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Abstract

A typical computational geometry problem begins: Consider a set P of n points in R
¯
d. However, many

applications today work with input that is not precisely known, for example when the data is sensed and has some
known error model. What if we do not know the set P exactly, but rather we have a probability distribution µp
governing the location of each point p ∈ P ?

Consider a set of (non-fixed) points P , and let µP be the probability distribution of this set. We study several
measures (e.g. the radius of the smallest enclosing ball, or the area of the smallest enclosing box) with respect
to µP . The solutions to these problems do not, as in the traditional case, consist of a single answer, but rather a
distribution of answers. We hence describe a data structure, called an ε-quantization, that can approximate such a
distribution within ε in O(1/ε) space. We also extend this data structure to answer higher dimensional queries of
µP (e.g. the length and width of the smallest enclosing box in R

¯
2).

Rather than compute a new data structure for each measure we are interested in, we can also compute a single
data structure that allows us to answer many questions at once. This data structure, an (ε, α)-kernel, is based on
α-kernel coresets and can be used to create approximate ε-quantizations for geometric problems involving extent
measures.

Thirdly, we introduce a data structure that can answer questions of the type ‘what is the probability that point
q is in the smallest enclosing ball of P ?’ For a given distribution µP and summarizing shape (e.g. the smallest
enclosing ball), we define an ε-shape inclusion probability function to be a function that assigns to a query point
q ∈ R

¯
d a value that is at most ε away from the probability that q is contained in this summarizing shape of P .

This results in a probability description more directly linked to the space that the input points live in.
We provide simple and efficient randomized algorithms for computing all of these data structures, which are

easy to implement and practical. We provide some experimental results to assert this. We also provide more
involved deterministic algorithms for ε-quantizations for problems involving shapes with bounded VC-dimension
that run in time polynomial in n and 1/ε.
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1 Introduction

The input for a typical computational geometry problem is a set P of n points in R
¯
2, or more generally R

¯
d. Tradi-

tionally, such a set of points is assumed to be known exactly, and indeed, in the 1980s and 1990s such an assumption
was often justified because much of the input data was hand-constructed for computer graphics or simulations. How-
ever, in many modern applications the input is sensed from the real world, and such data is inherently imprecise.
Therefore, there is a growing need for methods that are able to deal with imprecision.

An early model to quantify imprecision in geometric data, motivated by finite precision of coordinates, is ε-
geometry, introduced by Guibas et al. [10]. In this model, the input is given by a traditional point set P , where the
imprecision is modeled by a single extra parameter ε. The true point set is not known, but it is certain that for each
point in P there is a point in the disk of radius ε around it. This model has proven fruitful and is still often used due
to its simplicity. To name a few, Guibas et al. [11] define strongly convex polygons: polygons that are guaranteed
to stay convex, even when the vertices are perturbed by ε. Bandyopadhyay and Snoeyink [3] compute the set of all
potential simplices in R

¯
2 and R

¯
3 that could belong to the Delaunay triangulation. Held and Mitchell [13] and Löffler

and Snoeyink [15] study the problem of preprocessing a set of imprecise points under this model, so that when the
true points are specified later some computation can be done faster.

A more involved model for imprecision can be obtained by not specifying a single ε for all the points, but allowing
a different radius for each point, or even other shapes of imprecision regions. This allows for modeling imprecision
that comes from different sources, independent imprecision in different dimensions of the input, etc. This extra
freedom in modeling comes at the price of more involved algorithmic solutions, but still many results are available.
Nagai and Tokura [19] compute the union and intersection of all possible convex hulls to obtain bounds on any
possible solution, as does Ostrovsky-Berman and Joskowicz [20] in a setting allowing some dependence between
points. Van Kreveld and Löffler [23] study the problem of computing the smallest and largest possible values of
several geometric extent measures, such as the diameter or the radius of the smallest enclosing ball, where the points
are restricted to lie in given regions in the plane. Kruger [14] extends some of these results to higher dimensions.

However, some applications dealing with sensed data provide more information about the imprecision than just
a region, and a probability distribution governing the expected location of each point may be available. In robotic
mapping [8] careful error models are used to govern the laser range finder data. In data mining [2] original data is
often perturbed by a known model for privacy preserving purposes. In databases [6] large data sets may be summa-
rized as probability distributions to store them more compactly. The atoms of a protein structure have probabilistic
distributions as determined by NMR spectroscopy reconstruction algorithms [22], rotamers, or other variability.
Similarly, probability distribution models are produced for GIS data, data from sensor networks, astrological data,
and many other sources. In these cases, the above threshold error models could be adapted to this data by choosing
an error distance beyond which the probability is below a certain threshold. However, the solutions produced under
the threshold error models depend heavily on the boundary cases of the error model, while it is reasonable to expect
the points are more likely to appear near the “center” of the regions. Working directly with probability distributions
can provide more accurate answers to geometric questions about such sets of points.

This paper studies the computation of extent measures on uncertain point sets governed by probability distribu-
tions. Unsurprisingly, directly using the probability distribution error model creates harder algorithmic problems,
and many questions may be impossible to answer exactly under this model. But since the data is imprecise to begin
with, it is also reasonable to construct approximate answers. Our algorithms have approximation guarantees with
respect to the original distributions, not an approximation of them. Instead of reinventing computational geometry
for probability distributions, this paper reduces problems on data governed by probability distributions to discrete
and well-studied computational geometry problems on precise point sets.

1.1 Problem Statement

Let µp : R
¯
d → R

¯
+ describe the probability distribution of a point p where

∫
x∈R

¯
d µp(x) dx = 1. Let µP :

R
¯
d × R

¯
d × . . . × R

¯
d → R

¯
+ describe the distribution of a point set P by the joint probability over each p ∈ P . For
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simplicity we refer to the space R
¯
d× . . .×R

¯
d as R

¯
dn when it is a product of n d-dimensional spaces. For this paper

we will assume µP (q1, q2, . . . , qn) =
∏n
i=1 µpi(qi), so the distribution for each point is independent, although for

our randomized algorithms this restriction can be easily circumvented.
Given a distribution µP we can ask questions traditionally asked of point sets that are given precisely, instead of

as distributions (e.g. the diameter or the axis-aligned bounding box). In the presence of imprecision, the answer to
such a question if not a single value or structure, but also a distribution of answers. The point of this paper is not
just how to answer geometric questions about these distributions, but how to concisely represent them.

ε-Quantizations. Let f : R
¯
dn → R

¯
be a single-valued function on a fixed point set, such as the radius of the

minimum enclosing ball. For a query value v,

f≤µP (v) =
∫
Q∈R

¯
dn

1(f(Q) ≤ v) · µP (Q) dQ,

where Q is taken over all size n point sets in R
¯
d and 1(·) is the indicator function, is the probability that f will

yield a value less than or equal to v, given the distribution µP . Then f≤µP is the cumulative density function of the
distribution of possible values that f can take. Ideally, we would return the function f≤µP so we could quickly answer
any query exactly, however, it is not clear how to compute closed forms for such functions for one specific value,
let alone all values. Rather, we introduce a data structure, which we call an ε-quantization, to answer such queries
approximately and efficiently. For an isotonic function f≤µP and any value v, an ε-quantization, R, guarantees that
|R(v)− f≤µP (v)| ≤ ε. Furthermore, the size of an ε-quantization is always dependent only on ε, not on |P | or µP .

Sometimes a statistic for a point set has multiple values, such as the width of the minimum enclosing axis-aligned
rectangle along the x-axis and the y-axis. For a function f : R

¯
dn → R

¯
k let

f�µP (v1, . . . , vk) =
∫
Q∈R

¯
dn

1(f(Q) � (v1, . . . , vk)) · µ(Q) dQ,

where for a point p ∈ R
¯
k the operation p � (v1, . . . , vk) determines whether pi ≤ vi for each i, where pi is

the ith coordinate of p. Note that f�µP must be isotonic in the sense that for two points p, q ∈ R
¯
k if p � q then

f�µP (p) ≤ f�µP (q). A k-variate ε-quantization R for an isotonic function f�µP : R
¯
k → [0, 1] and for a query v ∈ R

¯
k

guarantees |R(v)− f�µP (v)| ≤ ε. The size of a multivariate ε-quantization is dependent only on ε and k.

