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Abstract

We introduce théirst Fit Matching Periodsalgorithm for rate-monotonic multiprocessor schedulifig o
periodic tasks with implicit deadlines and show that it giehsymptotically optimal processor assign-
ments if utilization values are chosen uniformly at randdviore precisely we prove that thexpected
wasteis upper bounded b§?(n>/4(log n)?/8). Here the waste denotes the ratio of idle times, cumulated
over all processors andgives the number of tasks.

The algorithm can be implemented to run in ti@¢n log n) and even in the worst case, an asymp-
totic approximation ratio of is guaranteed. Experiments yield an average waste propattion® 7,
indicating that the above upper bound on the expected wasiembst tight.

While such average-case analyses are a classical topiad¥diking, to the best of our knowledge,
this is the first result dealing with a theoretical averagsecanalysis for this scheduling problem, which
was described by Liu and Layland more than 35 years ago anebeised a lot of attention, especially
in the real-time and embedded-systems community.

1 Introduction

In this paper, we are concerned with a scheduling problerndated by Liu and Layland [21], which is of
fundamental importance in the real-time and embeddedsgstommunity. Here one is given a setasks
S ={m,..., ™}, where each taskis characterized by two positive values,pesriod p(7) and itsrunning
timec(7). The taskr releases @b requiring running time:(7) at each integer multiple of its period. Each
job has a relative deadline pfr), thus we havémplicit deadlines Theutilization of a taskr is defined as
u(t) = ¢(7)/p(7), thus it gives the average fraction of processor cycleschvhare consumed by. More
general for a sef, we denoteu(S) = > s u(7).

We considefixed-priority, preemptivecheduling, i.e. priorities are assigned to the tasks amdittival
of a job of a higher priority task, preempts the executioroefdr priority tasks. Liu and Layland_[21] have
proven that theate-monotonidRM) scheduling policy is optimal, meaning that if there igasible priority
assignment, then the one in which the priority of a tagqualsl/p(7) is also feasible (i.e. larger periods
imply lower priorities). Therefore we only consider ratemotonic priorities.

If several tasksS’ C S are assigned to one processor, then we call this assigreesible(or RM-
schedulable) if in the rate-monotonic schedule all jobdidhaks always meet their deadlines. See Fifllire 1
for an example.
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Figure 1: The picture shows a s&t= {7, 72} of tasks. The arrows indicate the points in time, where the
two tasksr; andr, release jobs. At timé, the first job ofr; as well as the first job of, are released. Since
the period ofr; is smaller than the period of, the first job ofr; is executed, until it is finished at tinie
Now the first job ofr, is executed, but interrupted by the second jobr 04t time2. The execution of the
first job of 7 is resumed at tim8 and finished at timé. Notice that the processor is idle for one time unit
at time 9 and that the schedule repeats at the least common multigheegieriods which i40. All jobs
finish in time. The sef is feasible.

In a multiprocessor environment, the algorithmic chalkemgto determine a partition of a task-set
into Sy, - . ., Sk, such that eacls; is a feasible set of tasks for one processor and the nuinbiprocessors
is minimized. The minimum possible value fbiis denoted byO PT'. Therate-monotonic multiprocessor
scheduling problenihas received considerable attention in the real-time angedded-systems commu-
nity [18&, 117,116,114, 24,15, 20, 1%, 128, 2, 19,1 19]. This populaitt due to the fact that more and more
safety-critical control applications are carried out bycroprocessors and in particular by multiprocessor
environments. Such scheduling problems are for exampeast in the automotive and aviation industry.

A measure for the quality of a solution is the so-calegiste which is frequently used concerning the
relatedBin Packingproblem. That is, the waste of a solution wittprocessors is the ratio of idles times,
cumulated over all processors, ike— u(S). Clearly, minimizing the waste is equivalent to minimineatiof
the number of partitions.

For the rate-monotonic single-processor scheduling Lehoet al. [13] gave a probabilistic analysis,
indicating that the reachable processor utilization orraye is much better, than the worst-case value of
In(2) ~ 69%. For example, if periods are drawn frofh, 100] and the running times are scaled by the
largest value, such that the system is barely schedulddglr,the utilization tends t88% for n — co.

