 16y> — 49) = 0.

Let £G = {EP,EE,ECT be an extend topology graph 6, ande = (P, P») € EE. If e cor-
responds to a curve segment@,, we useC/(e) to represent the corresponding curve segment;
otherwise, we us€’'(e) to represent the line segmeRtP,. LetI(e) = C(e) \ {P1, P»}. Fora
c € EC, we useR(c) andI(c) to denote the cell and interior of the cell represented Bspectively.

3.2 Computee-meshing for plane curve

The meshing given in Sectién 8.1 has no guarantee of precisiothis section, we will show how
to compute a meshing for a curve to any given precision.

Let¥4 = (P, &) be atopology graph for a curéginside a boxB; defined in[(8). Assume tha® is
of form (2). Consider the two disjoint regio®s andN, of B,:

Ss = U;Sh, Ny =U;NJ, where
Sé = (@i, b)) X [V1,)0],i=0,...,s (6)
Ny = [bj,aj01] x [V1,d0],5=0,...,5s— 1.

Then,Cg, C Sy U Ny and is smooth ifN,.

The idea of our algorithm is to determine the topology of theve in the regiorS, with Algorithm
[3.5, to determine the topology of the curve in the regdnwith a modified marching cube method of

10



Pantinga-Vegter [24], and to compute the adjacency infaonan the border lines = a;, x = b;.
We could use the marching cube methodNn becaus& has no singular point in it.

D
D D - orE o —c . . nZIQ‘
G " (Y " Q
/ 3 EF |
R G R P N N o
A B A B P B B Py "
@ ® © C) O N

(@) (b)
Figure 4: Nice boxes: (a), (b). Boxes in (c), (d) not niceIIigure 5: Meshing curve segments

In order for the above idea to work, we need to modify the PgatiVegter method such that each
output box contains only one curve segmentpfis shown in Fig[14(a) and (b). Such boxes are
callednice boxes

The original Pantinga-Vegter method could output a boxaairig two curve segments and this will
cause problems when the box is near a singular point, as showig. [4(c). A point is called a
y-extremal point of curveC if C achieves a local extremum value at this point in ghéirection.
Pantinga-Vegter's method could output a box shown in[Bid).4(

To make the process precise, we introduce the following iiefin An e-meshing graphof a curve
Cis atriplet M = {P, &, B} where(P, &) is a graph whose vertices are with rational numbers as
coordinates and whossdges are the mesheer C; B is a set of nice boxes and segregating boxes
of singular points o such that for each € &, there exists 8. € B with the property:|B.| < €
andC N B, is a connected curve segment®fSee Fig.[5). In Figd5(@)P = {Ni, Na},e =
(N1, N2), B, = ABCD forms a meshing graph for curve segmétie) = P, H P;.

It is easy to show that arrmeshing graph for a curv@ provides are-meshingfor C according to
the definition given in Section 2.

Algorithm 3.9 MPV2 (g(x,y),Ba,¢€). Input: C : g(z,y) = 0 is a curve with nax-critical points
and noy-extremal points in boB,. Output ane-meshing graply = {P, £, B} for Cg,.

We need only add some extra criterions for the boxes: (1) Bohedge(A, B) of B, if 0 €
Og((A,B)) andg(A)g(B) > 0, we continue to subdivid®. (2) For each boxB, if |B| > ¢,
we continue to subdividB.

SinceC has naz-critical points and ngy-extremal points in boB,, a box like the one in Fid.]14(d)
does not exist and the algorithm will terminate.

Now, we can give the meshing algorithm for curves.

Algorithm 3.10 ATopCur (g(z,y), B2, €). The input is the same as that of Algorithm]3.5. Output
an e-meshing graph foy(x, y) = 0.

1. Execute the first four steps of Algoritim B.5 with inpyt«, y), B2, €). We need to modify
Algorithm[3.5 as follows: Lety,(z,y) = g.,(x,y)/U(y) whereU(y) is the gcd of the coeffi-
cients ofg,(x,y) as a univariate polynomial in; and useH (x) - Regg,, %L;,y) as the new

H(z)in {@).

We needV (z), g,(z,y), and¥, = {P1, B1} from Algorithm[3.5, where3; is the segregating
boxes for the points iP;.
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2. Compute?y = {Pq, &2, Bo}=MPV2(g(z,y), N2, €). The modification in Step 1 makes sure
thatC has naz-critical points andy-extremal points iflNs.

3. Compute the connection between the boxes computed byS3temd Step S2. (Fid.] 5(b)
shows how to mest near a singular poind with B = ABC'D as its segregating box. Fig.
[6(b) provides a global picture for meshing a curve.)Fes 0,..., s, consider the adjacency
information on the border lines = a;, b;. We only consider: = b;. For eachP € P and its
segregating boB = [a, ] x [¢,d] € B, do the following

(@) LetEy = [b, cx]x[ex, fr] € B2 be the boxes satisfyinBNE,, # 0 andg(b, éx)g(b, fr) <
0, whereé, = min{eg, c} and f, = max{fx,d}. As a consequencé, passes through
theseE, through the intervalb;, b;] x [ex, fx]-

(b) LetQ = ((a+b)/2,(c +d)/2), my = (2, + fi) /2.

(c) Add the edge = (Q, (b, my)) to M. Add B, = B to M.
4. Add the meshes for the straight lines defined/tfy:) = 0.
5. Output the meshing graph.

=yl =
TN NN
ANA o AN
PR | RN
@ ®) ©

Figure 6:e-meshing for a curve

Theorem 3.11 Algorithm[3.10 terminates and computeseaambient meshing fafg, .

Proof. By Lemmd3.6,M N S, is the isotopic meshing @f N S,. Marching cube method compute
the isotopic meshing af N Ny. Hence, M is a isotopic meshing fo€g,. Furthermore, for each
e € ENNg, C(e) C B, |B.| < e and each part afg, around the singular poirf is contained in
the segregating boxd3p, |Bp| < € of P. Therefore, for any poinP € M, F(P,1) andP are in
the same boB. with |B.| < ¢, so|| F(P,1) — P ||< e. This gives a proof of Theorem 3]11.

In order to compute the-meshing for surfaces, we need to add more information te-tneshing
graph. LetM = {P, &, B} be a meshing graph for a curée Then anextended meshing graph
EM = {EP,EE,ECY for C in B can be defined similarly as the extended topology graph. The
difference is thatC provides a triangular decomposition 8r

The following algorithm computes an extended meshing graph

Algorithm 3.12 METopCur (g(z,y),%,%). % = {Pi,B1} whereP; is the set of points on
C : g(z,y) = 0 of form [2) andB; is the set of their segregating boxe$, = {Ps, &, B2} is an
e-meshing of the curvé in N, defined in[(5). Output an extended meshing graptCfor B; U Bs.
(Fig. [B(c) is the extended meshing graph for the box in theéecenf Fig. [6(a) and its surrounding
boxes.)

Sl LetEP =0, =0,EC =0.
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S2 For anyB = [a,b] x [c,d] € By, itis the segregating box of one poift € P;. Compute the
extended topology i .

1. Compute

{Q1,...,@Q;} = Rootlsol({z — a,g(a,y)},[c,d],1)
{Th,...,T,} = Rootlsol({z — b, g(b,y)},c,d],1).

DenoteA;,i = 1,...,4 to be the four vertices aB. DenoteB;,j = 1,...,p to be
the points on the edge @ which are the vertices of boxes adjacenBqNote that if
[ > 1(r > 1), there exists some poii};, between)); andQ;.1(7; andT;,1)).

2. TP = 0. Add pointsQ;, Tj, Ax, By, into TP.

3. Denote the sets of poinfs= {L,...,s} andR = {Ry,..., R;} whereL is the points
in 7P which are on the left edge @ sorted from bottom to up an& the points in7 P
which are on on the right edge 8 sorted from bottom to up.

4. Add pointP and all points in7P into £P. Add edges P, L;), (P, R;) into ££. Add
triangular cell(P, L;, Li+1), (P, R;, Ri+1) and (P, L1, Ry), (P, Ls, Ry) and (L;, L;+1),
(Rj, Rj+1) to £C.

S3 For any boxeB € B,. Compute the extended topology For any line segmert € & with
B = [a,b] X [¢, d] € B, containing it. Doing the following operations(There aresdnditions
thate divide B into two parts, see figl4. We can distinguish them according§st@and B,.
Here we consider the condition (a), the other conditionglasdt with in the similar way).

1. Comput&l = Rootlsol({z—a, g(z,y)}, B, e/4) andT = Rootlsol({z—b, g(z,y)}, B,
e/4). Obviously, @ and T both contain only one point. We still call thefg andT'.
DenoteA;,7 = 1,...,4 to be the four vertices aB. Denote5;,j = 1,...,p to be
points on one edge @ which are the vertices of boxes adjacenBo

2. TP = 0. Add pointsQ, T, A;, B; into TP.

3. Add all points in7P into £P. Similar to the forth step in Stef2 we can decompose
B into triangular cells and insert these cells i8%, and insert corresponding edges into
£E& such that each point i P connects to at least another point in this set.

S4 OutputéE M = {EP,EE,ECY.

4 Topology of surface

In this section, an algorithm will be given to compute a pelgion with triangular faces, which is
isotopic to a given surface.
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4.1 Outline of the algorithm

We use a polyhedron with triangular faces to represent thaldgy of a surface. Aopology poly-
hedronis atriplet?? = {SP,SE, SF} whereSP, SE, andSF are defined below.

e SPis aset of 3D points determined by a triangular systemnand an isolation boxeB,; ; ;.

SP = {Pjr0<i<s0<7<s;,0<k<t;}
Bijx = lai,bi] x [cij,dij] % [eijn fijx] €0Q°

whereP, ;. = (o, Bij, V%) Satisfyag < -+ < ag, fio < -+ < Bis;, andy; jo < -+ <
Vit POINLP; ;1 is said to beifted from the plane poinf; ; = (i, 8; ;). P ; is said to be
theprojection of P ; .

o S¢€ = {(Pl,P2)|P1,P2 e SP, such that eitherP; = })z',u,mP2 = H_,_an or P, =
P v, P> = P;yt1+}. We further assume that any two edges do not intersect eatepé
end points.

o SF ={(P1, P, P3)|P, P, P; € SP} such that its three edges ared8. We further assume
that any two faces do not intersect except at the edges.

LetS : f(z,y,z) = 0 be an algebraic surface, wheféx,y,z) € Q[z,y, 2] is square free. A
point P is acritical point of S if f(Py) = f.(Py) = 0. Write f as a univariate polynomial ig:
flz,y,2) = falz,y)z% 4+ -+ fo(z,y). fa(z,y) is called thdeading coefficientof f(z,y, z). We
further assume that

falz,y) =+ = fo(x,y) = 0 have no common zeros. (8)

Geometrically, this means th& does not contain a line parallel to theaxis. We will consider
surfaces that do not satisfy this condition in Section 4.7.

Similar to the case of algebraic curves, we will considerttpology ofS in a bounding box

Bj = [X1, X)) x [V1, 0] x [21, 20]) €0QP. 9)

Let
D(x,y) = Res{f,%,z) (10)
G(l‘,y) = SqrfreéD(xa y)f(xa Y, Zl)f(xvya ZZ)) (11)

where sqrfre€P(z, y)) is the square free part éf(x, y). The plane curv&(z, y) = 0 is called the
projection curve of S.

To determine the topology of a surface is to find a topologylpediron with the same topology as
the surface. We first give an outline of the algorithm, whiohsists of four main steps.

S1 Compute an extended topology grafd = {EP,EE,EC} of the projection curve of in By
defined in[(B).
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S2 DetermineSP. For anyP € £P, determine the intersection points &fand the line segment
P x [Zl,ZQ].

S3 DetermineSE. For each edge € £€, compute the intersection éfand the cylindrical surface
patchl(e) x [Z1, Z2], which are delineable curve segmentsSoivhose end points are §iP.
We will use line segments i€ to represent these curve segments. Sed Fig. 7.

S4 DetermineSF. For each: € £C, compute the intersection &f and the prismi (c) x [21, 22,
which are delineable surface patchessoffhose edges are $E. We will use triangular faces
in SF to represent these surface patches. Seéd Fig. 8.

4.2 Theoretical preparations for the algorithm

In the outline of the algorithm given in the preceding setti®tepS1 has been solved in Section3.1.
StepS2 can be solved with AlgorithrRootlsol. We will explain Steps$s3 and$4 below.

Roughly speaking, Step3is to determine the topology of the spatial curve defined by, y, z) =
G(z,y) = 0. The following result, which is a consequence of Theorem &I8ys us to determine
the singularities of this curve easily.

Lemma 4.1 Use the notations introduced above. For each edge (P, P») € EE, f(x,y,z) =0
is delineable ovel (e) = C(e) \ {P1, P»}.

Proof. LetC : G(z,y) = 0 be the projection curve & and D(z,y) the discriminant off w.r.t.z.
Sincel(e) is a continous curve segment ©f G is order-invariant orf (¢). From [10),D(z,y) is
order-invariant on/(e). Since condition[(8) holdsf does not vanish identically on any point of
xy-plane. So,f does not vanish identically ofi(e). Now, we will prove thatf is degree-invariant
onI(e). Itis clear that all the singular points 6fare inEP. Thenf,;(z,y) is either identically zero
on I(e) or does not vanish on any point de). So we can conclude thd(x,y) is sign-invariant
onI(e). By Theoremi 214f is degree-invariant ofi(e) . By Theoreni 2.3/ is delineable ol (e). |

As a corollary, we have

Corollary 4.2 Fore = (P1, P») € EE, the intersection of and(e) x [Z1, Z5] consists of disjoint
curve segments &f whose end points are i§P.

These curve segments together with their endpoints aredciiespatial cylindrical curve seg-
ments (SCCS)f S lifted from e.

To determine the edges of the topology polyhedron, an SC@semd pointsP; and P, is repre-
sented by the line segment= (P, P»). S€ is the set of these line segments. For an elige S¢&,
we useS(E) to denote the corresponding SCCSSf

Let P, ;, € SPande = (P, ;, P, ) € EE. We use# (P, ; 1, e) to represent thaumber of SCCSes
which haveP, ; ;. as an end point and are lifted fro@(e). We use# (e) to denote thenumber of
SCCsSes lifted frome. Define# (P, ..w,€) similarly. As a direct consequence of Lemmal4.1, the
following equation

#(e) = #(Pijre) =D #(Puvuwe) (12)
k w
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holds for eacle = (P, ;, P,,») € £E. (See FigLlr)

In StepS4, we find the surface patches lifted from a triangular eelt £C by identifying their
boundaries which are SCCSes&fAs a consequence of Theorém|2.3, we have

Lemma 4.3 Letc € EC. Thenf(z,y, z) = 0 is delineable oves = I(c).