(ε, α)-Kernels. Rather than compute a new data structure for each measure we are interested in, we can also
compute a single data structure that allows us to answer many questions at once. For an isotonic function f≤µP :
R
¯
+ → [0, 1] an (ε, α)-quantization M guarantees that there exists a point x′ such that (1) |x − x′| ≤ αx and (2)
|M(x)− f≤µP (x′)| ≤ ε. An (ε, α)-kernel is a data structure that can produce an (ε, α)-quantization for f≤µP where f
measures the width in any directions and whose size depends only on 1

ε and 1
α .

Shape Inclusion Probabilities. To summarize a point set P ⊂ R
¯
d, we often approximate it with a shape, such

as the smallest enclosing ball. For k-variate ε-quantizations with large k, it can be hard to visualize the connection
to the ambient d-dimensional space of the data points (i.e. for smallest enclosing ball we could use a (d+ 1)-variate
ε-quantization to measure the d coordinates of the center point and the radius). Instead, for a summarizing shape
we may wish to study a shape inclusion probability function hµP : R

¯
d → [0, 1] (or sip function) which describes

the probability that a given point x ∈ R
¯
d is included in the summarizing shape1. Again, there does not seem to

be a closed form for many of these functions. Rather we calculate an ε-sip function ĥ : R
¯
d → [0, 1] such that

∀
x∈R

¯
d

∣∣∣h(x)− ĥ(x)
∣∣∣ ≤ ε. The size of an ε-sip depends only on ε and the complexity of the summarizing shape.

1For technical reasons, if there are (degenerately) multiple optimal summarizing shapes, we say each are equally likely to be the summa-
rizing shape of the point set.
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1.2 Our Results

We describe simple and practical randomized algorithms for computing ε-quantizations, ε-sip functions, and (ε, α)-
kernels. Let Tf (n) be the time it takes to calculate a summarizing shape of a set of n pointsQ ⊂ R

¯
d, which generates

a statistic f(Q). We can calculate an ε-quantization of f≤µP , with probability 1 − δ, in time O(Tf (n) 1
ε2

log 1
εδ ).

For univariate ε-quantizations the size is O(1
ε ), and for k-variate ε-quantizations the size is O(k2 1

ε log2k 1
ε ). With

probability 1−δ, we can calculate an ε-sip function of sizeO( 1
ε2

log 1
εδ ) in timeO(Tf (n) 1

ε2
log 1

εδ ). With probability
1− δ, we can calculate an (ε, α)-kernel of size O( 1

α(d−1)/2
1
ε2

log 1
εδ ) in time O((n+ 1

αd−3/2 ) 1
ε2

log 1
εδ ). All of these

randomized algorithms are simple and practical, as demonstrated by some experimental results.
In addition, we provide deterministic algorithms for computing ε-quantizations of a specific class of functions. If

A̧ is a family of geometric shapes, such that (R
¯
d, A̧) has bounded VC-dimension, and f : R

¯
dn → R

¯
k is a function

that describes some statistics on the smallest element from A̧ that encloses the points (e.g. the radius of the smallest
enclosing ball), then an ε-quantization for f can be computed in deterministic time O(poly(n, 1

ε )), as described in
Table 1.

This paper describes results for shape fitting problems for distributions of point sets in R
¯
d, in particular, we will

use the smallest enclosing ball and the axis-aligned bounding box as running examples in the algorithm descriptions.
We believe, though, that the concept of ε-quantizations should extend to many other problems with uncertain data.
In fact, variations of our randomized algorithm should work for a more general array of problems.

2 Preliminaries: ε-Samples and α-Kernels

ε-Samples. For a set P (in our context a point set), let A̧ be a set of subsets of P which for instance could be
induced by containment in a shape from some family of geometric shapes. The pair (P, A̧) is called a range space.
We say that Q is an ε-sample of (P, A̧) if

∀R∈A̧

∣∣∣∣φ(R ∩Q)
φ(Q)

− φ(R ∩ P )
φ(P )

∣∣∣∣ ≤ ε,
where | · | takes the absolute value and φ(·) returns the measure of a point set. In the discrete case φ(Q) returns the
cardinality of Q. We say A̧ shatters a set S if every subset of P is equal to R ∩ S for some R ∈ A̧. The cardinality
of the largest discrete set X ⊆ P that A̧ can shatter is known as the VC-dimension of (P, A̧).

When (P, A̧) has constant VC-dimension, we can create an ε-sample Q of (P, A̧), with probability 1 − δ, by
uniformly sampling O(ν 1

ε2
log ν

δε) points from P [24]. There exist deterministic techniques to create ε-samples [16,
5] of size O(ν 1

ε2
log 1

ε ) in time O(ν3νn( 1
ε2

log ν
ε )ν). When P is a point set in R

¯
d and the family of ranges Q̧k is

determined by inclusion of convex shapes whose sides have one of k predefined normal directions, such as the set of
axis-aligned boxes, then an ε-sample for (P, Q̧k) of sizeO(kε log2k 1

ε ) can be constructed inO( n
ε3

log6k 1
ε ) time [21].

When we have a distribution µ : R
¯
d → R

¯
+, such that

∫
x∈R

¯
µ(x) dx = 1, we can think of this as the set P of

points in R
¯
d, where the weight w of a point p ∈ R

¯
d is µ(p). To simplify notation, we write (µ, A̧) as a range space

where the ground set is this set P = R
¯
d weighted by the distribution µ. Let it have VC-dimension ν. For distribution

µ that is polygonally approximable [21] with a constant number of facets, we can construct an ε-sample of size
O( ν

ε2
log ν

ε ) in time O( ν
ε2

log2 ν
ε ). A longer primer on ε-samples is in Appendix A.

α-Kernels. Given a point set P ∈ R
¯
d of size n and a direction u ∈ S

¯
d−1, let P [u] = arg maxp∈P 〈p, u〉, where

〈·, ·〉 is the inner product operator. Let ω(P, u) = 〈P [u]− P [−u], u〉 describe the width of P in direction u. We say
that K ⊆ P is an α-kernel of P if for all u ∈ S

¯
d−1

ω(P, u)− ω(K,u) ≤ α · ω(P, u).

α-kernels of sizeO( 1
α(d−1)/2 ) can be calculated in timeO(n+ 1

αd−3/2 ) [4]. Computing many extent related problems
such as diameter and smallest enclosing ball on the α-kernel approximates the function on the original set [1].
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(a) (b) (c) (d)

Figure 1: (a) The true form of the function. (b) The ε-quantization as a point set in R
¯
. (b) The inferred curve in R

¯
2.

(d) Overlay of the two images.

3 Randomized Algorithm for ε-Quantizations

We start with a general algorithm (Algorithm 3.1) which will be made specific in several places in the paper. We
assume we can draw a point from µp for each p ∈ P in constant time; if the time depends on some other parameters,
the runtimes can be easily adjusted.

Algorithm 3.1 Approximate µP with regard to a family of shapes Ş or function fŞ
1: for i = 1 to m = O( 1

ε2
log 1

εδ ) do
2: for pj ∈ P do
3: Generate qj ∈ µpj .
4: Set Vi = fŞ({q1, q2, . . . , qn}).
5: Reduce or Simplify the set V = {Vi}mi=1.

Defining ε-quantizations. For an isotonic function h : R
¯
→ [0, 1], an ε-quantization, R, is a set of points where

for any t ∈ R
¯
, |h(t) − R(t)| ≤ ε. We let R(t) = 1

|R|
∑

r∈R 1(r ≤ t). Since h has range [0, 1] and is isotonic, an
ε-quantization requires only O(1/ε) points. Figure 1 shows a illustration of how an ε-quantization approximates a
smooth function. Because h is isotonic there exists a function g : R

¯
→ R

¯
+ such that h(t) =

∫ t
x=−∞ g(x) dx where∫∞

x=−∞ g(x) dx = 1. Thus an ε-sample of (g, I̧+) is an ε-quantization of h, where I̧+ is all 1-sided intervals.
For an isotonic function h : R

¯
k → [0, 1] a k-variate ε-quantization, R, is a set of points in R

¯
k such that for any

p ∈ R
¯
k, |h(p) − R(p)| ≤ ε. For p ∈ R

¯
k let R(p) = 1

|R|
∑

q∈R 1(q � p). Because h is isotonic, there exists a

function g : R
¯
k → R

¯
+ such that h(p) =

∫
x�p g(x) dx and

∫
x∈R

¯
d g(x) dx = 1. Thus an ε-sample of (g, Ŗ+) is an

ε-quantization of h, where Ŗ+ describes ranges Rp ∈ Ŗ+ defined by all q such that q � p for any p. See Figure 2
for an illustration of k-variate function h and a k-variate ε-quantization approximating it.

