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Maximum Flow in Directed Planar Graphs with

Vertex Capacities

Haim Kaplan ∗ Yahav Nussbaum ∗

Abstract

In this paper we present an O(n log n) algorithm for finding a maximum flow in a directed
planar graph, where the vertices are subject to capacity constraints, in addition to the arcs.
If the source and the sink are on the same face, then our algorithm can be implemented in
O(n) time.

For general (not planar) graphs, vertex capacities do not make the problem more difficult,
as there is a simple reduction that eliminates vertex capacities. However, this reduction does
not preserve the planarity of the graph. The essence of our algorithm is a different reduction
that does preserve the planarity, and can be implemented in linear time. For the special
case of undirected planar graph, an algorithm with the same time complexity was recently
claimed, but we show that it has a flaw.

1 Introduction

The problem of finding maximum flow in a graph is a well-studied problem with applications
in many fields, see the book of Ahuja, Magnanti and Orlin [1] for a survey. The maximum
flow problem is also interesting if we restrict it to planar graphs, which are graphs that have
an embedding in the plane without crossing edges. The case of planar graphs appears in many
applications of the problem, for example road traffic or VLSI design. The special structure of
planar graphs allows us to get simpler and more efficient algorithms for the maximum flow and
related problems.

In the maximum flow problem, usually the arcs of the graph have capacities which limit the
amount of flow that may go through each arc. We study a version of the problem in which the
vertices of the graph also have capacities, which limit the amount of flow that may enter each
vertex. This version appears for example when computing vertex disjoint paths in graphs, and
in other problems where the vertices model objects which have a capacity.

Ford and Fulkerson [3, Chapter I.11] studied this version of the problem. They suggested
the following simple reduction to eliminate vertex capacities. We replace every vertex v with
a finite capacity c by two vertices v′ and v′′. The arcs that were directed into v now enter v′,
and the arcs that were directed out of v now leave v′′. We also add a new arc with capacity c
from v′ to v′′. Unfortunately, this reduction does not preserve the planarity of the graph [7].
Consider for example the complete graph of four vertices, where one of the vertices has finite
capacity. This graph is planar. If we apply the construction of Ford and Fulkerson we get a
graph whose underlying undirected graph is the compete graph with 5 vertices. This graph is
not planar by Kuratowski’s Theorem.

The most efficient algorithm for maximum flow in directed planar graphs without vertex
capacities, to date, was given by Borradaile and Klein [2] (Weihe [11] gave an algorithm with
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the same time bound but assuming certain connectivity condition on the graph). Their paper
also contains a survey of the history of the maximum flow problem on planar graphs. The time
bound of the algorithm of [2] is O(n log n) where n is the number of vertices in the input graph.
Borradaile and Klein ask whether their algorithm can be generalized to the case where the flow
is subject to vertex capacities.

A planar graph is a st-planar graph if the source and the sink are on the same face. Hassin [4]
gave an algorithm for the maximum flow problem in directed st-planar graphs without vertex
capacities. The bottleneck of the algorithm is the computation of single-source shortest-path
distances, which takes O(n) time in a planar graph, using the algorithm of Henzinger et al. [5].

Khuller and Naor [7] were the first to study the problem of maximum flow with vertex
capacities in planar graphs. They gave various results, including an O(n

√
log n) time algorithm

for finding the value of the maximum flow in st-planar graphs (which can be improved to O(n)
time using the algorithm of [5]), an O(n log n) time algorithm for finding the maximum flow in
st-planar graphs, an O(n log n) time algorithm for finding the value of the maximum flow in
undirected planar graph, and an O(n1.5 log n) time algorithm for the same problem on directed
planar graphs. If all vertices have unit capacities, then we get the vertex-disjoint paths problem.
Ripphausen-Lipa et al. [10] solved this problem in O(n) time for undirected planar graph.

Recently, Zhang, Liang and Chen [13], used a construction similar to the one of [7] to obtain
a maximum flow for undirected planar graph with vertex capacities that runs in O(n log n)
time. Their algorithm constructs a planar graph without vertex capacities, and then uses the
algorithm of [2] to find a maximum flow on it, which is modified in O(n log n) time to a flow in
the original graph with vertex capacities. They also gave an O(n) time algorithm for undirected
st-planar graphs. Zhang et al. also ask in their paper if there is an algorithm that solves the
problem for directed planar graph.