Proof. ForanyP = («, 8) € S, f is degree-invariant and does not vanish. The discrimif¥nt v)
of f does not vanish o®. SoD is order-invariant ovef. By Theoreni 2.3, the lemma holds.]

Lemma 4.4 SN (I(c) x [Z1, 2,]) consists of disjoint surface patches whose edges are SGD8es
whose vertices are points ifP. These surface patches with their edges and vertices ahedcal
triangular surface patches(TSP) lifted fronr.

Proof. By Lemmad. 4.8, the intersection 6fand(c) x [Z1, Z5] consists of disjoint surface patches.
The edges of a surface patshare the intersection of andI(e;) x [Z1, Z2],i = 1,2,3, where
e; are the three sides @f As a consequence, the edges of these surface patches aBeSCIE

¢ = (P, Py, P3), the vertices of an intersection surface patch are thesiat&on points ofS and
P, x [21, 25,7 = 1,2,3. As a consequence, the vertia@s, )2, Qs of a triangular surface patch
are points inSP lifted from Py, P>, P3 respectively. I

It is clear that the TSPs are the intersectiorC@é) x [Z, Z;] andS.

Foracellc = (P, Puv, Psy) € EC and an edgel = (P, j x, Puvw) € SE lifted from the side

e = (P, j,P..) of ¢, we use#(c) to denote théoranch number of TSPs lifted fromR(c) and
#(E, c¢) to denote theaumber of TSPswhich pass througts'(E) and lifted fromR(c). Notations
#((Puv,ws Ps i), c) and#((P; j x, Pst1), c) can be similarly defined. As a consequence of Lemma
4.4, forc = (P, j, Py, Pst) € EC, we have

#(c) = #(Br,c) =) #(Ey0) = #(Es,0), (13)
E1 Eo Es

whereE; = (P, j ks Puwko)s B2 = (Puvkos Ps ks )s 3 = (Pij k> Pst k) fOr all possibleky, ks, k3.
(See Fig[B)

Figure 7: Mesh SCCSes Figure 8: Mesh TSPs

4.3 The algorithm

Following the analysis in the preceding section, we now ¢fieealgorithm to construct a topology
polyhedron for a given surface.
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Algorithm 4.5 TopSur(f(z,y,2),Bs3). S : f(x,y,z) = 0 is the surface satisfying conditiofnl (8)
and f is square freeBj is defined in[(D). Outpuan isotopic topology polyhedronZ” for Sg,.

1.
2.

6.

Compute the projection curveC : G(z,y) = 0 as in [11).

Compute the extended topology graph£G = {EP, EE, EC} of Cp, with Algorithm [3.8,
whereB; is defined in[(B).

. Compute SP. For anyP; ; € £P, use AlgorithnT 4.7 with input f, Bs, P; ;, 1) to compute

P j k-

. Compute S€. Let S&€ = ().

(a) ForeachP;, € £P ande € £ with P, as an endpoint, use Algorithm 4.9 to compute
#(Ps,t,ka 6).

(b) Foranye = (P, ;, Puy) € EE, letLy = (P, - - Pijs, ;) such that poin®; ; , repeats
#(P; j x,e) times. Similarly, defin€ly = (Pyu,0 - - -5 Puv,su)-

(c) By @), |L1| = |L2| =m. Letl = (Pl,. .. ,Pm) andL, = (Ql,. .. ,Qm) Add
(P, Q;) to SE. See FiglLl for an illustration.

. Compute SF. Let SF = (.

(a) For each celk € £C andE € S¢ lifted from a side ofc, compute#(E, ¢) with Algo-
rithm[4.17.

(b) Letey,eq,e3 € EE be the three sides of Let.S; be the sequence of edgesSé lifted
from ¢; ordered bottom up and & is repeated#(E, ¢) times in the sequence.

(c) By (13),[S1| = |S2] = |S3| = t. LetS; = {E;, k = 1,...,t}. Then the three line
segmentst; i, Es i, E3 ), should form a trianglef = (Py g, Pa i, P3 ). Add f to SF.
See Fig[B for an illustration.

OutputZ = {SP,SE,SF}. The isotopic map can be computed as usuél [25].

Theorem 4.6 Algorithm[4.5 computes an isotopic meshing gy .

Proof. First, we prove the algorithm compute the correct topolofygiven surface. Note that with
the auxiliary points added in Step 6(a) of Algorithm13.5 adpS3 of Algorithm[3.8, the edges in
Step 4(c) and the faces in Step 5(d) are mutually differenusTwe have a well-defined polyhedron.

The extended topology grapliG divides the rectangl®- into triangular cells. We need only to
show that for each edge € ££ and each celt € £C, &2 and S have the same topology on

Cle)

X [Z1, 2] andC'(c) x [Z1, Z2] respectively.

Fore € £, from Step 4 the SCCSes &fon the cylindrical surfacé&; = C(e) x [21, Z»2] do not
intersect except at the end points. By Corollakie$ 4.2 B} (he edges of € are the line segments
with the same end points as those SCCSes. Then, the plarfe gtam e x [Z;, Z;] andS on Sy
have the same topology. See Figure 7 for an illustration.Spa¢ial curve segments are presented by
line segments. With similar arguments, we could show thaptirt of %2 onc x [Z1, Z5] andS on
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C(c) x [Z1, Z5] have the same topology. See Figure 8 for an illustrations phives the topology
correctness of the algorithm.

Then we prove the topology polyhedron is a isotopic meshfribengiven surface.

The extended topology graftg = {EP, EE, EC} for the curveCy, decomposaB; into triangular
cells. According to Theorefn 3.6G andC are isotopic and we can construct a homeomorphism
from R? to itself that deforms€ to C continuously:

F:R?x[0,1] — R%

Let # = (SP,S&,S8F) be a topology polyhedron for a surfadg, which decomposeB; into
cylindrical regions in a similar way as described in the pafd heoreni3.6. Extend to R3 x [0, 1]:

T, = (F(z,y),2) : R3 x [0,1] — R3.

The inverse transformatiod; ! of 7y deforms all SCCSs af into planes{C(e) x R,e € £}
which are perpendicular to thg-pane. Denoté,; to be the surfacé’” 1(S). We need only to prove
thatS; and & are isotopic.

We can construct a homeomorphigimfrom R? to itself similar to that give in the proof of Theorem
[3.6 to deform the: direction such thal>(SF,0) = SF andT>(SF,1) = Si.

The transformatiorl” = T} o T5 is a homeomorphism froR? to itself which deformsSF to S
continuously. I

We implemented Algorithia 415 in Maple. Two groups of expents are done for the following five
surfaces with singularities.

Sitfi=attyt 42t —a? -y — 22— 2%y — 2?2 — %P +1=0,B; = [[-1.5,1.5], [-1.25,1.25], [-2,2]].

So i fo = —14(27/2)22y2x? — (27/2)x%y? — 62227 — (27/2)y% 2% + 32 + 322 4 (27/4)y® — 3z* — (243/16)y* —
324 4 284 (729/64)y° + 25+ (27/4)ay® + 3022 + (243/16) % y* + 32221 4 (243/16) 22 y* 4 (27/4) 2y — 222° —
(9/80)y?2% = 0, By = [[-2,2],[-2, 2], [~4, 4]].