(a) (b) (c) (d)

Figure 2: (a) The true form of the multivariate function. (b) The ε-quantisation as a point set in k-space. (b) The
inferred surface in k + 1-space. (d) Overlay of the two images.
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Algorithm for ε-quantizations. For a function f on a point set P of size n, it takes Tf (n) time to evaluate f(P ).
We now construct f≤µP by adapting Algorithm 3.1 as follows. First draw a sample point qj from each µpj for pj ∈ P ,
then evaluate Vi = f({q1, . . . , qn}). The fraction of trials of this process that produces a value less than v is the
estimate of f≤µP (v). Finally reduce the size of V be returning 2

ε evenly spaced points according to the sorted order.

Theorem 3.1. For a distribution µP of n points, there exists a univariate ε-quantization of size O(1
ε ) for f≤µP , and

it can be constructed in O(Tf (n) 1
ε2

log 1
εδ ) time, with success probability 1 − δ, where Tf (n) is the time it takes to

compute f(Q) for any point set Q of size n.

Proof. Because f≤µP : R
¯
→ [0, 1] is an isotonic function, there exists another function g : R

¯
→ R

¯
+ such that

f≤µP (t) =
∫ t
x=−∞ g(x) dx where

∫
R
¯
g(x) dx = 1. And thus an ε-sample of (g, I̧+) is an ε-quantization of f≤µP .

By drawing a random sample qi from each µpi for pi ∈ P , we are drawing a random point set Q from µP . Thus
f(Q) is a random sample from g. Hence, using the standard randomized construction for ε-samples, O( 1

ε2
log 1

εδ )
such samples will generate an ε

2 -sample for g, and hence an ε
2 -quantization for f≤µP , with probability 1− δ.

Since in an ε
2 -quantization, every value is off from the true function by at most ε

2 , then we can take an ε
2 -

quantization of the step function and still have an ε-quantization of the true function. Thus, we can reduce this
to an ε-quantization of size O(1

ε ) by taking a subset of 2
ε points spaced evenly according to their sorted order.

We can construct k-variate ε-quantizations using the same basic procedure as in Algorithm 3.1. The output Vi of
fŞ is k-variate and thus results in a k-dimensional point. As a result, the reduction of the final size of the point set
requires more advanced procedures.

Theorem 3.2. For a distribution µP of n points, there exists a k-variate ε-quantization of size O(k
2

ε log2k 1
ε ) for

f�µP , and it can be constructed inO(Tf (n) k
ε2

log k
εδ +k2 1

ε5
log6k 1

ε log 1
εδ ) time, with success probability 1−δ, where

Tf (n) is the time it takes to compute f(Q) for any point set Q of size n.

Proof. In the k-variate case there exists a function g : R
¯
k → R

¯
+ such that f�µP (v) =

∫
x�v g(x) dx where∫

R
¯
k g(x) dx = 1. Then a random point set Q from µP , evaluated as f(Q), is still a random sample from the

k-variate distribution described by g. Thus, with probability 1− δ, a set of O( k
ε2

log 1
εδ ) such samples is an ε-sample

of (g, Ŗ+), which has VC-dimension k, and the samples are also a k-variate ε-quantization of f�µP .
We can then reduce the size of the ε-quantization to O(kε log2k 1

ε ) [21] (or to O( k
ε2

log 1
ε ) [5]), since the VC-

dimension is k and each data point requires O(k) storage.

4 (ε, α)-Kernels

The above construction works for a fixed family of summarizing shapes. This section builds a single data structure,
an (ε, α)-kernel, for a distribution µP in R

¯
d that can be used to construct (ε, α)-quantizations for several families

of summarizing shapes. In particular, an (ε, α)-kernel of µP is a data structure such that in any query direction
u ∈ S

¯
d−1 we can create an (ε, α)-quantization of ω(·, u), the width in direction u. This data structure introduces

a parameter α, which deals with geometric error, in addition to the error parameter ε, which deals with probability
error.

We follow the randomized framework described above as follows. Let Ķ be an (ε, α)-kernel consisting of m =
O( 1

ε2
log 1

εδ ) α-kernels, where each α-kernel Kj approximates a point set Qj drawn randomly from µP . Given
Ķ, we can then create an (ε, α)-quantization for the width of µP in any direction u ∈ S

¯
d−1. Specifically, let

M = {ω(Kj , u)}mj=1.

Lemma 4.1. With probability 1− δ, M is an (ε, α)-quantization of the width of µP in direction u.

Proof. The width ω(Qj , u) of a random point set Qj drawn from µP is a random sample from the distribution over
widths of µP in direction u. Thus, with probability 1− δ, m such random samples would create an ε-quantization.
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Using the width of the α-kernels Kj instead of Qj induces an error on each random sample of at most α · ω(Qj , u).
Then for a query width w, say there are γm point sets Qj that have width ≤ w and γ′m α-kernels Kj with width
≤ w. Note that γ′ > γ. Let ŵ = w− αw. For each point set Qj that has width > w but the corresponding α-kernel
Kj has width ≤ w, it follows that Kj has width > ŵ. Thus the number of α-kernels Kj that have width ≤ ŵ is
≤ γm, and thus there is a width w′ between w and ŵ such that the number of α-kernels ≤ w′ is exactly γm.

Theorem 4.1. With probability 1−δ, we can construct an (ε, α)-kernel for µP on n points in R
¯
d of sizeO( 1

α(d−1)/2
1
ε2

log 1
εδ )

and in time O((n+ 1
αd−3/2 ) 1

ε2
log 1

εδ ).

k-Dependent (ε, α)-Kernels. The definition of (ε, α)-quantizations can be extended to k-variate (ε, α)-quantizations
M where (1) there exists a point x′ ∈ R

¯
k such that for all integers i ∈ [1, k] |x(i) − (x′)(i)| ≤ αx(i) and (2)

|M(x)− f�µP (x′)| ≤ ε. Let x(i) represent the ith coordinate of a point x ∈ R
¯
k.

(ε, α)-kernels can be generalized to approximate other functions f : R
¯
dn → R

¯
k, specified as follows. We say a

point p′ ∈ R
¯
k is a relative θ-approximation of p ∈ R

¯
k if for each coordinate i we have p(i) − p′(i) ≤ θp(i). For

functions f and θ where f(K) is a relative θ(α)-approximation of f(Q) when K is an α-kernel of Q, we say that f
is relative θ(α)-approximable.

By setting m = O( k
ε2

log k
εδ ) in the above algorithm, with probability 1 − δ, we can build a k-dependent (ε, α)-

kernel data structure Ķ with the following properties. It has sizeO( 1
α(d−1)/2

k
ε2

log k
εδ ) and can be built in timeO((n+

1
αd−3/2 ) k

ε2
log k

εδ ). To create a k-variate (ε, α)-quantization for a function f , create a k-dimensional point pj =
f(Kj) for each α-kernel Kj in Ķ. The set M of m k-dimensional points forms the k-variate (ε, α)-quantization.

Theorem 4.2. Let f be a relative θ(α)-approximable function that takes Tf (n) time to evaluate on a set of n points
in R

¯
d. From a k-dependent (ε, α)-kernel Ķ with m α-kernels, with probability 1 − δ, we can create a k-variate

(ε, θ(α))-quantization of f , of size O(1
ε log2k 1

ε ) in time O(Tf ( 1
α(d−1)/2 )m).

Proof. Each evaluation of f on a point set Qj drawn from µP is a random sample from the distribution over f on
point sets drawn from µP and hence these values on all m sampled point sets would be an ε-quantization of f�µP .

For a query point w ∈ R
¯
k, let γm point sets produce a value wj = f(Qj) such that wj � w, and let γ′m point

sets produce a value w′j = f(Kj) such that w′j � w. Note that γ′ > γ. Because f is relative θ(α)-approximable,
for each point set Qj such that w′j � w, but wj � w, then w′j � ŵ, where ŵ = w − θ(α)w. (More specifically, for
each coordinate w(i) of w, ŵ(i) = w(i) − θ(α)w(i).) Thus, the number of point sets such that f(Kj) � ŵ is ≤ γm,
and hence there is a point w′ between w and ŵ such that the fraction of sampled point sets such that f(Kj) � w′ is
exactly γ, and hence is within ε of the true fraction of point sets sampled from µP with probability 1− δ.

To name a new examples, the width and diameter are relative α-approximable functions, thus the results apply
directly with k = 1. The radius of the minimum enclosing ball is relative 2α-approximable with k = 1. The d
directional widths of the minimum perimeter or minimum volume axis-aligned rectangle is relative α-approximable
with k = d.

4.1 Experiments with (ε, α)-Kernels and ε-Quantizations

We implemented these randomized algorithms for (ε, α)-kernels and ε-quantizations for diameter (diam), width in
a fixed direction (dwid), and radius of the smallest enclosing `2 ball (seb2). We used existing code from Hai Yu [25]
for α-kernels and Bernd Gärtner [9] for seb2. For the input set µP we generated 5000 points P ⊂ R

¯
3 on the surface

of a cylinder piece with radius 1 and axis length 10. Each point p ∈ P represented the center of a Gaussian with
standard deviation 3. We set ε = .2 and generated α-kernels of size at most 40 (the existing code did not allow the
use to specify a parameter α, only the maximum size). We generated a total of m = 40 point sets from µP . The
(ε, α)-kernel has a total of 1338 points. We calculated ε-quantizations and (ε, α)-quantizations for diam, dwid, and
seb2, each of size 10; see Figure 3.
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Figure 3: (ε, α)-quantization (white circles) and ε-quantization (black circles) for (a) seb2, (b) dwid, and (c) diam.

5 Shape Inclusion Probabilities

We can also use a variation of Algorithm 3.1 to construct ε-shape inclusion probability functions. For a point set
Q ⊂ R

¯
d, let the summarizing shape SQ = Ş(Q) be from some geometric family Ş so (R

¯
d, Ş) has bounded VC-

dimension ν. We randomly sample point sets Qj from µP and then find the summarizing shape SQj (e.g. minimum
enclosing ball) of Qj . Let this set of shapes be S(µP ). If there are multiple shapes from Ş which are equally optimal
(as can happen degenerately with, for example, minimum width slabs), choose one of these shapes at random. For a
set of shapes S′ ⊂ Ş, let S′p ⊂ S′ be the subset of shapes that contain p ∈ R

¯
d. We store S(µP ) and evaluate a query

point p ∈ R
¯
d by counting what fraction of the shapes the point is contained in, specifically returning |S(µP )

p |/|S(µP )|
in O(ν|S(µP )|) time. In some cases, this evaluation can be sped up with point location data structures.

Theorem 5.1. For a distribution µP of n points and a family of summarizing shapes (R
¯
d, Ş) with bounded VC-

dimension ν, with probability 1 − δ we can construct an ε-sip function of size O(2ν+1 ν2

ε2
log 1

εδ ) and in time
O(TŞ(n) 1

ε2
log 1

εδ ), where TŞ(n) is the time it takes to determine the summarizing shape of any point set Q ⊂ R
¯
d of

size n.

Proof. If (R
¯
d, Ş) has VC-dimension ν, then the dual range space (Ş, P ∗) has VC-dimension ν ′ ≤ 2ν+1, where P ∗

is all subsets Şp ⊆ Ş, for any p ∈ R
¯
d, such that Şp = {S ∈ Ş | p ∈ S}. Using the above algorithm, sample

m = O( ν
′

ε2
log ν′

εδ ) point sets Q from µP and generate the m summarizing shapes SQ. Each shape is a random
sample from Ş according to µP , and thus S(µP ) is an ε-sample of (Ş, P ∗).

Let wµP (S), for S ∈ Ş, be the probability that S is the summarizing shape of a point set Q drawn randomly from
µP . Let WµP (Ş′) =

∫
S∈Ş′ wµP (S), where Ş′ ⊆ P ∗, be the probability that some shape from the subset Ş′ is the

summarizing shape of Q drawn from µP .
We approximate the sip function at p ∈ R

¯
d by returning the fraction |S(µP )

p |/m. The true answer to the sip
function at p ∈ R

¯
d is WµP (Şp). Since S(µP ) is an ε-sample of (Ş, P ∗), then with probability 1− δ∣∣∣∣∣ |S(µP )

p |
m

−
WµP (Şp)

1

∣∣∣∣∣ =

∣∣∣∣∣ |S(µP )
p |
|S(µP )|

−
WµP (Şp)
WµP (P ∗)

∣∣∣∣∣ ≤ ε.
Since for the family of summarizing shapes Ş the range space (R

¯
d, Ş) has VC-dimension ν, each can be stored

using that much space.

The size can then be reduced to O(2ν+1 ν2

ε2
log 1

ε ) in time O((2ν+1)3·2
ν+1+1(νε log 1

ε )2
ν+1+1) using deterministic

techniques.

Representing ε-sip functions by Isolines. Shape inclusion probability functions are density functions. One
convenient way of visually representing a density function in R

¯
2 is by drawing the isolines. A γ-isoline is a closed

curve such that on the inside the density function is > γ and on the outside is < γ.
In each part of Figure 4 a set of 5 circles correspond to points with a probability distribution. For part (a) and (c),

the probability distribution is uniform over those circles, in part (b) and (d) it is drawn from a multivariate Gaussian
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(a) (b) (c) (d)

Figure 4: (a) The shape inclusion probability for the smallest enclosing ball, for points uniformly distributed inside
the circles. (b) The same, but for normally distributed points around the circle centers, with standard deviations
given by the radii. (c) The shape inclusion probability for the smallest enclosing axis-aligned rectangle, for points
uniformly distributed inside the circles. (d) The same, but for normally distributed points.

distribution with standard deviation as the radius. We generate ε-sip functions for smallest enclosing ball in Figure
4(a,b) and for smallest axis-aligned bounding box in Figure 4(c,d).

In all figures we draw approximations of {.9, .7, .5, .3, .1}-isolines. These drawing are generated by randomly
selecting m = 5000 (a,b) or m = 25000 (c,d) shapes, counting the number of inclusions at different points in the
plane and interpolating to get the isolines. The innermost and darkest region has probability > 90%, the next one
probability > 70%, etc., the outermost region has probability < 10%.

When µP describes the distribution for n points and n is large, then isolines are generally connected for convex
summarizing shapes. In fact, in O(n) time we can create a point which is contained in the convex hull of a point set
sampled from µP with high probability. Specifics are discussed in Appendix B.

6 Deterministic Constructions of ε-Quantizations

In this section we consider functions f which describe the size of some summarizing shape from the family A̧
such that (R

¯
d, A̧) has constant VC-dimension. In particular, given a point set Q ⊂ R

¯
d, let A̧(Q) ⊂ R

¯
d (e.g.

smallest enclosing ball) be the summarizing shape for Q, and let f(Q) be a statistic of A̧(Q) (e.g. radius of the
smallest enclosing ball). The overall strategy will be to deterministically approximate each µpi with a point set Qpi ,
although not with respect to the range space (µpi , A̧), but with a more complicated range space described below.
Let QP = {Qpi}i describe this set of point sets. Then let the function f(QP , r) describe the fraction of point sets
Q′ = (q1 ∈ Qp1 , q2 ∈ Qp2 , . . . , qn ∈ Qpn) for {Qp1 , . . . Qpn} = QP such that f(Q′) ≤ r. We show that we
can generate a set of point sets QP such that f(QP , r) is a good approximation of f≤µP (r). And we show how to
efficiently evaluate f(QP , r).

6.1 Approximating µp

In this section we restrict that µP is either defined by a polygonal surface S with b facets or is polygonal approx-
imable, it can be approximated by a finite polygonal surface S with b facets, for some constant b, as in [21].

It might seem that we can just create an ε-sample of (µpi , A̧) for each µpi , but we need to consider a more
complicated family A̧f,n. Given a family of shapes A̧ and a function f which computes a value determined by a
summarizing shape A ∈ A̧ for a set of n points, then A̧f,n is a family of shapes where each is defined by a set of
n− 1 points T ⊂ R

¯
d and a value w. Specifically, A̧f,n(T,w) is the set of points {p ∈ R

¯
d | f(T ∪ p) ≤ w}.

In certain cases, such as the volume of the axis-aligned bounding box, (µpi , A̧f,n) has constant VC-dimension.
Shapes from A̧f,n are determined by the placement of 2d points, the most extreme in each axis direction, thus its
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shatter dimension is σf = 2d. Hence an ε-sample for (µpi , A̧f,n) of size O( 1
ε2

log 1
ε ) can be calculated in time

O( 1
ε2

log2 1
ε ) for each µpi .

In other cases, such as the radius of smallest enclosing `2 disks, A̧f,n defines regions which have
O(n) (d − 1)-dimensional faces on its boundary and thus (µpi , A̧f,n) has VC-dimension n. Naive
techniques would take time exponential in n to deterministically create an ε-sample, but we can do
better by decomposing a shape A ∈ A̧f,n into O(n) disjoint simpler shapes. In the case of disks,
A̧f,n has its boundary defined by at most 2n circular arcs of two different radii. We can choose
a point in the convex hull of T and draw lines to each intersection of circular arcs, see the figure
on right. The intersections of the disc defining each boundary piece and the halfspaces for the drawn lines at its
endpoints describes a wedge from a family W̧f,n. The range space (R

¯
d, W̧f,n) has VC-dimension at most 9 because

shapes from W̧f,n are formed by the intersection of three shapes from families that would each have VC-dimenion
3 in a range space on the same ground set. Thus, an ε

2n -sample of (µpi , W̧f,n) is an ε-sample of (µpi , A̧f,n). So
for radius of the smallest enclosing `2 balls we can create an ε-sample of (µpi , A̧f,n) of size O(n2 1

ε2
log n

ε ) in time
O(n2 1

ε2
log2 n

ε ) for each µpi .
We generalize both of these cases to other shapes and in higher dimensions in Appendix C. There are also illus-

trations of various shapes from A̧f,n.

Lemma 6.1. When each µpi is approximated with an ε′-sample Qpi of (µpi , A̧f,n), then for any r

|Pr[fµP (P ) ≤ r]− f({Qp1 , Qp2 , . . . , Qpn}, r)| ≤ ε′n.

Proof. When P is drawn from a distribution µP , then we can write that probability that fµP (P ) ≤ r as follows.

Pr[fµP (P ) ≤ r] =
∫
q1

µp1(q1)
∫
q2

µp2(q2) . . .
∫
qn

µpn(qn)1(f({q1, q2, . . . , qn}) ≤ r) dqndqn−1 . . . dq1

Consider the inner most integral ∫
qn

µpn(qn)1(f({q1, q2, . . . , qn}) ≤ r) dqn,

where {q1, q2 . . . , qn−1} are fixed. The indicator function is true when for qn f({q1, q2, . . . , qn−1, qn}) ≤ r and
hence qn is contained in a shape from A̧f,n({q1, q2, . . . qn−1}, r). Thus if we have an ε′-sample Qpn for (µpn , A̧f,n),
then we can guarantee that∫

qn

µpn(qn)1(f({q1, q2, . . . , qn}) ≤ r) dqn ≤
1
|Qpn |

∑
qn∈Qpn

1(f({q1, q2, . . . , qn−1, qn}) ≤ r) + ε′.

We can then move the ε′ to the outside, and we can change the order of the integrals to write:

Pr[fµP (P ) ≤ r] ≤
1
|Qpn |

∑
qn∈Qpn

∫
q1

µp1(q1)
∫
q2

µp2(q2) . . .
∫
qn−1

µpn−1(qn−1)1(f({q1, q2, . . . , qn}) ≤ r) dqn−1dqn−2 . . . dq1 + ε′.

Repeating this procedure n times we get:

Pr[fµP (P ) ≤ r] ≤

(
n∏
i=1

1
|Qpi |

)
n∑
i=1

∑
qi∈Qpi

1(f({q1, q2, . . . , qn}) ≤ r) + ε′n.

= f(QP , r) + ε′n.

Using the same technique we can achieve a symmetric lower bound for Pr[fµP (P ) ≤ r].

By setting ε′ = ε/n we can achieve an additive ε-approximation by using an ε′-sample for each (µpi , A̧f,n).
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6.2 Evaluating f(QP , r).

Evaluating f(QP , r) in time polynomial in n and |Qpi |, for any i, is not completely trivial since there are n|Qpi |

possible sets in QP . Let a good set be a set of n points, G, such that for each Qi there exists a point gi ∈ G such that
gi ∈ Qi. For each good set G there exists a unique basis of at most σf points2 which define the summarizing shape
of G (remember the shatter dimension of A̧ is σf and σf < νf , the VC-dimension). Define a valid basis to be a set
of at most σf points in QP such that each point is from a different Qi and if any point is removed the summarizing
shape changes. Each valid basis forms a basis for several good sets.

We now construct R, an ε-quantization of f≤µP . This approximation is created by calculating the summarizing
shape for all good sets. Even though there are an exponential number of good sets, there are only a polynomial
number of valid bases. Thus for each valid basis, we count the number of good sets it represents. And we let
each valid basis contribute to the ε-quantization; its position is determined by its value in f and its weight by
the number of good sets it represents. We initially store the ε-quantization as a sorted list of tuples (r, η) where
r = f({q1, q2, . . . , qσf }) for some valid basis {q1, q2, . . . , qσf }, and η is the fraction of the good sets which are
represented by this valid basis. The details are outlined in Algorithm 6.1.

Algorithm 6.1 Construct ε-Quantization from QP
1: for all valid bases q1, q2, . . . , qσf ∈ QP do
2: for i = 1 to n do
3: if q1 ∈ Qi or q2 ∈ Qi or . . . or qσf ∈ Qi then
4: Set wi = 1

|Qi| .
5: else
6: Set wi = 1

|Qi|
∑

qj∈Qi 1(qj ∈ A̧({q1, q2, . . . , qσf }))
7: Insert (f(q1, q2, . . . , qσf ),

∏
iwi) into R.

We now summarize the full deterministic algorithm. For each (µpi , A̧f.n) we create an ε
n -sample Qpi of size

αf (n, ε). This makes the set QP have η =
∑n

i=1 |Qpi | = nαf (n, ε) points in its sets. We examine O(ησf ) valid
bases. For each valid basis we can evaluate f(G) and compute wi in RSf (n, ε) time using a range searching data
structure, after preprocessing or with a naive search. Thus the deterministic running time for constructing an ε-
quantization is O(ηνfRSf (n, ε)) which is presented for various summarizing shapes in Table 3. For instance, for
volume of the axis-aligned bounding box this takesO(n6d/ε4d log3d n

ε ) time and for radius of the smallest enclosing
disks this takes O(n16.5/ε7 log3.5 n

ε ). The total construction time for the ε-quantizations is the sum of this time and
the time to construct n (ε/n)-samples of (R

¯
d, A̧f,n); for both smallest enclosing disks and for axis-aligned bounding

boxes it is the former.

A univariate ε-quantization can be reduced to size O(1
ε ). Furthermore, we can create k-variate ε-quantizations

using the same procedure (such as the width in the k dimensions of an axis-aligned bounding box). The condition in
Lemma 6.1 where fµP (P ) ≤ r can be replaced with a k-variate condition fµP (P ) � r for r ∈ R

¯
k. Thus the same

argument applies when we define f : R
¯
dn → R

¯
k, and we can create k-variate ε-quantizations of size k2 1

ε logO(k) k
ε

in the same deterministic times as long as νf = O(k).

Theorem 6.1. For any range space (µP , A̧f ) for a distribution µP of n points, with VC-dimension νf , where each
(µpi , A̧f,n) has an ε

n -sample of size αf (n, ε), and where, after preprocessing m points and with near-linear space
and time, we can count the number of points in a shape from A̧f in RS(m, A̧f ) time, we construct a k-variate
ε-quantization of f�µP of size k2 1

ε logO(k) k
ε in O((nαf (n, ε))νf · RS((nαf (n, ε))νf , A̧f )) time.

2This uniqueness requires careful construction of the ε-samples Qi, as described in Appendix A.1.
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[9] Bernd Gärtner. Fast and robust smallest enclosing balls. In Proceedings 7th Annual European Symposium on
Algorithms, volume LNCS 1643, pages 325–338, 1999.

[10] Leonidas J. Guibas, D. Salesin, and J. Stolfi. Epsilon geometry: building robust algorithms from imprecise
computations. In Proc. 5th Annu. ACM Sympos. Comput. Geom., pages 208–217, 1989.

[11] Leonidas J. Guibas, D. Salesin, and J. Stolfi. Constructing strongly convex approximate hulls with inaccurate
primitives. Algorithmica, 9:534–560, 1993.

[12] Sariel Har-Peled. Approximation Algorithm in Geometry. http://valis.cs.uiuc.edu/˜sariel/teach/notes/aprx/,
2008.

[13] Martin Held and Joseph S. B. Mitchell. Triangulating input-constrained planar point sets. Information Pro-
cessing Letters, page to appear, 2008.

[14] Heinrich Kruger. Basic measures for imprecise point sets in Rd. Master’s thesis, Utrecht University, 2008.
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A Primer on ε-Samples

We recall from Section 2 that for a range space (P, A̧) an ε-sample Q ⊆ P guarantees

∀R∈A̧

∣∣∣∣φ(R ∩Q)
φ(Q)

− φ(R ∩ P )
φ(P )

∣∣∣∣ ≤ ε,
where | · | takes the absolute value and φ(·) returns the measure of a point set. In the discrete case φ(Q) returns the
cardinality of Q.

When P ⊂ R
¯
d we describe a few common examples of A̧. Let B̧ describe all subsets of P determined by

containment in some ball. Let Ŗd describe all subsets of P defined by containment in some d-dimensional axis-
aligned box. Let Ḩ describe all subsets of P defined by containment in some halfspace. Throughout the paper we
use A̧ generically to represent one such family of ranges.

Also recall from Section 2 that if (P, A̧) has bounded VC-dimension ν, then we can create an ε-sample, with
probability 1 − δ, by sampling O( ν

ε2
log ν

εδ ) points at random, or deterministically of size O( ν
ε2

log ν
ε ) in time

O(ν2νn( 1
ε2

log ν
ε )ν). There exist ε-samples of slightly smaller sizes [18], but efficient constructions are not known.

If (P, A̧) has VC-dimension ν, this also implies that (P, A̧) contains at most |P |ν sets.
Similarly, the shatter function π(P,A̧)(m) of a range space (P, A̧) is the maximum number of sets S ∈ (P, A̧)

where |S| = m. The shatter dimension σ of a range space (P, A̧) is the minimum value such that π(P,A̧)(m) =
O(mσ). It can be shown [12] that σ ≤ ν and ν = O(σ log σ).

For a range space (P, A̧) the dual range space is defined (A̧, P ∗) where P ∗ is all subsets A̧p ⊆ A̧ defined for an
element p ∈ P such that A̧p = {A ∈ A̧ | p ∈ A}. If (P, A̧) has VC-dimension ν, then (A̧, P ∗) has VC-dimension

12



≤ 2ν+1. Thus, if the VC-dimension of (A̧, P ∗) is constant, then the VC-dimension of (P, A̧) is also constant [17].
Hence, the standard ε-sample theorems apply to dual range spaces as well.

Let g : R
¯
→ R

¯
+ be a function where

∫∞
x=−∞ g(x) dx = 1. We can create an ε-sample Qg of (g, I̧+), where I̧+

describes the set of all one-sided intervals of the form (−∞, t), so that

max
t

∣∣∣∣∣∣
∫ t

x=−∞
g(x) dx− 1

|Qg|
∑
q∈Qg

1(q < t)

∣∣∣∣∣∣ ≤ ε.
We can construct Qg of size O(1

ε ) by choosing a set of points in Qg so that the integral between two consecutive
points is always ε. But we do not need to be so precise. Consider the set of 2

ε points {q′1, q′2, . . . , q′2
ε

} such that∫ q′i
x=−∞ = iε/2. Any set of 2

ε points Qg = {q1, q2, . . . , q 2
ε
} such that q′i ≤ qi ≤ q′i+1 is an ε-sample.

A.1 ε-Samples of Distributions.

We say a subset W ⊂ R
¯
d is polygonal approximable if there exists a polygonal shape S with m facets such that

φ(W \ S) + φ(S \W ) ≤ εφ(W ) for any ε > 0. Usually, m is dependent on ε. In turn, such a polygonal shape
S describes a continuous point set where (S, A̧) can be given an ε-sample Q using O( 1

ε2
log 1

ε ) points if (S, A̧) has
bounded VC-dimension [17] or using O(1

ε log2k 1
ε ) points if A̧ is defined by a constant k number of directions [21].

For instance, where A̧ = B̧ is the set of all balls then the first case applies, and when A̧ = Ŗ2 is the set of all
axis-aligned rectangles then either case applies.

A shape W ⊂ R
¯
d+1 may describe a distribution µ : R

¯
d → [0, 1]. We note that many common distributions like

multivariate Gaussian distributions are polygonally approximable. For instance for a range space (µ, B̧), then the
range space of the associated shape Wµ is (Wµ, B̧×R

¯
) where B̧×R

¯
describes balls in R

¯
d for the first d coordinates

and any points in the (d+ 1)th coordinate.
The general scheme to create an ε-sample for (S, A̧), where S ∈ R

¯
d is a polygonal shape, is to use a lattice Λ of

points. A lattice Λ in R
¯
d is an infinite set of points defined such that for d vectors {v1, . . . , vd} that form a basis,

for any point p ∈ Λ, p + vi and p − vi are also in Λ for any i ∈ [1, d]. We first create a discrete ε
2 -sample M ⊂ Λ

of (S, A̧) and then create an ε
2 -sample Q of (M, A̧) using standard techniques [5, 21]. Then Q is an ε-sample of

(S, A̧). For a shape S with m (d− 1)-faces on its boundary, any subset A′ ⊂ R
¯
d that is described by a subset from

(S, A̧) is an intersection A′ = A ∩ S for some A ∈ A̧. Since S has m (d − 1)-dimensional faces, we can bound
the VC-dimension of (S, A̧) as ν = O((m+ νA̧) log(m+ νA̧)) where νA̧ is the VC-dimension of (R

¯
d, A̧). Finally

the set M = S ∩ Λ is determined by choosing an arbitrary initial origin point in Λ and then uniformly scaling all
vectors {v1, . . . , vd} until |M | = Θ( ν

ε2
log ν

ε ) [17]. This construction follows a less general but smaller construction
in Phillips [21].

It follows that we can create such an ε-sample of size |M | in time O(|M |m log |M |) by starting with a scaling of
the lattice so a constant number of points are in S and then doubling the scale until we get to within a factor of d of
|M |. If there are n points inside S, it takes O(nm) time to count them.

Lemma A.1. For a polygonal shape S ⊂ R
¯
d with m facets, we can construct an ε-sample for (S, A̧) of size

O( ν
ε2

log ν
ε ) in time O(m ν

ε2
log2 ν

ε ), where (S, A̧) has VC-dimension νA̧ and ν = O((νA̧ +m) log(νA̧ +m)).

An important part of the above construction is the arbitrary choice of the origin points of the lattice Λ. This allows
us to arbitrarily shift the lattice defining M and thus the set Q. In Section 6 we need to construct n ε-samples
{Q1, . . . , Qn} for n range spaces {(S1, A̧), . . . , (Sn, A̧)}. In Algorithm 6.1 we examine sets of νA̧ points, each
from separate ε-samples that define a minimal shape A ∈ A̧. It is important that we do not have two such (possibly
not disjoint) sets of νA̧ points that define the same minimal shape A ∈ A̧. (Note, this does not include cases where
say two points are antipodal on a disk and any other point in the disk added to a set of νA̧ = 3 points forms such a
set; it refers to cases where say four points lie (degenerately) on the boundary of a disc.) We can guarantee this by
enforcing a property on all pairs of origin points p and q for (Si, A̧) and (Sj , A̧). For the purpose of construction, it
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is easiest to consider only the lth coordinates pl and ql for any pair of origin points or lattice vectors (where the same
lattice vectors are used for each lattice). We enforce a specific property on every such pair pl and ql, for all l and all
distributions and lattice vectors.

First, consider the case where A̧ = Ŗd describes axis-aligned bounding boxes. It is easy to see that if for all pairs
pl and ql that (pl − ql) is irrational, then we cannot have > 2d points on the boundary of an axis-aligned bounding
box, hence the desired property is satisfied.

Now consider the more complicated case where A̧ = B̧ describes smallest enclosing balls. There is a polynomial
of degree 2 that describes the boundary of the ball, so we can enforce that for all pairs pl and ql that (pl − ql) is of
the form c1(rpl)

1/3 + c2(rql)
1/3 where c1 and c2 are rational coefficients and rpl and rql are distinct integers that are

not multiple of cubes. Now if ν = d + 1 such points satisfy (and in fact define) the equation of the boundary of a
ball, then no (d+ 2)th point which has this property with respect to the first d+ 1 can also satisfy this equation.

More generally, if A̧ can be described with a polynomial of degree p with ν variables, then enforce that every
pair of coordinates are the sum of (p+ 1)-roots. This ensures that no ν + 1 points can satisfy the equation, and the
undesired situation cannot occur.