In this paper we answer [2] and [13], and show a linear time reduction of the problem of
finding maximum flow in directed planar graphs with arc and vertex capacities, to the problem of
finding maximum flow in directed graphs with only arc capacities. This problem is more general
than the one for undirected planar graphs, since an undirected planar graph can be viewed as
a special case of a directed planar graph, in which there are two opposite arcs between any pair
of adjacent vertices.

We show how to apply the constructions of [7] and [13] to directed planar graphs. Given
directed planar graph, we construct another directed planar graph without vertex capacities,
such that we can transform a maximum flow in the new graph back to a maximum flow in the
original graph. Since the new graph does not have vertex capacities we can find a maximum
flow in it using the algorithm of [2] (or of [4] if it is an st-planar graph). The time bound of
our reduction is linear in the size of the graph, therefore we show that vertex capacities do not
increase the time complexity of the maximum flow problem also for planar graphs.

In addition, we show that the algorithm of [13] unfortunately has a flaw. We give an
undirected graph in which this algorithm does not find a correct maximum flow. Therefore, in
fact our algorithm is also the first to solve the problem for undirected graphs.

The outline of the paper is as follows: In the next section we give some background and
terminology. In Section 3 we describe the construction of [7] that we use, and in Section 4 we
describe the one of [13]. In Section 5 we characterize when a maximum flow in the constructed
graph induces a maximum flow in the original graph. In Section 6 we show how to efficiently
find such a flow in the constructed graph. Finally, in the last section we stick all the pieces
together to get our algorithm.
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2 Preliminaries

We consider a simple directed planar graph G = (V,E), where V is the set of vertices and
E is the set of arcs, with a given planar embedding. The planar embedding of the graph G
is represented combinatorially, see [9] for survey on planar graphs. An arc e = (u, v) ∈ E is
directed from u ∈ V to v ∈ V . We denote the number of vertices by n, since the graph is planar
we have |E| = O(n).

A path P = (e0, e1, . . . , ek−1) is a sequence of arcs ei = (ui, vi) such that for 0 ≤ i < k − 1
we have vi = ui+1. If in addition vk−1 = u0 then P is a cycle. We say that a path P contains
a vertex v, if either (u, v) or (v, u) is in P , for some vertex u. The path P = (e0, e1, . . . , ek−1)
starts at u0 and ends at vk−1. For v ∈ V , in(v) = {(u, v) | (u, v) ∈ E} is the set of incoming
arcs and out(v) = {(v, u) | (v, u) ∈ E} is the set of outgoing arcs.

The graph G has two distinguished vertices, s ∈ V is the source and t ∈ V is the sink.
The source s has no incoming arcs, and the sink t has no outgoing arcs. Every arc e ∈ E, has
a capacity c(e) ≥ 0, and in addition every vertex v ∈ V \ {s, t} has a capacity c(v) ≥ 0. A
capacity might be ∞. We assume that the source and the sink have no capacities, if we wish to
allow them to have capacities, we can add a vertex s′ that will be the source instead of s, and
an arc (s′, s) with the desired capacity, and similarly add a new sink t′, and an arc (t, t′) with
the desired capacity. Note that this transformation keeps the graph planar, and even st-planar
if it was so. It is easy to extend the given embedding to accommodate s′, t′, and the arcs (s′, s)
and (t, t′). A graph without vertex capacities can be viewed as a special case in which c(v) = ∞
for every vertex.

A function f : E → R is a flow function if and only if it satisfies the following three
constraints:

0 ≤ f(e) ≤ c(e) ∀e ∈ E (1)
∑

e∈in(v)

f(e) ≤ c(v) ∀v ∈ V \ {s, t} (2)

∑

e∈in(v)

f(e) =
∑

e∈out(v)

f(e) ∀v ∈ V \ {s, t} (3)

Constraints (1) are the arc capacity constraints, Constraints (2) are the vertex capacity con-
straints and Constraints (3) are the flow conservation constraints.