This motivates us to study also the average-case behavibe imultiprocessor case. Our analysis will
work for an arbitrary distribution of the periods, as longtlas utilization values are drawn independently
and uniformly from|0, 1].

Related work

For the famoudin Packingproblem a list of items, . .., a,, € [0,1] is given. The goal is to assign these
items to a minimal number of bins such that the total sizeteofi$, assigned to each bin does not exdeed
We will see that if for the considered scheduling problenpeliodsp(7) were multiples of each other,
then the problem would be exactly Bin Packing, where thézatibn values correspond to the item sizes.
This is because a set of tasRS C S would be feasible on one processor in this case if and onheisum



of their utilization is bounded by one.

Successful heuristics for Bin Packing dfiest Fit, Next FitandBest Fit In all variants the items are
assigned in a consecutive manner to a bin, which has enoagle $pr a new one is opened). For First Fit
the current item is put in the bin with the smallest index, esBFit it is assigned to the bin, whose item
sum is maximal. For Next Fit an active bin is maintained. & turrent item does not fit into it, a new bin
is opened, now being the active one; old bins are never ceresidagain. IrFirst Fit Decreasingthe items
are first sorted by decreasing sizes and then distributeBisgaFit. In the worst case Next Fit produces a
2-approximation, while First Fit neecﬁ%OPTBmpackmg} + 1 [11] many bins. Asymptotically both, Best
and First Fit Decreasing have an approximation ratiolgh [12].

If the items are generated randomly, the heuristics perfatroh better, than in the worst-case scenarios.
For item sizes drawn uniformly at random frdih 1] the Best Fit algorithm yields an expected waste of
O(y/nlog®*n) [25], while for First Fit this value is lower bounded l§y(n2/3) and upper bounded by
O(n?/3/logn) [28]. The upper bound even holds if First Fit is restrictesiéwer assign more than 2 items
per bin. Later we will refer to this algorithm adatching First Fit (MFF). First Fit Decreasing yields an
even smaller waste @ (/n) [10,114, 22]. If item sizes are drawn uniformly froff, «|, for any constant
a < 1/2, the waste of First Fit Decreasing is even constant with pigibability.

Note that here the waste is defined similar to multiprocessbeduling, namely as the number of bins
minus the sum of all item sizes. But for Bin Packing also inwlwest-case nearly optimal solutions can be
computed, for example there is an asymptotic PTAS [8] and eveasymptotic FPTAS exists [13]. More
on Bin Packing can be found in the excellent survey of Coffreial. [3].

One major difference between rate-monotonic schedulinigBam Packing is that for the latter it can be
checked easily whether given items fit into one bin, whereiasbnjectured that this does not hold for a set
of tasks and one processor. If a sebf implicit-deadline tasks is feasible (i.e. RM-schedlggbthen the
utilization (S) is at mostl. However,S can be infeasible, evenif(S) < 1. Consider, for example, again
the task systens in Figure[l. If we increase the running timemfby anys > 0, then the sef is no longer
feasible and its utilization is(S) = (9 + 2¢)/10. Liu and Layland|[21] have shown thé&tis feasible, if
u(S) is bounded by:(2'/" — 1), wheren = |S|. This bound tends tin(2) ~ 0.69 and the condition is
not necessary for feasibility, as the example in Fidire Ivshd&tronger, but still not necessary conditions
for feasibility are given inl[20,1%, 24]. Note that the firsbjof each task is theritical instance[21], thus if
p(m1) < ... < p(m,) then response times fay in a rate-monotonic, single-processor schedule are giyen b
the smallest value(r;) > 0 with

r(r) = (@) + V(Tﬂ e(ry).

o= | p(my)

Of coursery, . .., 7, are feasible if and only if(7;) < p(7;) for: =1,...,n [1&]. Butit was proven in/|7]
that such response times cannot even be approximated inguoigl time within a factor of./ 1glog™ for
fixed constant > 0, unlessNP = P. Nevertheless in practice response times can be efficieathputed
using a fix-point iteration approach [1]. Furthermore Béaraad Fisher|9] showed that there is an FPTAS
for computing the minimum processor speed, which is needletbke a task system RM-schedulable.

