
An Average-Case Analysis for Rate-Monotonic
Multiprocessor Real-time Scheduling

Andreas Karrenbauer∗ and Thomas Rothvoß

Institute of Mathematics
École Polytechnique F́ed́erale de Lausanne, Lausanne, Switzerland

{andreas.karrenbauer, thomas.rothvoss}@epfl.ch

Abstract

We introduce theFirst Fit Matching Periodsalgorithm for rate-monotonic multiprocessor scheduling of
periodic tasks with implicit deadlines and show that it yields asymptotically optimal processor assign-
ments if utilization values are chosen uniformly at random.More precisely we prove that theexpected
wasteis upper bounded byO(n3/4(log n)3/8). Here the waste denotes the ratio of idle times, cumulated
over all processors andn gives the number of tasks.

The algorithm can be implemented to run in timeO(n log n) and even in the worst case, an asymp-
totic approximation ratio of2 is guaranteed. Experiments yield an average waste proportional ton0.70,
indicating that the above upper bound on the expected waste is almost tight.

While such average-case analyses are a classical topic of Bin Packing, to the best of our knowledge,
this is the first result dealing with a theoretical average-case analysis for this scheduling problem, which
was described by Liu and Layland more than 35 years ago and hasreceived a lot of attention, especially
in the real-time and embedded-systems community.

1 Introduction

In this paper, we are concerned with a scheduling problem introduced by Liu and Layland [21], which is of
fundamental importance in the real-time and embedded-systems community. Here one is given a set oftasks
S = {τ1, . . . , τn}, where each taskτ is characterized by two positive values, itsperiodp(τ) and itsrunning
timec(τ). The taskτ releases ajob requiring running timec(τ) at each integer multiple of its period. Each
job has a relative deadline ofp(τ), thus we haveimplicit deadlines. Theutilization of a taskτ is defined as
u(τ) = c(τ)/p(τ), thus it gives the average fraction of processor cycles, which are consumed byτ . More
general for a setS, we denoteu(S) =

∑

τ∈S u(τ).
We considerfixed-priority, preemptivescheduling, i.e. priorities are assigned to the tasks and the arrival

of a job of a higher priority task, preempts the execution of lower priority tasks. Liu and Layland [21] have
proven that therate-monotonic(RM) scheduling policy is optimal, meaning that if there is afeasible priority
assignment, then the one in which the priority of a taskτ equals1/p(τ) is also feasible (i.e. larger periods
imply lower priorities). Therefore we only consider rate-monotonic priorities.

If several tasksS ′ ⊆ S are assigned to one processor, then we call this assignmentfeasible(or RM-
schedulable) if in the rate-monotonic schedule all jobs of all tasks always meet their deadlines. See Figure 1
for an example.

∗Supported by the Deutsche Forschungsgemeinschaft (DFG) within Priority Programme 1307 ”Algorithm Engineering”

1

c(τ1)=1
p(τ1)=2

c(τ2)=2
p(τ2)=5

b b b

0 1 2 3 4 5 6 7 8 9 10

Figure 1: The picture shows a setS = {τ1, τ2} of tasks. The arrows indicate the points in time, where the
two tasksτ1 andτ2 release jobs. At time0, the first job ofτ1 as well as the first job ofτ2 are released. Since
the period ofτ1 is smaller than the period ofτ2, the first job ofτ1 is executed, until it is finished at time1.
Now the first job ofτ2 is executed, but interrupted by the second job ofτ1 at time2. The execution of the
first job of τ2 is resumed at time3 and finished at time4. Notice that the processor is idle for one time unit
at time9 and that the schedule repeats at the least common multiple ofthe periods which is10. All jobs
finish in time. The setS is feasible.

In a multiprocessor environment, the algorithmic challenge is to determine a partition of a task-setS
into S1, . . . ,Sk, such that eachSi is a feasible set of tasks for one processor and the numberk of processors
is minimized. The minimum possible value fork is denoted byOPT . Therate-monotonic multiprocessor
scheduling problemhas received considerable attention in the real-time and embedded-systems commu-
nity [18, 17, 16, 1, 24, 5, 20, 15, 23, 2, 9, 19]. This popularity is due to the fact that more and more
safety-critical control applications are carried out by microprocessors and in particular by multiprocessor
environments. Such scheduling problems are for example relevant in the automotive and aviation industry.

A measure for the quality of a solution is the so-calledwaste, which is frequently used concerning the
relatedBin Packingproblem. That is, the waste of a solution withk processors is the ratio of idles times,
cumulated over all processors, i.e.k− u(S). Clearly, minimizing the waste is equivalent to minimization of
the number of partitions.

For the rate-monotonic single-processor scheduling Lehoczky et al. [18] gave a probabilistic analysis,
indicating that the reachable processor utilization on average is much better, than the worst-case value of
ln(2) ≈ 69%. For example, if periods are drawn from[1, 100] and the running times are scaled by the
largest value, such that the system is barely schedulable, then the utilization tends to88% for n → ∞.

This motivates us to study also the average-case behavior inthe multiprocessor case. Our analysis will
work for an arbitrary distribution of the periods, as long asthe utilization values are drawn independently
and uniformly from[0, 1].

Related work

For the famousBin Packingproblem a list of itemsa1, . . . , an ∈ [0, 1] is given. The goal is to assign these
items to a minimal number of bins such that the total sizes of items, assigned to each bin does not exceed1.

We will see that if for the considered scheduling problem allperiodsp(τ) were multiples of each other,
then the problem would be exactly Bin Packing, where the utilization values correspond to the item sizes.
This is because a set of tasksS ′ ⊆ S would be feasible on one processor in this case if and only if the sum

2

of their utilization is bounded by one.
Successful heuristics for Bin Packing areFirst Fit, Next Fit andBest Fit. In all variants the items are

assigned in a consecutive manner to a bin, which has enough space (or a new one is opened). For First Fit
the current item is put in the bin with the smallest index, in Best Fit it is assigned to the bin, whose item
sum is maximal. For Next Fit an active bin is maintained. If the current item does not fit into it, a new bin
is opened, now being the active one; old bins are never considered again. InFirst Fit Decreasingthe items
are first sorted by decreasing sizes and then distributed viaFirst Fit. In the worst case Next Fit produces a
2-approximation, while First Fit needs⌈17

10OPTBinPacking⌉ + 1 [11] many bins. Asymptotically both, Best
and First Fit Decreasing have an approximation ratio of11/9 [12].

If the items are generated randomly, the heuristics performmuch better, than in the worst-case scenarios.
For item sizes drawn uniformly at random from[0, 1] the Best Fit algorithm yields an expected waste of
Θ(

√
n log3/4 n) [25], while for First Fit this value is lower bounded byΩ(n2/3) and upper bounded by

O(n2/3
√

log n) [25]. The upper bound even holds if First Fit is restricted tonever assign more than 2 items
per bin. Later we will refer to this algorithm asMatching First Fit (MFF). First Fit Decreasing yields an
even smaller waste ofΘ(

√
n) [10, 14, 22]. If item sizes are drawn uniformly from[0, α], for any constant

α ≤ 1/2, the waste of First Fit Decreasing is even constant with highprobability.
Note that here the waste is defined similar to multiprocessorscheduling, namely as the number of bins

minus the sum of all item sizes. But for Bin Packing also in theworst-case nearly optimal solutions can be
computed, for example there is an asymptotic PTAS [8] and even an asymptotic FPTAS exists [13]. More
on Bin Packing can be found in the excellent survey of Coffmanet al. [3].

One major difference between rate-monotonic scheduling and Bin Packing is that for the latter it can be
checked easily whether given items fit into one bin, whereas it is conjectured that this does not hold for a set
of tasks and one processor. If a setS of implicit-deadline tasks is feasible (i.e. RM-schedulable), then the
utilization u(S) is at most1. However,S can be infeasible, even ifu(S) < 1. Consider, for example, again
the task systemS in Figure 1. If we increase the running time ofτ2 by anyε > 0, then the setS is no longer
feasible and its utilization isu(S) = (9 + 2ε)/10. Liu and Layland [21] have shown thatS is feasible, if
u(S) is bounded byn(21/n − 1), wheren = |S|. This bound tends toln(2) ≈ 0.69 and the condition is
not necessary for feasibility, as the example in Figure 1 shows. Stronger, but still not necessary conditions
for feasibility are given in [20, 5, 24]. Note that the first job of each task is thecritical instance[21], thus if
p(τ1) ≤ . . . ≤ p(τn) then response times forτi in a rate-monotonic, single-processor schedule are given by
the smallest valuer(τi) ≥ 0 with

r(τi) = c(τi) +
∑

j<i

⌈
r(τi)

p(τj)

⌉

c(τj).

Of courseτ1, . . . , τn are feasible if and only ifr(τi) ≤ p(τi) for i = 1, . . . , n [18]. But it was proven in [7]
that such response times cannot even be approximated in polynomial time within a factor ofnc/ log log n for a
fixed constantc > 0, unlessNP = P. Nevertheless in practice response times can be efficientlycomputed
using a fix-point iteration approach [1]. Furthermore Baruah and Fisher [9] showed that there is an FPTAS
for computing the minimum processor speed, which is needed to make a task system RM-schedulable.

Oh and Baker [23] showed that ifm processors are needed to scheduleS, one must haveu(S) ≥
m · (

√
2− 1) ≈ 0.41m. This quantity was later improved by Liebeherr et al. [20] tom · 1

1+ m
√

2
≈ 0.5m (for

largem).
Most popular algorithms for rate-monotonic periodic multiprocessor scheduling first sort the tasks in a

suitable way and then distribute them in a First Fit or Next Fit manner using a sufficient feasibility criterion.
See the following table for an overview (with our algorithm in the last row, for the sake of comparability).

3

Name sorting distribution ratio run time
RMNF inc. p(τ) Next Fit 2.67 O(n log n)
RMFF inc. p(τ) First Fit 2.00 O(n log n)
FFDU dec.u(τ) First Fit 2.00 O(n log n)
RMST inc. α(τ) Next Fit 1

1−umax
O(n log n)

RMGT - First Fit +RMST 1.75 O(n2)

FFMP inc. α(τ) First Fit 2.00 O(n log n)

Here α(τ) = log2 p(τ) − ⌊log2 p(τ)⌋ and umax = maxτ∈S u(τ). In the table, the column ”ratio”
gives the best known upper bounds on the asymptotic approximation ratio. Therate-monotonic general task
algorithm (RMGT) [20] distributes tasks with utilization at most1/3 usingRMST and the rest separately with
First Fit. A more detailed description can be found in [19].

Furthermore there is an asymptotic PTAS under resource augmentation, computing for any fixedε > 0
a solution with(1 + ε)OPT + 1 processors, where the tasks on each processor can be feasibly scheduled
after increasing the processor speed by a factor of1 + ε [6]. In the same paper it was proven that unless
P 6= NP no asymptotic FPTAS can exist for this multiprocessor scheduling problem. But it is still an open
question whether there might be an asymptotic PTAS and thus an algorithm that is asymptotically optimal
and does not depend on any assumption about the input. Here wecall an algorithm asymptotically optimal,
if the approximation ratio tends to1 for OPT → ∞. We refer to the article of Baruah and Goossens [2] for
an overview on complexity issues of real-time scheduling.

Our contribution

We introduce an efficient and easy to implement algorithm forthe multiprocessor rate-monotonic scheduling
problem calledFirst Fit Matching Periods(FFMP) . We proof that it is asymptotically optimal for arbitrary
periods provided that the utilizations follow a uniform distribution1. To this end, we show that our algorithm
produces a solution with expected waste ofO(n3/4(log n)3/8). Since the expected approximation ratio of
1 + O(n−1/4(log n)3/8) tends to1 for n → ∞, the solution is asymptotically optimal on average. To the
best of our knowledge this is the first proof that any algorithm for this problem admits this property w.r.t. a
reasonable probability distribution.