We say that e ∈ in(v) carries flow into v if f(e) > 0, and that e′ ∈ out(v) carries flow out
of v if f(e′) > 0.

The value of a flow f is
∑

e∈in(t) f(e), the amount of flow which enters the sink. If the value
of f is 0 then f is a circulation. Our goal, in the maximum flow problem, is to find a flow
function of maximum value.

For a flow function f we define a cycle C to be a flow-cycle if f(e) > 0 for every arc in C.
We extend this definition to every function f : E → R, even if it is not a flow. If a function f
has no flow-cycles we say that f is acyclic. An acyclic flow is a flow function which is acyclic.

Let e = (u, v) we denote rev(e) = (v, u). For a flow function f , we may assume that
f does not contain an arc e such that both f(e) > 0 and f(rev(e)) > 0, because otherwise
the flows in both directions can cancel each other. For a path P = (e0, e1, . . . , ek−1) we let
rev(P ) = (rev(ek−1), rev(ek−2), . . . , rev(e0)).

The planar embedding of G partitions the plane into connected regions called faces. For a
simpler description of our algorithm, we fix an embedding of G such that t is on the boundary
of the infinite face. It is easy to convert any given embedding to such an embedding [9].

The dual graph Gd of G has a vertex D(h) for every face h of G, and an arc D(e) for every
arc e of G. The arc D(e) connects the two vertices corresponding to the faces incident to e.
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Figure 1: A planar graph and its dual graph. The vertices of G are dots, and its arcs are solid.
The vertices of Gd are circles, and its arcs are dashed. The bold arcs are an arc-cut in G and a
cut-cycle in Gd. Capacities are not shown in this figure.

The arc D(e) is directed from the vertex that corresponds to the face on the left side of e to
the one of the face on the right side of e. Intuitively, Gd is obtained from G by turning the arcs
clockwise. The dual graph Gd is planar, but it is may have loops or parallel arcs. Every face h
of Gd corresponds to a vertex v in G, such that the arcs that bound h are dual to the arcs that
are incident to v. See Figure 1. The capacity of e ∈ E, c(e), is interpreted in Gd as the length
of D(e).

In the construction we present below we add undirected edges to directed graphs. Each such
undirected edge uv can be represented by two antiparallel directed arcs (u, v) and (v, u), with
the same capacity. If e is an undirected edge, then D(e) is also undirected.

2.1 Residual cycles

In this section we present the algorithm of Khuller, Naor and Klein [8] that finds a circulation
without clockwise residual cycles, in a directed planar graph. The complete details of the
algorithm can be found in [8] and also in [2]. We also present an extension of this algorithm
that changes a given flow into another flow, with the same value, without clockwise residual
cycles. We use this algorithm later to get the linear time bound for our reduction. This algorithm
of [8] was given for directed planar graphs without vertex capacities, so for this section assume
that the graph G does not have vertex capacities.

In this section we also assume that if e ∈ E then also rev(e) ∈ E. This assumption can be
satisfied, without changing the problem, by adding the arc rev(e) with capacity 0 for every arc
e such that rev(e) is not in E.

Let f be a flow in G. The residual capacity of an arc e with respect to f is defined as
cr(e) = c(e)− f(e) + f(rev(e)). In other words, the residual capacity of e is the amount of flow
that we can add to e, or reduce from rev(e). The residual graph of G with respect to f has
the same vertex set and arc set as G, and the capacity for each edge e is cr(e). A residual arc
with respect to f is an arc e with a positive residual capacity. A residual path is a path made
of residual arcs. A residual cycle is a cycle made of residual arcs.

Given embedded planar graph G with arc capacities, Khuller et al. [8] showed how to find
a circulation fr in G, such that there are no clockwise residual cycles with respect to fr. Their
procedure is as follows.

Let h∞ be the the infinite face of G. Find the shortest path distances from D(h∞) to every
vertex of Gd. Define a potential function φ that assigns to every face h of G, the shortest
distance from D(h∞) to D(h) in Gd. Let e be an arc of G with face hℓ to its left and face hr
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to its right. If φ(hr) ≥ φ(hℓ) then fr(e) = φ(hr)− φ(hℓ) (otherwise it is implied that fr(rev(e))
gets the value φ(hℓ)− φ(hr) and fr(e) = 0).

The function fr satisfies the two constraints of a flow [8] (without vertex capacities). The
edge capacity constraints are satisfied, because for each e, the arc D(e) connects D(hℓ) to D(hr),
so φ(hr)− φ(hℓ) is at most the length of D(e), which is the capacity of e. The flow conversion
constraints are satisfied because for every cycle in Gd, the sum of fr(e)− fr(rev(e)) for the arcs
of the cycle is 0 [4, 6], and the vertices which incident to a specific vertex in G form a cycle in
Gd. Therefore, fr is a circulation.

The correctness of this algorithm follows from the fact that any clockwise cycle C in G
encloses some face h. The shortest path from D(h∞) to D(h) in Gd must contain an arc D(e)
dual to an arc e of C. Because D(e) is in the shortest paths tree, the algorithm assigns to fr(e)
the value of the length of D(e), which is the same as the capacity of e. Therefore the residual
capacity of e with respect to fr is c(e)− fr(e) + fr(rev(e)) = 0, and e is not a residual arc with
respect to fr. Therefore, C is not a residual cycle with respect to fr.

The bottleneck of the algorithm of [8] is the computation of single-source shortest-path
distances from the vertex D(h∞) in the dual graph. Henzinger et al. [5] showed how to find
these distances in a planar graph in O(n) time, so the algorithm of [8] can be implemented in
the same time bound.

Given a flow f in G, we wish to find a flow f ′ with the same value, such that f ′ does not
have clockwise residual cycles. We can use the algorithm of [8] which we described above for
this problem.

Let G′ be the residual graph of G with respect to f . We find a circulation f ′

r in G′, such that
G′ does not have clockwise residual cycles with respect to f ′

r, using the algorithm of [8]. Define
f ′ to be the sum of f and f ′

r, that is f
′(e) = max{0, f(e) + f ′

r(e)− [f(rev(e)) + f ′

r(rev(e))]}. In
other words, we add to f(e) the flow of f ′

r(e), and let the flows on e and rev(e) to cancel each
other.

The function f ′ satisfies the two constraints of a flow without vertex capacities. The capac-
ity of an arc e in G′ is c(e)− f(e) + f(rev(e)) and therefore f ′

r(e) is smaller than this capacity,
therefore f(e)+f ′

r(e)− [f(rev(e))+f ′

r(rev(e))] ≤ c(e), so f ′(e) ≤ c(e) and the arc capacity con-
straints are satisfied in f ′. The conservation constraints are satisfied, because these constrains
are satisfied for f and for f ′

r, and f ′ is the sum of these two flows.
The value of the flow f ′ is the sum of the values of f and f ′

r. Since f ′

r is a circulation, its
value is 0, and so the value of f ′ is the same as the value of f .

The flow f ′ has the desired property that it has no clockwise residual cycles. To show that,
we show that if C is a clockwise residual cycle in G with respect to f ′, then C is also a residual
cycle in G′ with respect to f ′

r, contrary to the way we find f ′

r. Let e be an arc of C, and
assume for contradiction that e is not residual in G′ with respect to f ′

r. From our assumption
f ′

r(e) = cr(e) = c(e)− f(e) + f(rev(e)) and f ′

r(rev(e)) = 0. Therefore, f ′(e) = c(e) and e is not
residual in G with respect to f ′, in contradiction to the fact that it is a member of C.

Lemma 2.1. Let G be a directed planar graph without vertex capacities, and let f be a flow in
G. We can find a flow f ′ in G, with the same value as f , such that f ′ does not have clockwise
residual cycles, in O(n) time.

3 Minimum cut

In a graph without vertex capacities, a cut S is a minimal subset of E such that every path from
s to t contains an arc in S. To avoid ambiguity later, when we introduce cuts that may contain
vertices, we call such a cut an arc-cut. See Figure 1. The value of an arc-cut S is

∑
e∈S c(e). The
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Figure 2: Construction of Gc and Ge for the graph in Figure 1. The graph Gc is presented as
the dual graph of Ge. The newly added (undirected) edges are without arrowheads. Capacities
are not shown in this figure.

minimum cut problem asks to find an arc-cut of minimum value. The fundamental connection
between maximum flow and the minimum cut problems was given by Ford and Fulkerson [3] in
the Max-Flow Min-Cut Theorem:

Theorem 3.1. [3] The value of the maximum flow (in a graph without vertex capacities) is
equal to the value of the minimum arc-cut in the same graph.

Let C be a cycle in Gd. We say that C is a cut-cycle if it separates the faces corresponding
to s and t, and goes counterclockwise around s (or equivalently, clockwise around t). See Figure
1. The length of C is the sum of the lengths of its arcs. Johnson [6] showed the following
relation between the value of minimum arc-cut and the value of shortest cut-cycle:

Lemma 3.2. [6] Let G be a directed planar graph without vertex capacities. Then the value of
the minimum arc-cut of G, is the same as the length of the shortest cut-cycle in Gd.

Ford and Fulkerson [3, Chapter I.11] extended the definition of cuts to graphs with vertex
capacities. In such a graph, a cut S is a minimal subset of E ∪ V such that every path from s
to t contains an arc or a vertex in S. The value of a cut S is similarly defined as

∑
x∈S c(x).

Ford and Fulkerson also presented a version of the Max-Flow Min-Cut Theorem for graphs
with vertex capacities, in this case the value of maximal flow (subject to both arc and vertex
capacities) is equal to the value of the minimum cut (which contains both arcs and vertices).

Khuller and Naor [7] extended Lemma 3.2 using a supergraph Gc of Gd which they construct
as follows. Let h be a face of Gd that corresponds to a vertex v of G with finite capacity. We
add a new vertex vh inside h and connect it by an (undirected) edge of length c(v)/2 to every
vertex on the boundary of h. See Figure 2.

Lemma 3.3. [7] The values of the maximum flow and minimum cut in G are equal to the
length of the shortest cut-cycle in Gc.

4 The extended graph

Zhang, Liang and Jiang [12] and Zhang, Liang and Chen [13] construct the extended graph for
an undirected graph with vertex capacities. We use the same construction for directed planar
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graphs with vertex capacities. The extended graph is defined as follows. We replace every vertex
v ∈ V which has a finite capacity with d vertices v0, · · · , vd−1, where d = |in(v)|+ |out(v)| is the
degree of v. We connect every vi to v(i+1) mod d with an (undirected) edge of capacity of c(v)/2.
We make every arc that was adjacent to v, adjacent to some vertex vi instead, such that each
arc is connected to a different vertex vi, and the clockwise order of the arcs is preserved. We
identify the new arc (u, vi) or (vi, u) with the original arc (u, v) or (v, u). The resulting graph
is denoted by Ge, and the cycle that replaces v ∈ V in Ge by Cv. The graph Ge is a simple
directed planar graph without vertex capacities. The arc set of Ge contains the arc set of G.
See Figure 2.

From the construction of Ge and Gc follows that Gc is the dual of Ge. Let v be a vertex
with finite capacity and let h be the corresponding face in Gd. Then, in Ge we replaced v with
Cv, and in Gc we placed vh inside h. The edges which connects vh to the boundary of h are
dual to the edges of Cv.

Combining Theorem 3.1, Lemma 3.2 and Lemma 3.3 we get that the value of the maximum
flow in Ge is the same as the value of minimum arc-cut in Ge, which is the same as the value
of the shortest cut-cycle in Gc, which equals to the value of the maximum flow in G. And the
next lemma follows.

Lemma 4.1. The value of the maximum flow of G is equal to the value of the maximum flow
of Ge.

5 Reduction from the extended graph to the original graph

Let f be a flow in Ge, we define f̂ to be the restriction of f to the arcs of G. The next lemma
generalizes and corrects the result of Zhang et al. [13, Theorem 3].

Lemma 5.1. Let f be a flow function in Ge. If f̂ is acyclic then f̂ is a flow function in G.