Oh and Bakerl[23] showed that if. processors are needed to schedsileone must have:(S) >
m - (v/2 — 1) = 0.41m. This quantity was later improved by Liebeherr et Al [ZOﬂrtoHl% ~ 0.5m (for
largem).

Most popular algorithms for rate-monotonic periodic nparbicessor scheduling first sort the tasks in a
suitable way and then distribute them in a First Fit or Nexnfianner using a sufficient feasibility criterion.
See the following table for an overview (with our algorithmthe last row, for the sake of comparability).
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Name | sorting distribution ratio runtime
RMNF | inc. p(7) | Next Fit 2.67 | O(nlogn)
RMFF | inc. p(7) | First Fit 2.00 | O(nlogn)
FFDU | dec.u(r) | First Fit 2.00 | O(nlogn)
RMST | inc. a(7r) | Next Fit 1_7;1"% O(nlogn)
RMGT | - First Fit + RMST 1.75 O(n?)
FFMP | inc. o(7) | First Fit 2.00 | O(nlogn)

Here a(r) = logyp(T) — |logy p(7)]| and umax = max,csu(r). In the table, the column "ratio”
gives the best known upper bounds on the asymptotic appatiximratio. Theaate-monotonic general task
algorithm (RMGT) [20] distributes tasks with utilizationmost1 /3 usingRMST and the rest separately with
First Fit. A more detailed description can be found.ir [19].

Furthermore there is an asymptotic PTAS under resource aigition, computing for any fixed > 0
a solution with(1 4+ €)OPT + 1 processors, where the tasks on each processor can beyesadibbuled
after increasing the processor speed by a factdr-efe [6]. In the same paper it was proven that unless
P # NP no asymptotic FPTAS can exist for this multiprocessor satieg problem. But it is still an open
guestion whether there might be an asymptotic PTAS and thadgarithm that is asymptotically optimal
and does not depend on any assumption about the input. Heralles algorithm asymptotically optimal,
if the approximation ratio tends tbfor OPT — oo. We refer to the article of Baruah and Goosseéns [2] for
an overview on complexity issues of real-time scheduling.

Our contribution

We introduce an efficient and easy to implement algorithmHemultiprocessor rate-monotonic scheduling
problem calledirst Fit Matching Periods(FFMP) . We proof that it is asymptotically optimal for arbitrary
periods provided that the utilizations follow a uniformtdisutiorfl. To this end, we show that our algorithm
produces a solution with expected wasteif?/*(log n)3/®). Since the expected approximation ratio of
1 + O(n~Y*(log n)%/8) tends tol for n — oo, the solution is asymptotically optimal on average. To the
best of our knowledge this is the first proof that any algonitior this problem admits this property w.r.t. a
reasonable probability distribution.

To achieve our results, we use the following technique: Weduce an auxiliary algorithrAFMP* and
prove that for any task set it needs at least as many proseasbFMP. Thus it suffices to derive an upper
bound on the waste of this easier algorithm. We then pointtattfor suitable subsets of the input tasks,
FFMP* behaves like a well studied Bin Packing algoritMEF. Eventually this allows to bound the waste for
FFMP* in terms of the waste OfFF.

In addition to the proof of the asymptotic optimality of odgarithm, we present experimental results
showing thatFFMP outperforms the algorithms known from literature alreadyrandom instances with a
small number of tasks. We thereby provide an example of anwiggn that has been designed for asymptotic
optimality and which is, in addition, competitive on reaably small instances. Moreover, we present a
family of instances where the average waste scalesmit, which is almost tight to our theoretical upper
bound and thus showing that our technique is suitable fopsiuzalyses.

1To be exact, we assume that fissbitrary periods may be given and thive utilizations are chosen randomly.



Algorithm 1 FFMP
Input: Setry, ..., T, of implicit-deadline tasks

(1) Sorttasks such that< a(m) < a(mn) <...<a(m) <1
(2) FORi =1,...n DO

(3) Assignr; to the processaP; with least indexj such that(P; U{r;}) < 1—-8(P;U{r})-In(2)

2 Preliminaries

For our algorithm we need the following sufficient (but stiit necessary) schedulability condition of Bur-
chard et al.