Sz ¢ fz = =2y + 29222 + y® + 2 — 227 + 25 + 32%y? — 32* + 32%y* — 627y + 322 + % = 0, B =
[[_27 2]7 [_27 2]7 [_27 2”
Sa:fa =2yt + 22 + 222 — Teyz/2=0,Bs = [[-2,2], [-2,2], [-2,2]]-

Ss i fs = 16 — 22227 — 822 +4a® — 25 + (1/4)a® + 2* +y* + 203 + 21 + 222® — 22797 4 29727 — 82% — 8y = 0,
Bs = [[_27 2]7 [_37 3]7 [—67 6”

The first experiment is to compute an isotopic polyhedrontersurfaces without considering preci-
sion. The timings are given in the second row of Table 1. Twthefpolyhedrons are shown in Fig.
[@. In the second experiment, we continue to subdivide thervats betweeft;, ;] to compute a
more accurate meshing. The results are given in Fig. 1. Thiads are given in the third row of
Table[1.#Mesh in the fourth row gives the number of meshes in these imgshConsidering that
implementations in Maple are generally slow due to overtwetls, our algorithm is quite effective.
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Figure 9: Topology polyhedrons for surfac8sandS,. Figure 10: Isolation intervals

TYPE | & | & | S5 | Si | S5
Topology | 0.544 0.816] 0.760]| 0.684| 1.280
Meshing | 11.7 | 11.8 | 22.0 | 51.1 | 92.0
#Mesh | 1472 | 1612 | 3032 | 3658 | 5456

Table 1: Timings on a PC with Linux OS, 3.00G Core 2Duo CPU,2BARAM.

4.4 Segregating box for a point onS

Assume thasSP is of form (7). TherB, ; in () is an isolation box fo; ; andB, ; ;, is an isolation
box for P ; ;.. Itis clear that

flai, Bijseijr) flai, Bij, dijr) #0 (14)

The isolating boxB; ; 1. of P, ; 1. is called asegregating boxf f(x,y, z) does not intersect with the
top and bottom faces @, ; .. Due to [14), when sufficiently subdividirB; ;, B; ; » will become a
segregating box. This leads to the following algorithm.

Algorithm 4.7 SegBoxP3f(z,y, z),Bs, P,¢) whereS: f(x,y,z) = 0 is the surfaceBs defined
in (@), P a plane point defined by, = {h(z), g(z,y)} and an isolation boB, ande > 0. Output
the set of point§ P;} on S lifted from P, segregating boxes fdp;, and a new segregating ba of
P.

1. Let{B,...,Bs} = RootIsol(X3, B x[21, Z9], €), whereXs = {h(z), g(x,y), f(z,y,2)}.

2. LetB; = B x [e;, f;] be the isolation box foP; on S.

3. Letn =e. While0 € 0f(B x [e;,¢e;]) or0 €0 f(B x [f;, f;]) for somek € {1,..., s}, repeat
n =n/2 andB := RootIsol(X2, B, 7).

4. Output the point$; defined byX3 andB;, and the neviB.

In Step 3, iff («, Bi j, V1) = 00r f(as, Bi j, Va2) = 0, then we need to use the minimal circle method
introduced in[[10] to find a segregating box in order for Lenixhto be true at this boundary point.

4.5 Compute number of SCCSes adjacent to a point

Let P; ; . be a point lifted from point; ; ande = (P; j, P, ) € £E. We will show how to compute
#(Pijks€)-
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For any pointP on the projection curvé€ : G(z,y) = 0 and a segregating bd = [a, b] x [c, d] of
P, C intersects only with the vertical boundariesiBf

For an edge € &, consider the right boundaries Bf We denote the intersection point@fe) with
line x = basq. and
[b, 0] X [ue, ve] (15)

is an isolation interval fof). on linex = b, which is called thésolation interval of C'(e). See Fig.
[10.

Lemma 4.8 Use the above notations. B, ;; is a segregating box fol; ; , and S is deline-
able overl(e), then# (P, ; x,e) equals to the number of solutions of the triangular system=
{G(bi,y), f(bi,y,z)} inthe interval boXue, ve] x [e; j 1, fij k] Geometrically, this is the number of
intersection points of the line segmeat = b;, y = i, e; ;1 < 2z < fi;x} and the surface& where
(b, ;) is a point onG(b;, y) = 0. See Fig[_ I for an illustration.

Proof. From Algorithm[3.3, each SCCS passing through ; and projecting toC'(e) must pass
through the rectangl;, b;] x [uc,ve] x [21, Z2]. SinceB, ; is a segregating box, these SCCSes
must intersect with the the rectange= [b;, b;] x [ue, ve] X [e;jk, fi k). Further, each SCCS can
intersect with the rectangle only once since these SCC®edetineable by Lemnia 4.1. Note that
the number of solutions of the triangular systeiy is the number of intersections of the SCCSes
and the rectangI®&. I

Remark. Similarly, we can compute the humber of the SCCSes on thénéeftl side of the point
P; ; 1, by computing the number of solutions f6€(a;,y) = 0, f(ai,y, 2) = 0}. WhenG(z,y) =0
contains vertical lines, we can compute the number of SC@&esing througl®; ; . and projecting
to these lines by solvingG(z, w), f(z,w, 2)} for w = ¢; ; andw = d; ; respectively.

Figure 11: Computeft(P; jx,e)  Figure 12: Computef (S, c)

We now give the following algorithm to compute the number mfve branches.
The following algorithm is based on Lemmal4.8.

Algorithm 4.9 NumSCCS(f(z,y, 2), P; j k. €) S : f(x,y, z) = 0 is asurface delineable ové(e),
P € SPis of form [7), ande € £& is an edge withP; ; as an end point, wher#; ; is the
projection point ofP; ; .. The output is#(P; j 1, €).

1. If e is anz-vertical line segment abovg, ; in the y-direction, then form the triangular sys-
tem 222 = {g,-(a;, d@j), f(a;, di,j7 Z)} and IetQ = ROOtISOl(ZQQ, [a,-, bz] X [em,k, fi,j,kL 1).
Output#(F; ik, €) = |QJ.
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2. If e is not anx-vertical line segment, we need to compute the isolatioervals defined in
(15). We only consider the right branches. [Rt= RootIsol(g;(b;,y), [ci ;. di ;],1) where
r = R#(P; ;) = |R|. By Lemmd3.2, one of intervals iR is the isolation intervalu., v.] for
€.

3. LetXo; = {g:(bi,y), f(bi,y, 2)} be a triangular system imandz andQ = RootIsol(Xy,
[Ue, Ve] X (€ ks fiji), 1). OUtput#(P; ; 1, e) = |Q|. See Fig[ Il for an illustration.

If there exist no SCCSes originating from a point, it isisslated singularity

4.6 Compute number of TSPs adjacent to an SCCS

We compute the number of TSPs originating fromiae SE. That is, for ant’ = (P, j i, Puvw) €
S€ and ac € EC with e = (P, ;, P,,,) as an edge, we will compuig(E, c).

Use the notations in Algorithin 4.9. Denote the SCCSs paghiogigh pointP; ; ;, and projecting to
C(e) asS(s;),i = 1,...,m. Assume that (Step 3 of Algorithni4.B) is the set of isolation boxes
of m points@1, ..., Qs with Q; on S(s;). Then in the plane = b; (or z = a;), the surface becomes
aplane curve (b;, y, z) = 0 and each surface patch passing throdgh ) becomes a curve segment
of the curvef (b;,y, z) = 0 passing througl®);. We summarize this as the following lemma.

Lemma 4.10 Use the above notations. & is delineable over (¢) and I(c) respectively, then the
number of TSPs passing throudt{s;) and projecting toR(c) is the number of curve branches
passing througlh®); and projecting to the regioi(c).