Proof. We show that f̂ satisfies all three conditions that a flow function in G should satisfy.
Since the capacities of common arcs of G and Ge are the same, f̂ clearly satisfies arc capacity

constraints.
Let v ∈ V . If c(v) = ∞ then v is also a vertex of Ge, with the same incident arcs, and

therefore f̂ satisfies the flow conservation constraint at v. Otherwise, the amount of flow that
enters Cv in f , is the same amount that enters v in f̂ . Also, the amount of flow that leaves
Cv in f is the same amount that leaves v in f̂ . Therefore we obtain that f̂ satisfies the flow
conservation constraint at v by summing up the flow conservation constraints that f satisfies
for the vertices in Cv.

It is left to show that f̂ satisfies the vertex capacities constraints. (Note that these con-
straints are irrelevant for f since in Ge we do not have vertex capacities.) Let v ∈ V be a
vertex with finite capacity. First, we show that the acyclicity of f̂ implies that in the cyclic
order around v of arcs with positive flow that are incident to v in G, the arcs carrying flow into
v are consecutive, and the arcs carrying flow out of v are consecutive. Note that this claimed
consecutiveness is restricted to arcs with positive flow, so arcs e with f̂(e) = 0 can appear
anywhere in the cyclic order of the arcs incident to v.

If there is only one arc carrying flow into v then the claim is trivial. Otherwise, consider two
arcs e and e′ carrying flow into v. We show that if we cyclically traverse the arcs incident to v
clockwise starting from e, we either traverse all arcs carrying flow out of v before traversing e′,
or we traverse them all following e′ but before we get back to e. Since this hold for every pair
of arcs e and e′ carrying flow into v, the desired consecutiveness follows.

7
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Figure 3: The path R from v to t must cross one of the paths Q or Q′ from u to v, and thus
creates a flow-cycle. The shaded area is H.

Since e carries flow, there is a path P from s to v of arcs with positive flow that ends with
e. Similarly, there is a path P ′ of arcs with positive flow from s to v that ends with e′.

Let u be the last vertex of P , before v, that also appears on P ′. The vertex u must also be
the last vertex on P ′, before v, that also appears on P , as otherwise we get that f̂ contains a
flow-cycle. Let Q be the suffix of P that starts at the arc of P that goes out of u, and let Q′ be
the suffix of P ′ that starts at the arc of P ′ that goes out of u. (These arcs are uniquely defined
since f̂ does not contain a flow-cycle.) Since both Q and Q′ goes from u to v the arcs of Q and
Q′ partition the plane into two regions, denote them by H and H ′.

The vertex v is obviously not t since v has a finite capacity. Furthermore, since there is an
arc with positive flow outgoing of each vertex along P and P ′, none of these vertices can be t.
Therefore t is either inside H or inside H ′. We assume without loss of generality that t is in H ′.

Let d = (v,w) be an arc that carries flow out of v, such that w ∈ H. There must be a path
R that starts with d and carries flow from v to t. See Figure 3. Since w is in H and t is in H ′,
we get that there exists a flow-cycle that starts with a prefix of R and ends with a suffix of Q
or of Q′, contradicting the assumption that f̂ is acyclic. Therefore, all arcs that carry flow out
of v, carry it to a vertex in H ′. Our claim that the arcs carrying flow into v are consecutive
and the arcs carrying flow out of v are consecutive then follows.

An arcs e with f̂(e) > 0 incident to v in G corresponds to the same arc e with f(e) > 0
incident to a vertex in the cycle Cv in Ge. Therefore among the arcs incident to Cv with f(e) > 0
those that carry flow into vertices in Cv are consecutive. Therefore, we can find two edges b
and b′ of Cv such that if we remove them Cv splits into two parts, such that all arcs that carry
flow into vertices in Cv are incident to one of these parts, and all arcs that carry flow out of
vertices in Cv are incident to the other part. See Figure 4. All the flow which enters Cv must
go through b and b′, in order to leave Cv, because of the flow conservation constraints on the
vertices of Cv. The total capacity of b and b′ is c(v), and therefore the total flow that enters Cv

in f is at most c(v). Thus it follows that the total flow that enters v in f̂ is also at most c(v),
and the vertex capacity constraint at v holds.

6 Canceling flow-cycles

In order to use Lemma 5.1 we must find a maximum flow f in Ge such that f̂ is acyclic. In this
section we show how to do that.