Lemma 1. |20] For tasksS = {71, ...,7,} define

a(r;) =logy p() — |loge p(1;)]  and B(S) := max a(r;) — min a(r).

i=1,...,n i=1,...,n
Then the tasks can be RM-scheduled on a single process@)f< 1 — 5(S) In(2).

The intuition behind this is that a small value@fS) indicates that the periods of tasksSrare nearly
multiples of each other and consequently the tasks are feadto “harmonize”.

The idea for our heuristic is now as follows: Sort the taskstwtheir a-values. Then assign them in a
First Fit manner using the sufficient feasibility test frommhmdll. See Algorithiid 1 for a formal description.
Note that theRate-monotonic small taskdgorithm @MST) of Burchard et al.[[20] is similar, just that a Next
Fit assignment is used instead of First Fit. But already femerage case analysis of Bin Packing, it is well
know that Next Fit approaches generate linear waste fooumnlfy distributed item sizesi[4].

3 Theresult of Shor

It is our aim to convey known bounds on the waste of Bin Packiggrithms to the waste of our algorithm.
To this end we consider the following auxiliary algoritivatching First Fit (MFF) of Shor [25], which
distributes a listt = (a1, ...,a,) of items to binsB;. Denotesize(B;) = Ziij a;.

Algorithm 2 Matching First Fit ¥IFF)
Input: Setay,...,a, of items

(1) FORi =1,...,n DO

(2) Assign itema; to the binB; with the least index such that eithei3; is empty or both of the
following conditions hold
e [3; contains one item and this item has size at |¢#3t
o size(Bj) +a; < 1

Shor [25] proved thatFF is monotonic, i.e. for all Bin Packing instancésind all itemsz; € I one has

MFF(I) > MFF(I\{a;}) > MFF(I) — 1
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whereMFF(I) denotes the number of bins usedNSF if applied to instancd. FurthermoredFF is never
better than the pure First Fit algorithm and it has an expeataste ofO(n?/3./logn) for Bin Packing
instances, whose item sizes are taken uniformly ffon].

Like MFF is a restriction to First Fit, we now state a restricted \@rf FFMP.

4 An auxiliary algorithm

Let~ := v(n) be an integer value, which we are going to choose later. Wedwdine a simplified version
FFMP* of FFMP which can be analyzed more easily. First the tasks are ipagd intogroupssSy, ..., Sy
withS; ={r, € S| % <oa(r) < %}, thus then-values of tasks from the same group differ only slightly.
Next, FFMP* never assigns more than 2 tasks to each processor and tasksdifferent periods are never
mixed. Here we say that an algoritmmxestwo tasksr, 7, if they are assigned to the same processor. The
algorithm even considers a processor to be full if the firsigmeed task has a utilization of at mest1/2.
Note that this algorithm is precisely tailored for the usedbability distribution. A formal definition of
FFMP* now follows

Algorithm 3 FFMP*
Input: Setry, ..., T, of implicit-deadline tasks

(1) Sorttasks such that< a(m) <...<a(m,) <1 ' '
(2) Partition tasks into grougS, ...,S, with S; = {1, € S| =< a(n) < %}.
(3) FOR:=1,...n DO
(4) Assignr; to the processaP; with the least indey such that eitheP; is empty or all following
conditions are satisfied
(a) P; contains only one item and this item is from the same group as
(b) the item onP; has utilization> (1 — @)/2
(© u(Pu{n}) <1- 22

Note thatl — @ is just slightly belowl. Observe thaFFMP* assigns eithet or 2 tasks to each
processor. LeFFMP*(S) be the number of processors, needed when scheduling Saskth algorithm
FFMP*. As a slight abuse of notatidfFMP*(S) means as well the schedule, obtained when applyip*
to S, however the meaning will be clear from the context. From breafd we see that the produced solution
is always feasible since either a single task is assighegtoaessor or in case that two tasks are assigned,
their a-values differ by at most/~ and their cumulated utilization is upper boundedlby In(2)/~.

The following observation is crucial for our analysis anldwak to link the expected waste BFMP* to
MFF.

Observation 2. Consider tasks, . .., ,, such that one hazs;—l < a(n) < L (i.e. all tasks fall into the

same group) and < u(r;) <1 — @ foralli = 1,...,m. Createn Bin Packing items.1, ..., a,, with

item sizesu; == u(m;) - /(1 — ln(2)77), i.e. a; € [0,1]. ThenFFMP* schedules,...,r, in exactly the
same way, thalfFF distributesay, . .., a.,, I.€. taskr; is assigned to théh processor if and only if item;
is assigned to thé&h bin. EspeciallFFMP* ({71, ...,Tm}) = MFF({a1,...,am}).

The main result of this section will be to show tHEMP*(S) > FFMP(S) for any set of taskss. The



simplicity of FFMP* will enable us to provenonotonicityfor it, meaning that removing tasks fro& can
only lower the value of FMP*(S). Although this is trivially true for algorithms yielding éipmal solutions,
for approximation algorithms with a complex behavior thied not necessarily hold.

Lemma 3. For any set of task§ andr* € S one has
FFMP*(S) > FFMP*(S\{7*}) > FFMP*(S) — 1

Proof. DenoteS’ = S\{7*} and letSy, ..., S, [Sy,...,S!] be the groups of [S', resp.]. Leti* be the
index such that* € S;-. Since the algorithm never mixes tasks from different gsooipe haFFMp*(S!) =
FFMP*(S;) for all i # i* andFFMP*(S) = >, FFMP*(S;). Thus we may assume that all groups Syt
are empty. Furthermore tasks with utilization larger than @ are never mixed with other tasks, thus
their removal does not change the claim. Due to this we maynasghat such tasks are not contained in
S = S;+, henceS contains just tasks from the same group, all with utilizataa mostl — @ Sticking
together Observatidd 2 and the monotonicitysf [25] yields the claim. O

By iteratively applying LemmBI3 we obtain

Corollary 4. For all task set§ andS’ C S one has
FFMP*(S) > FFMP*(S).

We may now conclude that the restricted varianFBfIP never produces better solutions thiFMP
itself.

Theorem 5. For all task set$ one has
FFMP*(S) > FFMP(S).
Proof. Let P,U...UP,, = S be the solution computed BFMP and denote the groups &fby S, ... S,

Consider an arbitrary processpy and after renaming let;, ..., 7, be the tasks o in incoming order
(p > 1). Removers, ..., 7,. Given thatp > 2, remover; if at least one of the following conditions is true
e 71 andr, stem from different groups
o u(r) < 3(1— &)
In(2)

o u({r,m}) >1—- ==

Let S’ C S the remaining tasks. ClearBFMP* schedulesS’ in exactly the same way thaFMP sched-
ules them in the solution leading ®¥MP(S). ThusFFMP*(S’) = FFMP(S). From Corollary[## we gain
FFMP*(S) > FFMP*(S’). Plugging both equations/inequalities together, yietdsdaim. O

5 An upper bound for FFMP*

In this section we will give an upper bound on the expectedevalFFMP*, by exploiting the bound on the
waste ofMFF. Again Observatiofll2 will be crucial.

Theorem 6. Let f : R>; — R be a concave and monotonic increasing function, suchfthat yields an
upper bound on the expected waste®¥ applied ton items drawn uniformly at random froffi, 1]. Then
the expected waste BFMP* is bounded byg + - f(n/~v) forn tasks with arbitrary periods, but utilization
values drawn uniformly at random froj@, 1].



Proof. Let Sy, ..., S, be the partition of the taskS into groups. Denote = |S| andn; = |S;|. FFMP*
never mixes tasks from different groups, thus

FFMP*(S) = ) _ FFMP*(S

Consider an arbitrary grou§;. Call tasksr with a utilization ofu(r) > 1 — @ full tasksandordinary

tasksotherwise. LetS™M! be the set of full tasks frons; and letS! = S;\SM! be the ordinary tasks.
Condition thatS;| = n?. Clearly the algorithnFFMP* does not mix ordinary and full tasks, thus

FFMP*(S;) = FFMP*(S™M") + FFMP*(S)).

A full task has a utilization of at leadt — @ thus for each full task it suffices to account a waste of

h“i?) < % The expected waste stemming from the processors, ownigiitasks of group is then

n?

E[FFMP*(SM) — (Sfuly] < BT
v
It remains to bound the waste from the ordinary tasks. THizatibn values of tasks i, are conditioned

to be in[0,1 — @]. It is not difficult to see that the distribution af(7) for 7 € S/ is uniformly w.r.t.
[0,1— @]. If we define a Bin Packing instandg with an item of sizeu(7)/(1 — @) for eachr € S/,
then the item sizes if{ are distributed uniformly w.r.{0, 1]. By Observatiofi]2

o

E[FFUP*(S))] = ENFF(I))] < 5 + f(n?).
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The rest of the proof simply consists of summing up the aguéyounds on the waste. We can express the
expected waste, stemming from the processors owning aydiasks from th&th group as

BIFRP ()~ u(SD] < (4 ff) — Blu(sh] = (%4 pg)) - gt DN
< Jng o+t
Combining ordinary and full tasks yields
BIFFNP*(S,) — ()] < " 4 (7nf) + ) < i) +

using monotonicity off. Hence the total expected waste for solutk#P*(S) can be written as

) i v (**)
E[FFMP*(S = E[FFMP*( Z —Z < ST f(n/v)
i=1 i=1

For (x) we used linearity of expectation aije«) follows by Jensen’s inequality and concavenesg.of O

Applying the best known bound of{n) we obtain



Theorem 7. For the expected waste BFMP one has
E[FFMP(S) — u(S)] = O(n/*(log n)*/®)
if S consists of tasks, whose utilization values are drawn uniformly at candrom|0, 1].

Proof. Theorentb provides that bounding the wasterMP* is sufficient. Choosing(n) = [n'/*/(log n)3/8]
and using the bound of(n) = O(n?/3(logn)'/?) [25] together with Theorerfd 6 yields the claim (observe
thatc - n?/3 - (logn)'/? is concave and monotonic). O

Observing thaO PT'(S) = Q(n) with very high probability, we conclude that

Corollary 8. Let S consist ofn tasks, whose utilization values are drawn uniformly at candrom|0, 1].
Then the expected approximation ratiocFGHP is

FFMP(S) —1/4 3/8
— <
E[OPT(S)} <14+ 0(n"*(logn)>®)
Using essentially the same proof as [20] (see also Leung [di€H) one can easily show that even in the
worst-case one h&MP(S) < 2u(S) + 4, i.e. the asymptotic worst-case approximation ratigRMP is 2.
For the sake of completeness the proof of this fact can balfouthe appendix.

6 Experimental Results

We have performed simulations of cEFMP algorithm and compared it witRMFF, FFDU, andRMGT. The
experimental setting is as follows. We choose the perigds < [0,500] and the utilizations:(r;) € [0, 1]
uniformly at random. We create random instances in the rah@® to 100000 tasks. For each givepwe
generate 100 random samples to get a good estimate of thetedpalue of the waste. We use the same
instances to test each algorithm to allow also a direct coisgma of their performance.

The log-log-plot in Figur&l2 shows the power law behaviorhef average waste 8FMP as predicted by
Theorenll. The regression yields an exponertt.® which is close to?I from the Theorem showing that
the theoretical analysis is almost tight, i.e. that we ddoase much by analyzing the dominated algorithm
FFMP*. In contrast to that, the average waste produced by the alerithms shows an almost linear
dependence on the number of tasks. In fact, we believe tbalgpendence is linear since the measurements
of their average waste show a slight curvature to the leflicating that the averages are actually growing
faster than the fitted straight lines.

The simulated average processor load shown in F[dure 3 sisghis claim. Byaverage processor load
we mean the expected value of the mean utilization of thegzsmrs. The closer this value islitéhe less
processor cycles are wasted. Hence, it comes to no surpaséhe average load f®FMP tends tol with
increasingn. For the other algorithms, there is strong evidence that toaverge to respective constants
strictly smaller tharl and likely even not more thain9.

Interestingly, the quadratic running time RMGT, which is due to the exact feasibility test for the large
tasks, does not pay off in comparison witAMP, which runs inO(n logn) time. This does not only hold
for the average waste, but also on a per instance bEEKP performs better thaRMGT for 94 out of 100
random instances with 10 tasks and always better on our natekt instances with a larger number of tasks.
This is due to the splitting of the tasks into small tasks (u#lization at mostl /3) and large tasks. Thus
all tasks with utilization at least/3 are deterministically scheduled alone on a processor. Xanple in
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expectationl0% of all tasks have a utilization betweér and0.8. Each of those tasks contributes at least
0.2 to the total waste. Therefore the expected was®Moff must be at leadt.1 - 0.2 - n = Q(n), even if
after splitting, the algorithm would find an optimum solutitor both parts.FFMP can be implemented in
O(nlogn) using a heap data structure. For the sake of completenesaikedelescription can be found in
the appendix.
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Appendix

I mplementation

In the following, we explain how to implement tl&MP algorithm with a complexity of)(n log n) using

a heap data-structure. To this end, we rewrite the predafaiee feasibility test as follows. Consider the
current taskr; and a processaP. Recall that the tasks are ordered by increasingalues. Thus, the value
of 8 always depends on the current task and the task alreadytbat defines the minimum-value, say
a(P) = min{a(7;) | 7; € P}. Hence, task; can be scheduled on procesgoif

u(P) 4+ u(r) <1— (a(r;) — a(P)) - In(2)

which is equivalent to
u(r) + a(r) In(2) <1 —u(P)+ a(P)In(2).

v; lp

Note that the left-hand side (called in the following) only depends on the current task and that the
right-hand side (calledp in the following) only depends on the tasks which are alresahyeduled on the
processorP. For P = (), we define/p = co. Hence, we may maintain a binary heap data-structure to find
in logarithmic time the processor with the least index ttesges the feasibility test. Viewed as a binary tree,
we haven leaves corresponding to processors. They are labeled hdttight-hand sideép depending on
their current utilization and the-value of the first task which was scheduled on each one.allgitithey
are empty and their labels ate. The other nodes of the tree are labeled with the maximum Gflibeir
respective children. See Figuie 4 for a visualisation.t®gfrom the root, we proceed with the left child if
thewv; value for the current task is not greater than the label ofdafiehild. Otherwise, we turn to the right
child, which then has a sufficiently large label by consiarct The leaf that we eventually reach determines
the processor on which we schedule the current task. Siedesiight of the binary tree is logarithmic in the
number of leaves, i.e1, we can schedule each task@tlog n). Moreover, the update of the data-structure
also takex)(log n) since we only need to traverse the tree back to the root anateipde labels on this
path; any other label remains invariant.

0.40 00

(p, =040 (p, =037 flp, =081 (p, =00

T3 To
1 T4
P P Ps P,

Figure 4: Example for the heap structure. We use notatjiea (u(7;), a(7;)). ThenFFMP schedules tasks
71 = (0.3,0.0), 2 = (0.7,0.1), 3 = (0.3,0.2), 74 = (0.4,0.3) as depicted.
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Wor st-case behaviour

In this section we outline, why the asymptotic worst-caggraximation ratio is bounded 3/

Lemma9. One has
FFMP(S) < 2-u(S) + 4.

Proof. Let P, ..., P, be the used processors. ByP;) = min{a(7;) | 7; € P} we denote thev-value of
the first task, assigned #. Clearly0 < a(P;) < ... < a(Py) < 1. Let; be the first task, assigned to
Py fori e {1,...,m — 1}, thusa(rj) = o(Pi4+1). Butthe(i 4 1)th processor was only opened because

7; did not fit on a prior processor. Especially it did not fit 8 thus

u(P) +u(Piy1) > u(P) + u(7y)
> 1-pB(FU{r}) - In(2)
> 1—-1In(2) - (a(Piy1) — a(F))

Hence
[m/2]
u(S) = > (u(Prio1) + u(Py))

=1
[m/2]

> > (1-In(2) (a(Py) — a(Pri-1)))
=1

> [m/2] ~In(2)

> m/2—2

using that the differences of thevalues sum up to at mo$t We conclude that

m < 2u(S) + 4.
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