B A Center Point for µP

We can create a point q̄ ∈ R
¯
d that is in the convex hull of a sampled point set Q from µP with high probability. This

implies that for any summarizing shape that contains the convex hull, q̄ is also contained in that summarizing shape.
Let Ḩ be the family of subsets defined by halfspaces. We use the following algorithm:

1. Create 2-approximate center points p̄i for each µpi (i.e. using a (1/4)-sample of (µpi , Ḩ)). Let the set be P̄ .

2. Create 2-approximate center point q̄ of P̄ .

All steps can be done in O(n) time because we can create (1/4)-samples of all range spaces (µpi , Ḩ) and of (P̄ , Ḩ)
in O(n) time. Constructing approximate center points can be done in O(1) time on a constant sized set, such as
(1/4)-sample [7].

Lemma B.1. Given a distribution of a point set µP (such that each point distribution is polygonally approximable)
of n points in R

¯
d, there is an O(n) time algorithm to create a point q̄ that will be in the convex hull of a point set

drawn from µP with probability ≥ 1− ((1− 1/(2d+ 2))1/(2d+2))n.

Proof. For each p̄i ∈ P̄ , any halfspace that has p̄i on its boundary and does not contain q̄ has probability≥ 1/(2d+2)
of containing a random point from µpi . Thus for any direction u ∈ S

¯
d−1 there are at least n/(2d+ 2) points p̄i from

P̄ for which 〈q, u〉 ≤ 〈p̄i, u〉. And for each of those points p̄i, the probability that the point qi sampled from µpi
is such that 〈p̄i, u〉 ≤ 〈qi, u〉 (and thus 〈q̄, u〉 ≤ 〈qi, u〉) is ≤ 1/(2d + 2). Hence, the probability that there is a
separating halfspace between q̄ and the convex hull of Q (where the halfspace is orthogonal to some direction u) is
≤ (1− 1/(2d+ 2))n/(2d+2) = ((1− 1/(2d+ 2))1/(2d+2))n.

Theorem B.1. For a set of m < n point sets drawn i.i.d. from µP , it follows that q̄ is in each of the m convex hulls
for each point sets with high probability (specifically with probability ≥ 1−m

(
(1− 1/(2d+ 2))1/(2d+2)

)n
).

Proof. Let β = (1 − 1/(2d + 2))1/(2d+2). For any one point set the probability that q̄ is contained in the convex
hull is > 1 − βn. By the union bound, the probability that it is contained in all m convex hulls is > (1 − βn)m =
1−mβn +

(
m
2

)
β2n −

(
m
3

)
β3n + . . .. Since n > m, the sum of all terms after the first two in the expansion increase

the probability.

Thus because the summarizing shapes are convex, then for any point q, the line segment qq̄ is completely contained
in a convex summarizing shape if and only if q is. Thus for every boundary of a summarizing shape qq̄ crosses, q is
outside that summarizing shape. This implies the following corollary.

Corollary B.1. If the summarizing shape is convex, then the γ-layer, for γ < 1 − 1/m, exists, is connected, and is
star-shaped with high probability, specifically with probability ≥ 1−m

(
(1− 1/(2d+ 2))1/(2d+2)

)n
.
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C Shapes of A̧f,n for Various Summarizing Shapes

Let A̧f,n be the intersection of O(n) shapes from Â̧f where (µp, Â̧f ) has VC-dimension ν̂f . Let a wedge of A̧f,n be
a shape from W̧f,n described by the intersection of d hyperplanes and one shape from Â̧f .

Lemma C.1. The VC-dimension of (R
¯
d, W̧f,n) is d(d+ 1) + ν̂f .

Proof. It is known that a class of shapes W̧k that is formed as the intersection of k subset from (R
¯
d, A̧j) for j ∈ [1 : k]

which have VC-dimension νj , then (R
¯
d, W̧k) has VC-dimension

∑k
j=1 νj [12]. Since wedges are formed by the

intersection of d halfspaces (VC-dimension d + 1) and one shape from Â̧f , it follows that (R
¯
d, W̧f,n) has VC-

dimension d(d+ 1) + ν̂f .

If the (d− 2)-dimensional faces of the boundary of A̧f,n are subsets of (d− 2)-dimensional flats (i.e. points in R
¯
2

and line segments in R
¯
3), then any shape from A̧f,n can be formed as the disjoint union of O(n) wedges from W̧f,n.

Functions which produce such families A̧f,n include seb2 and chp in R
¯
2 and diam and cha in R

¯
d.

Remark 1. In cases, such as seb2 and chp for d > 2, where we cannot form wedges, we can create similar shapes
for W̧f,n, as generalized cones whose boundary passes through the boundary of each (d−1)-dimensional facet of the
corresponding shape from A̧f,n. For these shapes the VC-dimension of (R

¯
d, W̧f,n) can be bounded as O(νfd log d).

Each face of a generalized cone is described by two shapes from A̧, which have VC-dimension νf , and a point. Thus
the face of the generalized cone has shatter dimension O(νf ). If a (d − 1)-dimensional facet of the boundary of a
shape from A̧f,n has more than d faces of dimension (d − 2), then we can triangulate the facet so it has O(d) such
faces. Thus the range space for the generalized cone has shatter dimensionO(νfd) and VC-dimensionO(νfd log d).

The VC-dimension for (R
¯
d, W̧f,n), ψf , is shown for several functions in Table 2.

Lemma C.2. If the disjoint union of m shapes from W̧f,n can form any shape from A̧f,n, then an ε
m -sample of

(µp, W̧f,n) is an ε-sample of (µp, A̧f,n).

Proof. For any shape A ∈ A̧f,n we can create a set of m shapes {W1, . . . ,Wn} ⊂ W̧f,n whose disjoint union is A.
Since each range of W̧f,n may have error ε

m , their union has error at most ε.

Hence for (µp, W̧f,n) ε
n -samples can be created of size O(n2 1

ε2
log n

ε ) in time O(n(nε )2ψf logψf n
ε ).

Table 1: Runtimes for ε-Quantizations of Various Summarizing Shape Families.
abbrv. summarizing shape randomized∗ determ. R

¯
2 determ. R

¯
d

dwid width along a fixed direction O(n 1
ε2 log 1

ε ) O(n4/ε) O(n4/ε)
aabbp axis-aligned bounding box measured by perimeter O(n 1

ε2 log 1
ε ) Õ(n8/ε4) Õ(n6d/ε4d)

aabba axis-aligned bounding box measured by area O(n 1
ε2 log 1

ε ) Õ(n12/ε8) Õ(n6d/ε4d)
seb∞ smallest enclosing ball, L∞ metric O(n 1

ε2 log 1
ε ) Õ(n6/ε3) Õ(n2d+2/εd+1)

seb1 smallest enclosing ball, L1 metric O(n 1
ε2 log 1

ε ) Õ(n6/ε3) Õ(n2d+2/εd+1)
seb2 smallest enclosing ball, L2 metric O(n 1

ε2 log 1
ε ) Õ(n16.5/ε7) Õ((nd+3/ε2)d+2−1/d)

diam diameter O(n2 1
ε2 log 1

ε ) Õ((n5/ε2)n+1) Õ((n5/ε2)n+1)
cha convex hull measured by area O(n log n 1

ε2 log 1
ε ) Õ((n5/ε2)n+1) Õ((nd+3/ε2)n+1)

chp convex hull measured by perimeter O(n log n 1
ε2 log 1

ε ) Õ((n5/ε2)n+1) Õ((nd+3/ε2)n+1)
∗ all randomized results are correct with constant probability.

Õ(f(n, ε)) ignores poly-logarithmic factors (log n
ε )O(poly(d)) , for any τ > 0.
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Table 2: VC-dimension for Various Shape Families.
abbrv. (R

¯
2, A̧f,n) (R

¯
d, A̧f,n) (R

¯
2, W̧f,n) (R

¯
d, W̧f,n)

aabbp O(1) (σ = 4) O(d log d) (σ = 2d)
aabba 8 O(d log d) (σ = 2d)
seb∞ 4 2d
seb1 4 2d
seb2 ∞ ∞ 9 O(d2 log d)
diam ∞ ∞ 9 d2 + 2d+ 1
cha ∞ ∞ 7 d2 + 2d+ 1
chp ∞ ∞ O(1) O(d2 log d)

C.1 Examples

In the examples below, 7 points are given, on which we study a certain measure (e.g., diameter or convex hull area).
The grey region denotes the possible placements of a new point, such that the measure will not exceed a given value.
These regions illustrate A̧f,n for various summarizing shapes.

Axis-aligned bounding box. Figure 5 shows examples of A̧f,n for axis-aligned bounding boxes, measuring
either by perimeter (aabbp) or by area (aabba) in R

¯
2. For both (R

¯
2, A̧f,n) has a shatter dimension of 4 because the

shape is determined by the x-coordinates of 2 points and the y-coordinates of 2 points. This generalizes to a shatter
dimension of 2d for (R

¯
d, A̧f,n), where area generalizes to d-dimensional volume, and perimeter generalizes to the

(d− 1)-volume of the boundary. We can also show the VC-dimension of (R
¯
2, A̧f,n) is 8 for aabbp because its shape

is defined by the intersection of halfspaces with 4 predefined normal directions at 0◦, 45◦, 90◦, and 135◦. This can
be generalized to higher dimensions.

Hence, for both shapes we can create n ε
n -samples of (µpi , A̧f,n) of size αf (n, ε) = O(n

2

ε2
log n

ε ) in time
O(n

3

ε2
log2 n

ε ). For aabbp in R
¯
2, an ε

n -sample of each (µpi , A̧f,n) of can be reduced further to size O(nε log16 n
ε )

in total time O(n
5

ε4
log40 n

ε ). Then we can construct the ε-quantization in (n6d/ε4d)(log n
ε )O(d) time, using orthogo-

nal range searching. For aabbp in R
¯
2, the runtime improves to O(n8/ε4 log65 n

ε ).

(a) (b)

Figure 5: (a) Axis-aligned bounding box, measured by perimeter. (b) Axis-aligned bounding box, measured by
area. The curves are hyperbola parts.
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(a) (b) (c)

Figure 6: (a) Smallest enclosing ball, L∞ metric. (b) Smallest enclosing ball, L1 metric. (c) Smallest enclosing
ball, L2 metric. The curves are circular arcs of two different radii.

Smallest enclosing ball. Figure 6 shows examples of A̧f,n for smallest enclosing ball, for metrics L∞ (seb∞),
L1 (seb1), and L2 (seb2) in R

¯
2. For seb∞ and seb1, (R

¯
d, A̧f,n) has VC-dimension 2d because the shapes are defined

by the intersection of halfspaces from d predefined normal directions. For seb1 and seb∞, we can create n ε
n -samples

of each (µpi , A̧f,n) of size αf (n, ε) = O(n
2

ε2
log n

ε ) in total time O(n
3

ε2
log2 n

ε ). The size for each can be reduced to
O(nε log2d n

ε ) in O(n
5

ε4
log8d n

ε ) total time. Using an orthogonal range searching data structure we can calculate the
ε-quantization in O(n2d+2/εd+1 log7d−1 n

ε ) time.
For seb2, (R

¯
d, A̧f,n) has infinite VC-dimension, but (R

¯
2, W̧f,n) has VC-dimension ≤ 9 because it is the inter-

section of 2 halfspaces and one disc. Any shape from A̧f,n can be formed from the disjoint union of 2n wedges.
Choosing a point in the convex hull of the n − 1 points describing A̧f,n as the vertex of the wedges will ensure
that each wedge is completely inside the ball that defines part of its boundary. Thus, in R

¯
2 the n ε

n -samples of each
(µpi , A̧f,n) are of size αf (n, ε) = O(n4/ε2 log n

ε ) and can all be calculated in O(n5/ε2 log2 n
ε ) time. And then the

ε-quantization can be calculated in O(n16.5/ε7 log3.5 n
ε ) time, using range searching data structures.

For seb2, in R
¯
d for d > 3, we can form shapes from A̧f,n with disjoint unions of generalized cone from a family

W̧f,n, where (R
¯
d, W̧f,n) has shatter dimension O(d2). We need O(nbd/2c) such shapes from W̧f,n to form one

shape A ∈ A̧f,n, because A has boundary described by O(nbd/2c) sphere piece with one of d different radii. The
VC-dimension of each (µpi , W̧f,n) is O(d2 log d) in R

¯
d, and we can create n ε

n -quantization of each (µpi , A̧f,n)
of size αf (n, ε) = O(n2+2bd/2c/ε2 log n

ε ) in O(n3+2bd/2c/ε2 log2 n
ε ) total time. Then the ε-quantization can be

computed in O((nd+3/ε2)d+2−1/d) time (ignoring boundary cases with floor operations) using a range searching
data structure.

Diameter. Figure 7 shows an example of A̧f,n for the diameter of a point set in R
¯
2. Here (R

¯
d, A̧f,n) has infinite

VC-dimension. It is formed by the intersection of balls of the same radius centered at the points. Thus a shape
from A̧f,n is determined by at most n balls, and since they are each the same radius, we can construct a shape from
A̧f,n from the disjoint union of n wedges, as with seb2. And since each wedge is the intersection of d halfspaces
and 1 disc, (R

¯
d, W̧f,n) has VC-dimension (d+ 1)2. Thus we can construct n ε

n -samples for each (µpi , A̧f,n) of size
αf (n, ε) = O(n4/ε2 log n

ε ) in total timeO(n5/ε2 log2 n
ε ). However, given a set of n points, the shape which defines

the set of points where the diameter will not increase has complexity O(n). This is the family A̧f,n+1, the union of
n balls. This implies the size of the basis σf used in Algorithm 6.1 is n. Hence, it takes time O((n5/ε2 log n

ε )n+1)
to construct the ε-quantization.
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Figure 7: Diameter. The curves are circular arcs all of the same radius.

Convex hull. Figure 8 shows examples of A̧f,n for the convex hull, measured either by area (cha) or perimeter
(chp) in R

¯
2. For both, (R

¯
2, A̧f,n) has infinite VC-dimension. For cha (R

¯
2, W̧f,n) has VC-dimension 7, because

wedges are triangles. In higher dimensions cha can continue to use wedges, but needs O(nbd/2c) of them. For chp,
the wedges boundary is described by d hyperplanes and an ellipse boundary part. We cannot guarantee that the
intersection of all of these parts describes the wedge because the ellipse may be too small and may cut off part of the
intersection of halfspaces. But in R

¯
2 the wedge clearly does have shatter dimension 4 + 5, so the VC-dimension of

(R
¯
2, W̧f,n) is O(1). In higher dimensions we can use generalized cone shapes with VC-dimension O(d2 log d) and

we may need O(nbd/2c) of them.
For both cha and chp we can calculate n ε

n -samples for each (µpi , A̧f,n) of size αf (n, ε) = O(n2+2bd/2c/ε2 log n
ε )

in O(n3+2bd/2c/ε2 log2 n
ε ) total time. However, given a set of n points, the shape which defines the set of points

where the convex hull will not increase has complexity O(n). This is the family A̧f,n+1. Like diam, this implies
the size of the basis σf used in Algorithm 6.1 is n. Hence, it takes time O((nd+3/ε2 log n

ε )n+1) to construct the
ε-quantizations.

(a) (b)

Figure 8: (a) Convex hull, measured by perimeter. The curves are ellipse parts. (b) Convex hull, measured by area.
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Table 3: ε-Samples for Summarizing Shape Family A̧f,n.
abbrv. αf (n, ε) η = nαf (n, ε) νf ηνf RSf (n, ε) runtime

aabbp Õ(n
2

ε2 ) Õ(n3/ε2) 2d Õ(n6d/ε4d) Õ(1) Õ(n6d/ε4d)
aabba Õ(n

2

ε2 ) Õ(n3/ε2) 2d Õ(n6d/ε4d) Õ(1) Õ(n6d/ε4d)
seb∞ Õ(nε ) Õ(n2/ε) d+ 1 Õ(n2d+2/εd+1) Õ(1) Õ(n2d+2/εd+1)
seb1 Õ(nε ) Õ(n2/ε) d+ 1 Õ(n2d+2/εd+1) Õ(1) Õ(n2d+2/εd+1)
seb2 Õ(n

d+2

ε2 ) Õ(nd+3/ε2) d+ 1 Õ((nd+3/ε2)d+1) O((nd+3/ε2)1−1/d) Õ((nd+3/ε2)d+2−1/d)
diam Õ(n

4

ε2 ) Õ(n5/ε2) n Õ(n5/ε2)n O(n5/ε2) Õ((n5/ε2)n+1)
cha Õ(n

d+2

ε2 ) Õ(nd+3/ε2) n Õ((nd+3/ε2)n) O(nd+3/ε2) Õ((nd+3/ε2)n+1)
chp Õ(n

d+2

ε2 ) Õ(nd+3/ε2) n Õ((nd+3/ε2)n) O(nd+3/ε2) Õ((nd+3/ε2)n+1)
Õ(f(n, ε)) ignores poly-logarithmic factors (log n

ε )O(poly(d)).
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