The algorithm of Zhang et al. [13, Section 3] for undirected planar graphs finds a flow f in
Ge and than cancels flow-cycles in f̂ in an arbitrary order. They call the resulting flow fa and

8
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b

Figure 4: The edges b and b′ separate between the incoming flow into Cv and the outgoing flow
from this cycle. Dotted arcs do not carry flow. The arrowheads of edges of Cv indicate direction
of flow.

s t

Cv

Figure 5: A counterexample to the algorithm of [13]. The edges of the original undirected graph
G are solid. The vertex v has capacity 1, the edges of Cv are dotted. The flow in every solid edge
is 1, the flow in every dotted edges is 1/2, in the specified direction (the edges are undirected).
The bold edges form a flow-cycle in G, after we cancel it we remain with an acyclic flow in G,
but the amount of flow that enters v is 2. The correct solution is to cancel the flow in the two
internal flow-cycles.

claim that this flow satisfies vertex capacities constraints. This approach is flawed. Figure 5
shows an example on which the algorithm of [13] fails. After we cancel flow-cycles in f̂ in an
arbitrary order it is possible that there is no flow f ′ in Ge whose restriction to G is f̂ ′ = fa,
and therefore Lemma 5.1 does not apply.

As the example in Figure 5 shows, it is not enough to cancel arbitrary flow-cycles in f̂ .
We can cancel a flow-cycle in f̂ only if there is a cycle C in Ge that contains it, such that we
can reduce flow along the cycle C. In this case the cycle rev(C) in Ge is a residual cycle with
respect to f . Therefore, in order to cancel a flow-cycle in G with respect to f̂ we must cancel a
residual cycle in Ge with respect to f . Canceling a arbitrary residual cycle is not enough, since
we always want to reduce the flow that f̂ assigns to arcs, and never to increase it.

Let f be a flow in Ge. We define a new capacity function c′ on the arcs of Ge which
guarantees that the flow in arcs of G never increases beyond f̂ . For e ∈ E we let c′(e) = f(e).
The arcs of Ge which are not in G are arcs of Cv for some vertex v, for these arc we do not have
to limit the flow to the amount in f , so we set c′(e) = c(e) = c(v)/2. The flow function f is also
a flow function in Ge with the new capacity c′, by the way we defined c′. Since c′(e) ≤ c(e) for
every arc e, every flow in Ge with capacity c′ is also a flow in Ge with the original capacity c.

Instead of canceling the residual cycles one by one, we apply to Ge and c′ the algorithm in
Section 2.1 and find a new flow f ′ with the same value as f , such that there are no clockwise
residual cycles in Ge with respect to f ′ and c′. The following lemma shows the crucial property
of f ′.

Lemma 6.1. The restriction f̂ ′ of f ′ to G does not contain counterclockwise flow-cycles.

Proof. Assume, for a contradiction, that there is a counterclockwise flow-cycle C with respect to
f̂ ′ in G. We choose C such that C does not contain any other counterclockwise flow-cycle inside
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its embedding in the plane. We show that we can extend rev(C) to a clockwise residual cycle
with respect to f ′ in the graph Ge with capacity c′, in contradiction to the way we constructed
f ′.

For every arc e of C, f ′(e) > 0, and therefore rev(e) is a residual arc with respect to f ′ and
c′. If C does not contain a vertex v ∈ V with c(v) 6= ∞ then rev(C) is a clockwise residual
cycle with respect to f ′ and c′, and we obtain a contradiction.

Let v be a vertex in C with c(v) 6= ∞. Let (u, v) and (v, u′) be the arcs of C which are
incident to v. These arcs correspond to arcs (u, vi) and (vj , u

′) in Ge, where vi and vj are in
Cv. Let P be the path from vj to vi which goes counterclockwise around Cv (recall that Cv is
undirected in Ge). To show a complete residual cycle in Ge, we argue that P is a residual path
in Ge with respect to f ′ and c′, so we can use it to fill the gap between vj and vi in rev(C). An
arc e of P is not residual if and only if f ′(e) = c′(e) = c(v)/2. Without loss of generality we
assume that the vertex vk in the path P is followed by vk+1.

