Skip to main content

Reasoning about Relations with Dependent Types: Application to Context-Aware Applications

  • Conference paper
  • 1228 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5722))

Abstract

Generally, ontological relations are modeled using fragments of first order logic (FOL) and difficulties arise when meta-reasoning is done over ontological properties, leading to reason outside the logic. Moreover, when such systems are used to reason about knowledge and meta-knowledge, classical languages are not able to cope with different levels of abstraction in a clear and simple way. In order to address these problems, we suggest a formal framework using a dependent (higher order) type theory. It maximizes the expressiveness while preserving decidability of type checking and results in a coherent theory. Two examples of meta-reasoning with transitivity and distributivity and a case study illustrate this approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baader, F., Calvanese, D., MCGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Barlatier, P., Dapoigny, R.: A Theorem Prover with Dependent Types for Reasoning about Actions. In: Procs. of STAIRS 2008 at ECAI 2008, pp. 12–23 (2008)

    Google Scholar 

  3. Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. In: Procs. of IJCAI 2004. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  4. Bittner, T., Donnelly, M.: Computational ontologies of parthood, componenthood, and containment. In: Procs. of the Nineteenth International Joint Conference on Artificial Intelligence, pp. 382–387 (2005)

    Google Scholar 

  5. Coquand, T., Huet, G.: The calculus of constructions. Information and Computation 76(2-3), 95–120 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dapoigny, R., Barlatier, P.: Towards a Conceptual Structure based on Type Theory. In: ICCS 2008, pp. 107–114 (2008)

    Google Scholar 

  7. Guizzardi, G., Herre, H., Wagner, G.: On the General Ontological Foundations of Conceptual Modeling. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 65–78. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the Association for Computing Machinery 40(1), 143–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Horrocks, I., Patel-Schneider, P.F.: A Proposal for an OWL Rules Language. In: Proc. of the 13th Int World Wide Web Conf. (WWW 2004). ACM, New York (2004)

    Google Scholar 

  10. Keet, C.M.: Part-Whole relations in Object-Role Models. In: 2nd Int. Workshop on Object Role Modelling (ORM 2006), Montpellier (2006)

    Google Scholar 

  11. Luo, Z.: A Unifying Theory of Dependent Types: The Schematic Approach. In: Procs. of Logical Foundations of Computer Science, pp. 293–304 (1992)

    Google Scholar 

  12. Luo, Z.: Manifest fields and module mechanisms in intensional type theory. In: Procs. of TYPES 2008 (2008)

    Google Scholar 

  13. Martin-Löf, P.: Constructive Mathematics and Computer Programming. Logic, Methodology and Philosophy of Sciences 6, 153–175 (1982)

    MathSciNet  MATH  Google Scholar 

  14. Ferreira Pires, L., van Sinderen, M., Munthe-Kaas, E., Prokaev, S., Hutschemaekers, M., Plas, D.-J.: Techniques for describing and manipulating context information. Lucent Technologies, Freeband/A_MUSE, report D3.5v2.0 (2005)

    Google Scholar 

  15. Toninelli, A., Montanari, R., Kagal, A., Lassila, O.: A semantic Context-aware Access Control Framework for Secure Collaborations in Pervasive Computing Environments. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 473–486. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Varzi, A.C.: Parts, Wholes and Part-Whole Relations. The Prospects of Mereotopology. Data and Knowledge Engineering 20, 259–286 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dapoigny, R., Barlatier, P. (2009). Reasoning about Relations with Dependent Types: Application to Context-Aware Applications. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds) Foundations of Intelligent Systems. ISMIS 2009. Lecture Notes in Computer Science(), vol 5722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04125-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04125-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04124-2

  • Online ISBN: 978-3-642-04125-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics