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Abstract. Sales prediction is an important problem for different com-
panies involved in manufacturing, logistics, marketing, wholesaling and
retailing. Different approaches have been suggested for food sales fore-
casting. Several researchers, including the authors of this paper, reported
on the advantage of one type of technique over the others for a particular
set of products. In this paper we demonstrate that besides an already
recognized challenge of building accurate predictive models, the evalua-
tion procedures themselves should be considered more carefully. We give
illustrative examples to show that e.g. popular MAE and MSE estimates
can be intuitive with one type of product and rather misleading with the
others. Furthermore, averaging errors across differently behaving prod-
ucts can be also counter intuitive. We introduce new ways to evaluate
the performance of wholesales prediction and discuss their biases with
respect to different error types.

1 Introduction

The success of different companies depends today on their ability to adapt
quickly to the changes of their business environment. An accurate and timely
sales prediction is particularly important for the companies involved in manu-
facturing, logistics, marketing, wholesaling, and retailing.

In the food and beverages market, food service companies often have to
deal with short shelf-life products, and uncertainty and fluctuations in consumer
demands. These variations in consumer demand may be impacted by the high
number of factors including e.g. price change, promotions, changing consumer
preferences, or weather changes [5]. Furthermore, a large share of the products
sold in that market is sensitive to some form of seasonal change due to the
different cultural habits, religious holidays, fasting, and alike. All these factors
imply that some types of products are sold mostly during the limited period(s)
of time.

Although it is known that some seasonal pattern is expected, the predictive
features that define these season are not always directly observed. Therefore,
drops and rises in sales which are accommodated by the changing seasons are
often difficult to predict. Regarding inventory management, this results often in
a stock-out at the start of the season and perishable or obsolete goods at the



end of a seasonal period. Thus, both shortage and surplus of goods can lead to
loss of income for the company.

Time-series research has been traditionally suggesting ARIMA (autoregres-
sive moving average) and ANN (artificial neural networks) approaches to address
the problem of sales prediction. Despite of the continuous efforts devoted to come
up with a right algorithm, and a number of comparative studies focused on iden-
tifying the strongest one, researchers are not clearly in favor of one particular
method. Nonlinearity prevents the success of simple linear models, while rather
short lengths of the time series are insufficient to learn more complex models
[1]. It is rather intuitive that no single method is best in every situation and
that combining different models might be an effective way to improve accuracy
of (sales) prediction. Interestingly, both data mining and time series forecasting
research pointed out into this promising direction [6] [4].

Anyhow, the challenge of building accurate predictive models has been al-
ready recognized among both researchers and practitioners. In this paper we
reconsider the problem of evaluating the performance of time series forecast-
ing and, particularly, food wholesales prediction and emphasize that this issue
is also far from being trivial. Sales data typically comprises of many different
products that exhibit very different types of behavior. Standard error measures
like Mean Absolute Error (MAE) and Mean Squared Error (MSE) yield biased
results when applied on the different types of time series. They can be intuitive
with one type of product and rather misleading with the others. Naturally, we
often want to compare the performance of several methods across a number of
products (time series). This requires an error or accuracy performance measure
to remain intuitive when aggregated over several datasets. Due to imbalances
and structural differences this is not always possible (or not advisable). We
compare the intuition behind the different popular error measures, discuss their
limitations, and introduce new approaches and measures that may allow to get
a better insight on the prediction performance.

2 Food sales prediction evaluation

In this section we illustrate that not just the wholesales prediction but also the
evaluation and comparison of different prediction techniques across various prod-
ucts (datasets) is not trivial and requires careful considerations. Let us illustrate
first that traditional MAE or MSE like measures can be rather unintuitive be-
cause sales data typically comprises of many different products that exhibit very
different types of behavior.

Consider wholesales figures for two products given in Fig. 1; Product 1 has
a lot of variation of (and no constant) demand whereas Product 2 is periodic
and shows constant demand between the peaks. Taking an error measure like
the MSE, it would be easy to achieve a good performance on the highly periodic
series (like with Product 2) by taking a naive predictor that just chooses the last
observed value as the prediction for the next point, or always outputs the most
popular value, i.e. the value corresponding to the constant demand in this case,



or computes a moving average. Thus, MSE of an optimal predictor will be close
to MSE of a naive predictor that makes the comparison of MSE’s of different
predictors meaningless. (Since from the domain perspective the peak demand
is more important to predict than long lasting flat areas, we can see here also
additional connections to the issues of class imbalance and one-class classification
that are well-known in machine learning). It is not difficult to notice that MSE of
the same naive predictor for the Product 1 would lead to very bad results but e.g.
a moving average approach would perform reasonably well, i.e. likely not worse
that performance of any learnable predictor. Thus, if we try to aggregate the
MSE’s over the two products, the average MSE’s will be misleading. Therefore,
using the MSE is not preferable if we want the performance measure to yield a
result that is intuitively comparable over all the time series in the data set.
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Fig. 1. The structural difference between two representative products.

This claim with respect to the MSE can be generalized to any error measure
that uses the unscaled prediction error. In order to address this issue, a scaled
measure and a baseline that provides the reference scale for the performance
measurement is needed. We will consider a couple of corresponding possibilities.

2.1 Error Measures

Error measures that have been proposed in the literature [2] and were commonly
applied for evaluation of time series forecast include:

— Mean Squared Error: MSE = %Z?Zl e?,

— Root Mean Squared Error: RMSE = /L 370" | €7,

~ Mean Absolute Error: MAE = 1 370 | |ey],
— Mean Absolute Percentage Error: MAPE = 1 3™ | |py],

— Mean Absolute Scaled Error: MASE =

)
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where the error e; = y; — f(t), y; is the actual value, f(t) is the predicted value

by model f at time ¢, and the percentage error p; = <.



Both MSE and RMSE are well known and widely used to validate the ac-
curacy of a model. In the machine learning field these measures are used to
evaluate the performance of a given algorithm. In the forecasting of time series,
however, they are deemed not so suitable because of the aforementioned scaling
differences and the sensitivity to outliers. We will present and discuss a scaled
version of the MSE.

The MAPE has been recommended for measuring accuracy among many
different time series. However, it should be noticed that in cases where y; is
very close to zero, the resulting MAPE will become infinite or invalid. The
same holds for the MASE, i.e. in case the MAE(Baseline) is close to zero, but
this case is special in the following sense. The MASE uses, in contrast with
the other error measures, explicit scaling with respect to some baseline. Notice
that if MAE(Baseline) is close to zero, the baseline itself is a good predictor.
The advantage of MASE is that the accuracy of a given model can directly be
related to the baseline regardless of scale.

2.2 Baseline Predictors

Selection of suitable baselines is important for identifying reference points which
would allow comparing among different alternative techniques, but also to have
a better understanding of how much worse (or better) a particular technique
performs with respect to known optimal (or simply reasonably good) and worst
(or clearly bad) cases.

Naive prediction baseline. The naive prediction baseline (“choose the last
observed value as the prediction for the next point”) is a widely used baseline in
forecasting methods. The intuition behind using this baseline is, that regardless
of the accuracy of a given predictor it should always perform better than the
naive prediction. Scaling towards the naive predictor does not have an upper
bound. In our investigation we consider the MAE applied to the naive predictor

(fnaive):
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Worst case prediction baseline. The worst case scenario gives us an up-
per bound of poor performance and can be used to scale the error of different
predictors between 0 and 1 and directly compare the predictive performance of
different algorithms. This approach can only be used in cases where the maximal
value can be computed. But, a priori, this baseline also suffers from a bias with
respect to structurally different time series. In the new error measure that we
introduce in the next subsection, the MSE of the worst case (fy¢) baseline is

used:
n
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where « is the number of levels to which time series is approximated.



Sample biased evaluation. The bias of the fy¢ prediction can be decreased
by selecting “interesting” data points from test data. The “interesting” parts of
the time serie in Fig. 1 are not the long stretches of constant values, but the
peaks. If only the peaks are taken into account in the accuracy calculation, the
error estimate becomes more adequate from the domain point of view.

The selection of test data points to be considered in the accuracy calculation
should be handled with care. The only points eligible to be deselected are points
for which the following two properties hold:

i) the last actual value y;_; is equal to y;, and
ii) the error e, = 0.

All other points are in the test data. In other words, this selection procedure
selects everything except for the points that did not change in the recent past and
have been predicted correctly by all the considered approaches. This approach
is similar to the M ASFE with the important difference that it is scaled to an
interval between 0 and 1:

__MSE(f(t))
fWCscaled = ma (3)

where { is the vector of selected points, f(#) the output of the prediction model,
and fyc(t) the worst case prediction. This approach has some similarities to
computing misclassification error separately for the true positive class.

3 Experiment design and results

In order to demonstrate the characteristics of the aforementioned error measures
we conducted experiments on a real wholesales data. In this section we present
an overview of the experiment design, the results with respect to the error mea-
sures, and some additional tradeoffs in the evaluation of food sales prediction
algorithms.

3.1 Experiment design

For our study we selected several products provided by Sligro Food Group N.V.,
which encompasses food retail and food service companies selling directly and
indirectly to the entire Dutch food and beverages market and has about 60.000
products in stock. The products are selected in such a way that they represent
different type of behavior (more seasonal vs. more chaotic, cf. Fig. 1) to demon-
strate and investigate the bias of different accuracy measures in different types
of time series.



Data preprocessing. The data warehouse consists of all the transactions made
in a period of over two years. For weekly predictions (which are most important
for wholesales), the resulting time series of aggregated transactional data con-
tains 120 data points, from which the first 77 instances are used as the training
set and the last 43 instances are used for progressive evaluation of the predictors.

Accumulated and aggregated transactional data was transformed with piece
wise approximation to 8 levels that reflect the variation in sales from very low
(1) to very high (8). Thus the data has a predefined upper bound and we can
compute the error of the worst case.

Besides the standard time-series features like history of sales, moving aver-
ages, and slopes each data (time) point contain information about promotions,
(school and public) holidays and weather which are known to impact the whole-
sales for certain types of products. A simple filter-based individual feature se-
lection is used to address the problem of high dimensionality.

Learning techniques. We experimented with three predictors: a moving av-
erage over a window of size 6 (MAG), a logistic regressor (LR), and an ensemble
learning algorithm (ENS). The moving average, is a very basic predictor that is
being used in practice to aid prediction of demand. The logistic regression, is a
method that is commonly used in prediction problems. The ensemble learning, is
known to be a promising approach for prediction in changing environments [3],
and recent studies in time series forecasting and data mining have shown that
combining different classifiers for sales prediction can lead to better results [6] [4].

3.2 Results

The results of the experiments are displayed in Table 1. For each prediction
method and product we present the error estimates computed over the test (i.e.
out-of-sample) data with different considered error measures. For all of the error
measures in the table the smaller the value the accurate the predictor is.

The first thing to be observed is the difference between the MSE, RMSE,
MAE, and MAPE and the results of MASE and MSE( fwcscaled). For the first
group of error measures it holds that the forecasting results on Product 1 are
worse than for Product 2. This is due to the fact that predicting the contant
demand is easy for every considered technique. Not surprisingly, the MASE
and MSE( fwcscaled) send an opposite message. In the case of MASE all three
predictors perform worse than the naive predictor in case of Product 2 and
better than the naive predictor in case of Product 1.

The second thing to note is the difference between MASE and MSE( fwcscaled)-
While in the MASE case MAG6 performs worse than the ENS, the MSE( fwcscaled)
shows that the MA6 performs better. Please notice that these two measures are
on completely different scale, so a direct comparison is hard. In Fig. 2 we can
see what kind of errors (i.e. difference between the true labels and predictions)
different predictors make.

Apart from the MSE(fwoscaled), €ach of the errors shown in Table 1 are
unbounded. Since the MSE( fwcscaled) 18 scaled between 0 and 1 with respect to



Table 1. Performance of MA6, LR, and ENS on Product 1 (P1) and Product 2 (P2)

MAG6 LR ENS
Range/P1 P2 |P1 P2 |P1 P2

MSE 0. 00 |3.79 1.09/6.47 1.055.88 1.23
RMSE 0. 00 [1.95 1.05/2.541.02(2.43 1.11
MAE 0. 00 |1.51 0.49/2.050.40/1.84 0.35
MAPE 0.1 |0.45 0.10/0.60 0.07[0.50 0.59
MASE(fnaive) [0 .. 00 [0.93 2.28(0.932.17[0.90 1.63
MSE(fwcscatea)|0 .. 1 |0.14  0.16/0.22 0.05[0.20 0.18

the worst case policy, the values shown here can be considered as traditional
misclassification errors.
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Fig. 2. The true and predicted sales for products from Fig. 1.

Summary on the considered measures. Let us remind that our aim is to
find a performance measure that enables aggregating the performance results
over all data sets in a given database regardless of their structural differences.
Any error measure that is not scaled cannot be used for this purpose. Compare,
e.g., the outcome of the MSE (or RMSE) results between the two products in
Table 1. For all algorithms that were tested, it holds that MSEp; > MSEpo,
whereas the same is not true for the MASE and MSE(fwcscaled) measure. The
question is whether the MASE and MSE(fwcscaled) easures are reliable enough
in order to allow for cross product validation.

The MASE measure provides a direct way to compare the predictor to a
meaningful baseline. When comparing the outcomes of the unscaled measures in
Table 1 to the Fig. 2 for Product 2, it becomes immediately clear that something
is wrong. Where the unscaled measures report a very low error, the MASE
indicates that all of the algorithms perform worse than the naive predictor.
However, since MASE is unbounded, it does not give a relative and normalized
accuracy measure.



The MSE(fwcscaled) measure provides an accuracy measure that is bounded.
Since the measure is scaled towards the worst case predictor, it is only usable
if the upper bound of the time series is known. In principle, this measure can
be aggregated over all the different products in the database. What remains to
be seen is whether the selection procedure is fair enough to provide an unbiased
accuracy measure. If the amount of selected points in the test set is relatively
low the measure can become biased because of the underlying MSE measure.

Both MASE and MSE( fwcscaled) give a more accurate and intuitive perfor-
mance measure than the traditional evaluation measures. The MASE is partic-
ularly useful in cases where ranking is used between different predictors because
of its comparing nature. The MSE( fwcscaled) gives a direct error measure on the
prediction, but it assumes that a maximum value is known for the time series.
This last assumption is not trivial in the context of data streams.

Other biases in predictions. In the domain of food sales predictions there are
actually different types of errors with different impact on the performance. An
overestimation of demand will have different impact on the outcome (application
of) the prediction than an underestimation. Therefore, performance measures
that take this into account seem natural in this context.

Comparing how often predictors forecast either too low or too high, might
indicate a bias of each predictor towards certain type of error. In Fig. 3 the
number of “misses” (estimated too low, i.e. points for which y; — f(t) < 0) and
“false alarms” (estimated too high, i.e. points for which y; — f(¢) > 0) are shown
for a selection of products. Each of these points corresponds to a predictor,
the MAG6 (dashed red circles) or ENS (solid black circles). Each pair of points
corresponding to a certain product is connected via a line. We can observe that
the products that have many flat parts are in the lower left corner, whereas the
products having more chaotic behavior are in the upper right. We can also see
that MA6 always has higher number of misses, i.e. under predictions, but ENS
for the majority of product has higher false alarm rates. Similar comparison of
different predictors can be performed with respect to “too late” vs. “too early”
or other types of errors.

In the field of food sales prediction an error might be less grave if the predicted
amount is needed within some safety boundary. If a company overstocks at time
t, it might be at some time ¢ + n demand is rising. If the time difference n is
then small enough the stock might still get sold, resulting in a lower cost than
predicted by the algorithm.

It is often important to know if the demand curve is close to the structural
shape of the predicted curve. Dynamic Time Warping (DTW) can be applied
to the demand curve and the predicted curve to find the distance reflecting the
performance of the predictor (see Fig. 4)ENS has, apart from a few examples, a
clear advantage over MA6 when it comes to structural differences. Fig. 5 shows
actual DTW mappings for Product 1 and Product 2. Please notice that assigning
different costs to each of the aligning directions in DTW we can also introduce
a desired bias.
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predicted labels for Product 1 (top) and Product 2 (bottom) for MAG (left) and ENS
(right). For visualization purposes, the true label values are increased by 7.

4 Conclusions

Food sales prediction is an important and challenging problem having some con-
nections to the problem of predicting in changing environments. In this paper
we emphasized that besides this already recognized challenge, the problem of
performance evaluation is also far from being trivial. Our previous experience
showed that it was not always appropriate to use any of the suggested in the lit-
erature measures across different products within a business as a result of rather
different behavior in sales, volume and supply characteristics. Here, we consid-
ered the different traditional ways of measuring the sales prediction accuracy
(that is essential for monitoring and comparing the performance of employed
approaches) and discussed and illustrated their limitation with real food sales
data. Instead of averaging error estimates across products, someone may try to
compare averaged ranks. However, with increasing number of learners to com-
pare and yet questionable appropriateness of a error measure, the averaged rank
can be also rather unstable and thus not informative.



In this paper we introduced and experimentally analyzed one new measure
that does allow comparing performance of different predictors across different
products with different types of time series structure. Beside this, we introduced
and demonstrated the use of a generic approaches to measure other biases like
optimistic vs. pessimistic and early vs. late prediction biases. We considered the
use of the dynamic time warping distance as accuracy measure which may allow
to prevent or to tolerate the certain types of errors.

Ultimately, the performance measure would be expressed in the form of a cost
function (e.g. on the amount of money the company saves or loses by choosing a
particular prediction strategy) that allows directly optimize various parameters
with a cost-sensitive learning approach or multi-objective optimization. Our fur-
ther work in this direction includes development of more generic cost-sensitive
approach for evaluating foodsales prediction performance.
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