According to the above discussion, we have the followingadigm.

Algorithm 4.11 NumTSP(f(z,y, 2), Pi jr.e,c) S : f(x,y,2) = 0 is the surface delineable over
I(e) and I(c) respectivelyP; ;. € SP, e = (P, j, P,,») € £€, andc € EC with e as an edge. The
output is#(E;, c) whereS(E;) are all the SCCSes passing throug}; ,, and projecting taC'(e).

1. Execute AlgorithfNumSCCS f(x, y, 2), P, j.ks €)-
2. If eis not anx-vertical edge, execute the following steps
(@) LetQ ={Q,...,Q} be the points obtained in Step 3 of AlgorititlumSCCS

(b) LetXo; = {g(bi,y), f(bi,y, z)} be the defining triangular system f@. Execute Algo-
rithm[3.3 with inputQ to computeL#(Q;) and R#(Q);).

(c) Letc; be the cell undet in the y direction andc, the one above. By Lemma4.1D,
#(S;,c1) = L#(Q;) and#(S;, c2) = R#(Q;). See Fig[ IR for an illustration.

3. If e is anz-vertical edge, execute the following steps
(@) LetR = {Ry,..., R} be the points obtained in Step 1 of AlgorittdumSCCS

(b) LetXo = {g(x,d;;), f(z,d;;, 2)} be the defining triangular system f&. Execute
Algorithm[3.3 with inputR.
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(c) Letcy be the cell on the left hand side @&nd and:;, the cell on the right hand side ef
By Lemmd 4.ID# (1, c1) = L#(R) and#(1}, c2) = R#(Ry).

If there exist no TSPs connect to a SCCS, then the SCCSisokted spatial curve segment

4.7 The General Case

Until now, we assume that the surfaSedoes not contain straight lines parallel to #exis. In this
subsection, we will show how to treat surfaces that contagh $ines.

The aim is to get the points on the vertical lines where theltayy of the surface changed, and the
intersections between some SCCSes and the vertical limes the SCCSes originating from these
points, and the surface patches originating from the ligengats defined by these points.

The following will show how to compute the special case whfén, 5,z) = 0 for some point
P = (o, B). ltis clear thaty(z,y) = 0 has a finite number of such points sinfer, y, z) has no
factor containinge, y only. We can solve the problem in the following way.

1. Take a coordinate system transformation such that theftramed linel; of the vertical line
Ly can be projected as a lidg, on the newX Y -plane.

2. Determine the topological information @b: the intersections of.5 and the new projection
curve, the number of curve segments originating from eatgnrdaction on its two sides.

3. Determine the topological information 6f: lifting the intersections of., and the projection
curve of the new surface to determine the correspondinggoimZ,. Find the points where
the topology of surface changed én.

4. We can made the same coordinate system transformatidghefantersection of two surfaces
G(z,y) = 0andf(z,y, z) = 0. Then we can decide the points on the vertical lines which are
the intersections of SCCSes and the vertical line.

5. Find the points where the topology of the original surfelseanged o, from L, by coordi-
nate relationship. Determine the topological informatdri.

Remark: It is convenient to take a transformation such thais a vertical line of the new projection
curve if Ly can't overlap other line(s) of the projection curve.

In this way, we can solve the special case in Algorithm 4.8c&we have introduced the operations
we need before, we just use an example to show the effectivity

In this special caseS€ contains the edge with the fro(®; ; i, P; j x+1). Similarly, SF contain the
face with the form( P, ; ., P j k+1, Puv,w)-

We will continue the same example. Let us consider the foligwsurface insid&® = [—2,2] x
[—2,2] x [-2,2] as an example.

7
S: f(z,y,2) = 22y + 2222 + %22 — 5%Yz = 0. (16)
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It is clear thatf (0,0, z) = 0. So(0,0) is a point in special case. 3 : {x =0,y =0,-2 < 2z <
2}. The topology polyhedron of the surface is shown in Figuie 14

1. Take the system transformation

{le=X-Zy=Y—-Z2=2} a7
We get a new surface
S F(X,Y,Z) = X2?Y?2-2X2?YZ+4+2X27%-2XZY?+4XZ%Y —4X7Z%+22%Y?
—AZ%Y +32* -1 ZXY + 1 XZ2?+1yZz? - 173

= 0.

Now L corresponds to the line segmdnt: {X = Z,Y = Z, -2 < Z < 2} on the new surface.

/

Figure 14:. Topology polyhedron

Figure 13: Determining th&; in special case of a surface with vertical line

2. The projection curve of’ is shown in the right part of Figufe .13. The red line segmertiés
Ly : {X —-Y =0,-2 < X <2}. Itcorresponds td;. The isolation boxes of the singularities of
the projection curve of’ on L, are below.

Py P Py, P = (15—~ 1, — 855 -, — 851, 0,00x(0, 0], [, 1[5, ).

3. The corresponding pointg; on L, of these singularitie$’ , P,, P, P, are

(Q1,Q2,Q3,Q4] := [[t x t x 1],

T 7 41 655 7T

Z’ _Z]v [_av _@]7 [07 ]7 [17 ZH

Assume the endpoints df; areQg, Q5. Computing the SCCSes originating fraj (i = 0, ...,5)
with Algorithm[4.9, we can find that:

t=[-

There are no SCCSes originating frapg(Q5) except forQo Q1 (Q4Qs) on L1, we can find there are
on surface patches originating fra@n Q1 (Q4Q5) by Algorithm[4.11; Similarly,Q, originates one
SCCS fromL4’s two sides respectively, and the SCCSes originates twaipatches in the two
cells beside$)Q-, s0Q; is a point we are interested), originates two SCCSes frof, besides
L, respectively, and the four SCCSes all originate one surfateh on the cells besidég @, and
Q2Q3, which meang), is not a point where the topology of the new surface changek;org)s
originate two line segments parallelling #6Y -plane as SCCSes dny’s two sides respectively, all
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originating 2 surface patches on the cell bodies besides, thich means the SCCSes are singular
curve of the surface, s€3 is a point we are interested), originate one SCCS oh4’s two sides
respectivelyQsQ, originates surface patches but there is no surface patcigisating fromQ4Qs,
S0(Q5 is a point we are interested.

So we can conclude thél;, Q3, Q4 are the points where the topology of the surface changed, on

4. Take the same coordinate system transformation as (17)fory (1622 + 16y? — 49), We can
get a surface:

G(X,Y,Z) = (X - 2)(Y — 2)(16(X — Z)? +16(Y — Z)? — 49).

We just need to decide some points on the line correspondittgetvertical line on the space curve
defined byG(X,Y,Z) = 0 andF(X,Y, Z) = 0. Use the method i [16], we can find that there
is only one point on the vertical line which is the intersectof SCCSes and the vertical line. It is
[0,0] x [0,0] x [0,0].

5. Now we can get the points where we are interested.gnwe can simply call these points as
vertical points. By the coordinate relationship @f; and L, we can get the points we are interested
on Ly which correspond td@);. Since the topology of the surface does not changd.pmt (-,

we need not to consider the corresponding point.gn Let Vg, V1, Vs, V3, V4 be the points ol
corresponds tg)g, Q1, @3, Q4, Q5 on L. We have the points

[Vo, V1, Va, V3, Va] = [[[0,0] x [0, 0] x ],
= [_27_2]’[_57_5]’[0’0]’[275]’ 2’2“

and the edges‘/E% Vl)a (V17 V2)7 (‘/27 ‘/3)7 (‘/37 ‘/21)

Now we need to find out the SCCSes of the original surface whiitfinate from these points and
edges on vertical line. The basic idea is as below.