Let ei = (vi−1, vi) be the last arc in the path P from vj to vi. Assume for contradiction
that ei is not residual with respect to f ′ and c′. Then f ′(ei) = c(v)/2 and so the total flow
which enters into vi in f ′ is

∑
e∈in(vi)

f ′(vi) ≥ f ′((u, vi)) + f ′(ei) > c(v)/2. The only remaining

arc that can carry flow out of vi is (vi, vi+1). Because f ′ satisfies flow conservation constraints
f ′((vi, vi+1)) > c(v)/2. But this is impossible since the capacity of the arc (vi, vi+1) is c(v)/2.
Therefore, f ′(ei) < c(v)/2 and ei is residual with respect to f ′ and c′.

We now proceed by induction. Assume by induction that we already know that the arc
ek+1 = (vk, vk+1) on the path P from vj to vi is residual with respect to f ′ and c′. If k = j
then we are done. Otherwise, we prove that ek = (vk−1, vk) ∈ P is also residual with respect
to f ′ and c′. Since ek+1 is residual it follows that f ′(ek+1) < c(v)/2 . Let e′ be the single arc
of E incident to vk. If e′ is directed out of vk and f ′(e′) > 0 then since C is a cycle and e′

is inside C in the embedding of G, there must be a path carrying flow that starts with e′ and
continues to another vertex on C. (Recall that t is incident to the outer face.) This implies
that there is a counterclockwise flow-cycle with respect to f̂ ′ and G inside the embedding of C,
in contradiction to the choice of C. Therefore e′ does not carry flow of f ′ out of vk in Ge. This
implies, by the conservation constraint on vk, that f

′(ek) ≤ f ′(ek+1) < c(v)/2, so ek is indeed
residual with respect to f ′ and c′.

We showed that there is a residual path from vj to vi. Since v was an arbitrary vertex with
c(v) > 0 on C it follows that we can extend rev(C) to a residual cycle in Ge with respect to f ′

and c′. Since C is a counterclockwise cycle, the residual cycle we got from rev(C) is a clockwise
cycle. This contradicts the definition of f ′, and therefore a counterclockwise flow-cycle C with
respect to f̂ ′ and G does not exist.

We repeat the previous procedure symmetrically, by defining a new capacity c′′ which re-
stricts the flow in G to the flow in f ′, and applying a symmetric version of the algorithm of
Section 2.1. This way we get from f ′ a flow f ′′ of the same value, such that f̂ ′′ does not contain
clockwise flow-cycles in G. For every e ∈ E we changed the flow such that f̂ ′′(e) ≤ f̂ ′(e) ≤ f̂(e),
so we did not create any new flow-cycles. Therefore we have the following lemma.

Lemma 6.2. The flow function f ′′ has the same value as the flow function f . The restriction
f̂ ′′ of f ′′ to G is acyclic.

7 The algorithm

Combining together the results of the previous sections we get an algorithm for finding maximum
flow in a directed planar graph with vertex capacities.
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First, we construct Ge from G by replacing each vertex that has a finite capacity with Cv as
defined in Section 4. Next, we find a maximum flow f in Ge, which is a directed planar graph
without vertex capacities. Last, we change f to another flow f ′′ as in Section 6.

According to Lemma 6.2, the flow f ′′ is maximum flow in Ge, and its restriction f̂ ′′ is acyclic.
By Lemma 5.1, the function f̂ ′′ is a flow in G. And by Lemma 4.1, f̂ ′′ is a maximum flow, since
the amount of flow that f̂ ′′ carries into t is the same as the amount of flow that f carries into t.

The construction of Ge from G takes O(n) time. The computation of f ′′ from f also takes
O(n) time using the algorithm we described in Section 2.1. Therefore, the only bottleneck of our
algorithm is finding f , a maximum flow in a directed planar graph without vertex capacities.

Theorem 7.1. The maximum flow in a directed planar graph with both arc capacities and vertex
capacities can be computed within the same time bound as the maximum flow in a directed planar
graph with arc capacities only.

The algorithm of Borradaile and Klein [2] finds a maximum flow in directed planar graph
with arcs capacities in O(n log n) time. If G is a st-planar graph, then Ge preserves this property.
In this case the algorithm of Hassin [4], using the algorithm of [5] for single-source shortest-path
distances, finds a maximum flow in O(n) time.
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