At first, find a separate poiii¥’; on each vertical edge, that is, between two adjacent pbjnts V;,
then construct a plan®yy, paralleling to XY-plane passing/;, search a rectangl®; containingl;
such that all the curve segments insiglgoriginate froml¥;, and when projected int& Y -plane, all
this kind of R; correspond to a same rectangiavhich only contains one critical poi. In order to
determine the number of SCCSes originating from each atgimint, we need the following lemma.

Lemma 4.12 The number of SCCSes originating from the pdinequals the number of intersec-
tions of line{z = o,y = 8} and the surface& between two planedyy, andOy, ,, where(a, 3) is
a point onC/(e) inside R.

Proof. Since there is only one vertical points betwegyy, andOyy,_,, the SCCSes between two
planes originate fronV;. There is no part of the surface ®; or R;1 has intersection witH (e)
when projected tadk. Otherwise, there exists a critical point dhbesidesP. By Lemmal4.1, the
SCCS originating froni; only intersects the lingx = o,y = S} once. So the lemma is true.j

So we have the method to decide the number of SCCSes foralditie case.

Then, we need to decide the number of surface patches difgjrfaom each vertical line segment
in each plane cell. In fact, this is done! The boundariephave some intersections with the
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surface, the number of the intersections in each cell botlyeisiumber of surface patches originat-
ing from the corresponding vertical line segment. For owamagle, sincéd), V, are endpoints and
(Vo, V1), (V3, Vy) do not originate surface patch, we just need to find rectarigldV;, 2), (Va, V3).

So we can conclude thél;, V4) originate two surface patches in cell bodies “2” and “4” exsjvely,
and (V4, V3) originate two surface patches in cell bodies “1” and “3” mxstjvely. When comput-
ing the SCCSes originating frovi, V5, V3, we can find thal/;, V3 do not originate non-vertical
SCCSes)s originates four line segments as SCCSes.

In the end, we should form triangles for this case. The curaadhes inR; can intersect the plane
triangles when projected t& Y -plane. Use these points to subdivide the plane triangtesiteen to
form triangular patches. Note that when an endpoint of agtaangle corresponding to a vertical
line, some of the surface patches corresponding to thegtdamould contain two or three TSPs.

Figure[14 is a triangular polyhedron representation of théase defined by Equatidn 16 which has
avertical line{z = 0,y = 0}.

5 Ambient isotopic meshing of surface

In this section, we will show how to compute ameshing of a surfac8 for a givene > 0.

Let M be ane-meshing graph of the projection curve®tomputed with Algorithni 3.10. Consider
the two disjoint regions aBs:

S3 = Ueem;Be x [Z1, 23] (18)
N; — Bs\Ss. (19)

SurfaceS has no singularities in the cylindrical regi®;, so we can use a modified Pantinga-Vegter
method [24] to compute its meshing. What we need to do is topetenthe correct meshing inside
S3. To present the algorithm, we need preparations given itid@®et5.1 and 512.

5.1 Extremal points of surfaces and spatial curves
In order to give an ambient isotopic meshing for a surfacenaed to consider-extremal points of

surfaces and spatial curves. A point is caltledxtremal if the surface achieves a local extremum
value at this point in the-direction. We have

Lemma5.1 Let f(z,y,2) = [, fi(x,y, z) be a square free polynomial aryfd irreducible polyno-
mials. A necessary condition for the surfager, y, z) = 0 to have az-extremal point is

Gae.y) = [[Res i, 52 o) [T Rest i 2. ) =0 (20)

where only the nonzero resultants are included.
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The following example shows that we need to consider thdueible factors. Lef = (z — y)(z —
z)(z? + y* + 2% — 1). Then Re$f, f.,z) = Regf, f,,2) = 0. But the surface indeed has an
z-extremal point afo0, 0, 1).

Lemmab5.2 Let f(x,y, z) be a square free polynomial)(x,y) defined in[(ID)G1 (z,y) defined
in 20), andr a fixed number. The®(z,y)G1(x,y) = 0 is a necessary condition for the curves
flx,y,r) =0, f(z,r,z) = 0, and f(r,y,z) = 0 to havez-extremal,y-extremal, orz-extremal
points.

We also need to consider theextremal points of spatial curves definedddy, v) = f(x,y,2) =0,
whereg and f are polynomials. For this purpose, we need to decomposeutire into irreducible
ones. The leading coefficient gf(f) as an univariate polynomial in (z) is called thenitial of ¢
(f). Two polynomials of the forny(z,y), f(z,y, z) is called anrreducible chain if the following
conditions are satisfied [21] (pages, 297-381)

e g(z,y) is an irreducible polynomial.

e f(z,y,2) is an irreducible polynomial of moduleg = 0, deg(f,y) < deg(g,y), and the
initial of f is a polynomial inz.

Forinstanceg = y% —x, f = 22—z is notirreducible, sinc¢ = (z—y)(z+y)+g = (z—y)(z+v)
mod (g).

For an irreducible chaig(z,y), f(z,y, z), we define itsaturation ideal to be

Satg(z,y), f(z,y,2)) = {P|I;I5P € (f,9)}

wherel; and I, are the initials ofg and f respectively. It is known that the saturation ideal of an
irreducible chain is a prime ideal, and thus defines an icidiei spatial curve [21] (pages, 297-381).

Any spatial curvef(x,y, z) = g(z,y) = 0 can be decomposed into the union of irreducible curves
algorithmically:

V(g([l?, y)7 f(ﬂi‘, Y, Z)) = UZV(Sa(gl(x7 y)v fl(aj> Y, Z))) (21)
whereg; (z,y), fi(x,y, z) are irreducible chains. We can prove the following result:
Theorem 5.3 Letg(z,y), f(z,y, z) be an irreducible chain and

I(x) = product of the initials off, g. (22)
T(x) = RegRegh, [, z2),g,y)whereh(z,y,2) = fogy — fy9a-

Let E be the set of-extremal points of the curnv&: f = g = 0. Then
Proj.(E) C V(T(x)) UV (I(x)). (23)

Furthermore, ifT'(x) = 0, then the curvé/(Sa({ f, ¢})) is contained in several planes perpendicu-
lar to the z-axis.

Proof. For any pointP = («, 3,) onC, the necessary condition &f being az-extremal point of
C is the tangent line of at P is perpendicular ta-axes. IfP is neither the singular point gf = 0
nor g = 0, the tangent planes gf = 0 andg = 0 at P are both well defined. The tangent line®f
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at P is the intersection of the tangent planesfo& 0 andg = 0 at P. The tangent direction of C
atPis
n = < fxafyafz > ‘PX < gx7gy70 > ‘P
= < —gyfmfzg:mfmgy - fygzv > |P-

Since the tangent planes ff= 0 andg = 0 at P are:

(‘T - a)fm(a,ﬁ,’}/) + (y_ﬁ)f’u(avﬁv’y) + (Z _W)fz(aaﬂa/y) = 07
(z — )ge(a, B) + (y — B)gy(a, B) =0

respectivelyn is perpendicular to the-axes, that is:

1’1'<0,0,1> = f;p(a,ﬁ,')/)gy(a,ﬁ)—fy(a,ﬁ,')/)gm(oé,ﬁ)
= h(e,B,7) =0.

Therefore,E C V(h(x,y, z)). 23) is true.

If T(x) = 0, we prove thal/ ({f,g}/I) is contained in several planes perpendicular to:taais.

First we claim that is well defined orC except finite number of points, that is only finite number
of points onC are the singular points gf = 0 or g = 0. If it is not true, at least one of the following
conditions occurs:

Cl. V(f,9, fx, fy, f-) has 1-dimensional component.
C2. V(f,9, 9z, 9y) has 1-dimensional component.

If C1. occurs, it means that, € Sat f, g). Itis impossible. Condition C2. could not take place for
the same reason. Note thdtry, yo, 20) = 0 for any point(xg, yo, z0) onC. The tangent direction of
C at almost all points is the forrpA, B, 0).

Then we prove this component 6f lies in some planes = z;. This component of can be
parametrization in some segments. Assume the parametrtieq isr(¢). We have

r(t) = r(ty) + /0 Y1) = (2(t), y(t), 20),

wherer(ty) = (xo,¥0,20). It implies that this segment df lies in the plane: = z,. Therefore,
the irreducible component @f which contains this segment lies in the plane- z;. We prove this
theorem. I

The following example shows that we need to decompose the ¢nto irreducible ones. Lef =
z(z? + 2% — 1),g = y. Then Reéf.g, — fy9z, f,2) = 0. But the curve indeed haszaextremal
point at(0,0, 1).

5.2 Compute segregating box for an SCCS

In Sectior’ 4.5, we showed how to compute the segregatingdrox $ingular point. In this section,
we introduce the concept of segregating boxes for singuliavecsegments.
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In Algorithm [3.10, a curve segment(e) of the projection curve is represented by a segment
contained in a boB,, as shown in Fig[ ]5. When lifting to the space, we obtain a set of SCCSes
Si,i =1,...,d of S represented by edgds € SE (see Section 412). AboBg, = B, x [e;, fi] IS
called asegregating boxor S; if Bs, NBg, = () fori # j andS does not intersect with the top and
bottom faces oBg,. In Fig.[15, we give a segregating box for the surface patehds; C; D; and

Ay B>Cy D5 intersecting at curve segmeRt; P>, which is lifted from curve segmen®, P,.

Assume that allS; are monotonous in the direction of the following algorithm shows how to
compute segregating boxes for the SCCSgsi = 1,...,d.

\

Figure 17: Divide Ny into

Figure 15: Segregating boxes  Figure 16: Merge meshes boxes

Algorithm 5.4 SegBoxG f(z,y, ), 9(z,y), B3, Be,€). LetS : f(z,y,2) = 0 be the surfaceBs
the bounding boxB. a nice box (see Fid.]4) containing a curve segnt@fit) of the projection curve
C:g(x,y) =00fS,e>0.

The output is a pai(P, S). P is a set of interior-disjoint boxes containedBy., the union of which
containsC/(e). For eachP; € P, there exist 3D boxeS; ; € S which are the segregating boxes for
the SCCSes lifted frofi(e) N P;.

1. We consider case (a) in Fig. 4. Other cases can be treatddri. C'(e) dividesB, into two
cellsc; andes.

2. LetP; = {B.}, P =), S = (. Repeat the following steps uni#l; = (.
(@) LetB = [a,b] x [¢,d] € P, and removeB from P;.

(b) ExecuteRootlsol({g(a,y), f(a,y, 2)}, [c,d]x[Z1, Z2], €) to compute the point® ;, i =
1,..., N lifted from P;. See Fig[1b for an illustration. Let the isolation box far; be

Si1i x [e1, fi)-

(c) Similarly, letPs;, e, fo.i,i = 1,..., N2 be the points lifted fromP,. By Lemmd 4.1,
Ny = Nos.

(d) LetB; = B. x [min{ey;, ez}, max{ fi, fo;}],i =1,..., Ni.
(e) If|B;| < eforall i, addB, to P and addB; to S.

(f) Otherwise, subdivid@, into four equal boxes and add the boxes intersecting @vittio
P;.

3. Repeat the following steps until all boxesSrare segregating.
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(@) LetB =B x [e, f] € S.

(b) 1f 0 Z€0f(B x [e,e]) and0 € 0f(B x [f, f]), thenB is segregating, we do nothing for
B.

(c) Otherwise, removB from P andB from S. SubdivideB into four equal boxe€, Co,
C3, C4, add eaclC; intersecting wittC into P, and addC; x [e, f] into S.

4. ReturnP andS.

Proof of correctnessWe need only prove the termination of the algorithm. Accogdio the as-
sumption, allS; are monotonous in thedirection. So Step 2 terminates in a finite number of steps.

At the beginning of Ste, for anyC(e) C B = [a,b] X [¢,d] € P wheree = (P, P»), P, =
(a,), P» = (b, 3), let C(s;) be a curve segment lifted fromandB; = [a,b] x [c,d] x [e;, f;] be
the corresponding box whesg = (P ;, P»;), Pii = (a, @, %), P2; = (b, B,7;), we havelB;| < e
and
f(a’7 «, ei)f(aa «, fl)f(ba /87 el)f(ba /87 fl) 7& 0.

Furthermoregs; does not intersect with the top nor bottom face8pfinces; is monotonous in the
direction ofz. Thatis0 €0 f(C(e) x [e;, e;]) f(C(e) x [fi, fi]). So there exists a positive numkder
such that

0 Z0f(d(C(e),0) x [es, ei]) f(d(C(e), 6) x [fi, fi])
whered(C(e), §) is a zonal region ilR? containing the points) such that the distance betweén
andC(e) is less thard. We can get the set of sub-boxes®in a finite steps such that all boxes in it
are contained in the regiaf{C'(e), ). Then the algorithm clearly terminates. [

5.3 Computee-meshing of surface

Similar to the case of curves, we need to modify the Pantieger method. A boB is called a
nice boxif each face ofB is a nice 2D box. For an illustration, see the 2D case in [Higlodnake
the process precise, we introduce the following definition.

A meshing polyhedronof a surfaceS is a four-tupleM = {P,&,F,B} where(P,&,F) is a
polyhedron whose vertices are with rational numbers agigoaies and whodaces are the meshes
for S; B is a set of nice boxes and segregating boxes of singulargofff s.t. for eachF' € F,
there exists 8 € B with the property that the surface patSim B is connected.

A meshing polyhedron\ is called are-meshing polyhedronif each boxB in B satisfiedB| < e. It
is easy to show that anmeshing polyhedron for a surfadeprovides are-meshingfor S according
to the definition given in Section 2.

Algorithm 5.5 MPV3(f(z,y,2),N3s,¢€). S : f(z,y,z) = 0 is the surfaceNj is a box contains no
zero of D(z, y)G1 (z,y) = 0 whereD(z, y) is defined in[(I0) and; (z, y) is defined in[(20). Output
an e-meshing polyhedron fa$x, .

1. SubdivideN3 into boxesB; at the corner lines (Fid._17 shows how to subdivide the region
N1 in Fig. [6(a), where the dotted lines are newly added.) andwggethe Pantinga-Vegter
algorithm with initial values{B; }. Let S be the output.
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2. For each cub8 € S, repeat subdividind@ until all of the following statements are false.
(a) There exists an eddel, B) of Bs.t.0 € 0f((A, B))andf(A)f(B) > 0.

(b) There exists afacdBCD of Bs.t. f(A)f(B) <0A f(B)f(C) <0A f(C)f(D) <
0N f(D)f(A) <O.

(©) |B| >e.
Termination of the algorithm is guaranteed by Lenima 5.2.
Now we can compute themeshing forSg, .

Algorithm 5.6 ATopSur(f(z,y,z),Bs,€). The input is the same as Algorithm4.5. The output is
an e-meshing polyhedronfor Sg,.

S1 Compute the critical points of the projection curve and their segregating boxes.

1. Let
G(z,y) = sqrfredG(z,y)G1(z,y)), (24)

whereG is defined inl[(1ll) and; is defined in[(2D).

2. Execute the first four steps of Algorithm B.5 with inp@(¢, y), B2, €) to compute a
set of pointsP; and the segregating box for each pointin. We need to modify the
algorithm as follows. In Step 3 of Algorithin 3.5, we use th&vnojection polynomial:

H(z) := H(x) Hli(w) HTxm), (25)

where H (x) is defined in[(#),7;(x) andT;(z) are defined in[(22) with decomposition
(21). Only the nonzer@’; are considered.

S2 ComputeSPy and the setSB, of segregating boxes for points inSP,. For anyFP; ; € Py,
use Algorithm[4. with inpuf f, B3, P, ;,€) to compute the points lifted fron®; ; and their
segregating boxes. L&, be the set of all updated segregating boksgs of P, ;. Let M =
{P1,B1}.

S3 Compute ane-meshing graph for the non-singular part of Cp, in Ny defined in (8). Let
Mo = MPV2(G(z,y),Ns, €), whereNs is defined in[(B).

S4 Compute segregating boxes for SCCSs:
1. AssumeMg = {Po, &, Bo}. LetSBy = Py = & = By = 0.
2. For eaclB € By, execute the following steps:
(a) Compute{P, S}=SegBoxC f(z,y, z), G(z,y), Bs, B, )l
(b) $By = 8By U S and updatéPs, &, Bs according taP which subdivideB.
3. LetMy = {Ps, &, Ba}.
S5 Compute the extended meshing grapbG s of C with Algorithm ?7? with input M; and M.

Step S1 ensures altextremal points of the curvé : f = 0, G = 0 are inS3. Hence the SCCS iB is monotonous
in the direction ofz.
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S6 Meshing the singular part ofS in Ss.

1. Let{SP1,S8&1,SF1}=TopSur(f(z,y, z), Bs). Modify Algorithm TopSur as follows:
useG(z,y) defined in[(24) in Step 1, usgj s in the Step 2, and us&P, in Step 3. We
actually only run Steps 4 and 5 of AlgorithiopSur.

2. Let My = {§P1,8&1,8F1,8By U SB;y} whereSB, andSB; are from Steps S2 and
S4 respectivelyM; is ane-meshing polyhedron fafs, .

S7 Meshing the non-singular part of S in N3. Let My = {MPy, MEg, MFo, MBs} =
MPV3(f(z,y, z), N3, €), whereNs is defined in[(1B).

S8 MergeM; and M, to obtain an e-meshing polyhedron forS. OutputMerge( M, My) (with
Algorithm[5.8).

Theorem 5.7 Algorithm[5.6 computes anAIMESH forSg,.
Proof. The prove is similar to the proof of Theorém 3.11. I

In principle, there exist no difficulties to implement thgalithm. But, it will take a lots of time, since
we need to incorporate algorithms from symbolic computatinterval arithmetics, and marching
cube into one program. This will be our further work,

In the final step of Algorithni 516, we need to merge two mesipiatyhedrons, which will be done
by the following algorithm.

Algorithm 5.8 Merge(M;, M3). My = {MP1, ME 1, MF1, MB1} and My = {MPy, ME,,
MFy, MB,y} are thee-meshing polyhedrons &fin S3 and N3 respectively. The algorithm merges
M and M and outputs ar-meshing polyhedromt = { MP, ME, MF} for the surface.

S1 Let MBt = MBl
S2 While MB; # (), repeat

1. RemoveB = [a,b] x [c,d] x [e, f] from MB,. Insert boxB; = [b,b;] x [¢;,d;] %
lei, fi] € MBs which is connected witlBB according toS and adjacent to the face
F = [b,b] X [¢,d] % [e, f] into B, and insert corresponding (B;) into P, . Pick out
boxesB; satisfyingd; = ming,cp,{d;}. Rename them to bBy,...,B,,. Sortthe
residual boxes iB, as{B,+1,...,B,} such that,;,;1 < ¢jpy2 < ... < ¢ and for
eachBy, k > m, By, is connected with somB;, j < m according taS(Note that the
result is not unique, and any,,0 < k < m only overlaps withB on the vertical edge
[0, 0] x [d;,di] X [e;, fi])-

2. Fori from 1tor do

(a) Remove the point® from V' (B;) and insert point§) € SPN(BNB;) into V(B;)
if P € LURwhereL = [b,b] x [¢,c] X [e, f], R = [b,b] x [d,d] x [e, f]. Remove
edge(P, P;) from ME- which are the edges witk as an ending point and insert
(Q, P;) into MF,. Remove triangular faces, P;, P;) from MF, which are the
faces with(P, P;) as an edge and ins€®, F;, P;) into MF».
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(b) If there existP € R; whereR; = [b,b] x [d;,d;] X [e;,e;] andR;NLNR = (), add
P into MP;. goto (e).

(c) Ifthere exisP € D; C F whereD; = [b,b] X [¢i, d;] X [e;, e;]. Add P in SP. goto
(e).

(d) Ifthere exisP € U; C F whereU; = [b,b] x [¢;,d;] X [fi, fi]. Add P in SP. goto
(e).

(e) Assume the other point contained in the facé| x [¢;, d;] X [e;, f;] of B; is Q and
(Q,S,T) € MF is the triangular face witld) as a vertex wher8 € R. Remove
(Q,S) from ME&; and insert(Q, P), (P, S) into ME;. Remove triangular faces
(Q,S,T) from MF; and insert{Q, P, S), (P,S,T) into MF(The four edges of
this face ofB; contains two points. We can always assume that we have ditalt w
the other one point, sindd;,« > m is connected with somB; we have dealt with).

(f) Update M B2 according to the new (B;).
3. Determine the connection information of the other theem$ ofB in the similar way.

S3 Out M = {MP, ME, MF} where MP = MP1UMPy, ME = MELUME,, and MF =
MF1 U MFs.

A box B; is said to beadjacent to a boxBs w.r.t. the surfaces if By andB, are interiorly disjoint
andsS intersectdB; N B,. We need only consider how to merge the meshes in two adjhogss.

We use the example in Fid. 116 to explain the algorithm. ThegeldroxB is in S3 and contains
singularities. We consider the right fabBeof B. LetB;,i = 1,...,5 be the boxes iilN5 adjacent to

B at faceF. By Step 1 of Algorithni. 5.5B; must be completely between lind$3 andC' D. We will
adjust the meshes B and leave the meshes B, unchanged. Since all the meshes are triangular,
let OPQ be the mesh of in B, andN; P;_ P, the mesh of in B;. We will replace the mest® PQ

with the meshed/; = OP,_1P;,i = 0,...,4. If P, is aboveBC, P, is taken to be the intersection
of BC' and the line passing through and parallel toA B. Other cases can be treated similarly.

6 Conclusion

This paper proposes complete methods to compute isotodiamibient isotopic meshings for im-

plicit algebraic curves and surfaces. We use symbolic coation to achieve completeness and
whenever possible use interval arithmetics to achievetipe@ffectiveness. Note that an isotopic
meshing without precision and armeshing are quite different and can be used for different pu
poses.
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