To achieve our results, we use the following technique: We introduce an auxiliary algorithmFFMP∗ and
prove that for any task set it needs at least as many processors asFFMP. Thus it suffices to derive an upper
bound on the waste of this easier algorithm. We then point outthat for suitable subsets of the input tasks,
FFMP

∗ behaves like a well studied Bin Packing algorithmMFF. Eventually this allows to bound the waste for
FFMP

∗ in terms of the waste ofMFF.
In addition to the proof of the asymptotic optimality of our algorithm, we present experimental results

showing thatFFMP outperforms the algorithms known from literature already on random instances with a
small number of tasks. We thereby provide an example of an algorithm that has been designed for asymptotic
optimality and which is, in addition, competitive on reasonably small instances. Moreover, we present a
family of instances where the average waste scales withn0.70, which is almost tight to our theoretical upper
bound and thus showing that our technique is suitable for sharp analyses.

1To be exact, we assume that firstarbitrary periods may be given and thenthe utilizations are chosen randomly.

4

Algorithm 1 FFMP

Input: Setτ1, . . . , τn of implicit-deadline tasks

(1) Sort tasks such that0 ≤ α(τ1) ≤ α(τ2) ≤ . . . ≤ α(τn) < 1
(2) FORi = 1, . . . n DO

(3) Assignτi to the processorPj with least indexj such thatu(Pj ∪{τi}) ≤ 1−β(Pj ∪{τi}) · ln(2)

2 Preliminaries

For our algorithm we need the following sufficient (but stillnot necessary) schedulability condition of Bur-
chard et al.

Lemma 1. [20] For tasksS = {τ1, . . . , τn} define

α(τi) = log2 p(τi) − ⌊log2 p(τi)⌋ and β(S) := max
i=1,...,n

α(τi) − min
i=1,...,n

α(τi).

Then the tasks can be RM-scheduled on a single processor ifu(S) ≤ 1 − β(S) ln(2).

The intuition behind this is that a small value ofβ(S) indicates that the periods of tasks inS are nearly
multiples of each other and consequently the tasks are guaranteed to “harmonize”.

The idea for our heuristic is now as follows: Sort the tasks w.r.t. theirα-values. Then assign them in a
First Fit manner using the sufficient feasibility test from Lemma 1. See Algorithm 1 for a formal description.
Note that theRate-monotonic small tasksalgorithm (RMST) of Burchard et al. [20] is similar, just that a Next
Fit assignment is used instead of First Fit. But already fromaverage case analysis of Bin Packing, it is well
know that Next Fit approaches generate linear waste for uniformly distributed item sizes [4].

3 The result of Shor

It is our aim to convey known bounds on the waste of Bin Packingalgorithms to the waste of our algorithm.
To this end we consider the following auxiliary algorithmMatching First Fit (MFF) of Shor [25], which
distributes a listL = (a1, . . . , an) of items to binsBj. Denotesize(Bj) =

∑

i∈Bj
ai.

Algorithm 2 Matching First Fit (MFF)
Input: Seta1, . . . , an of items

(1) FORi = 1, . . . , n DO

(2) Assign itemai to the binBj with the least indexj such that eitherBj is empty or both of the
following conditions hold

• Bj contains one item and this item has size at least1/2
• size(Bj) + ai ≤ 1

Shor [25] proved thatMFF is monotonic, i.e. for all Bin Packing instancesI and all itemsai ∈ I one has

MFF(I) ≥ MFF(I\{ai}) ≥ MFF(I) − 1

5

whereMFF(I) denotes the number of bins used byMFF if applied to instanceI. FurthermoreMFF is never
better than the pure First Fit algorithm and it has an expected waste ofO(n2/3

√
log n) for Bin Packing

instances, whose item sizes are taken uniformly from[0, 1].
Like MFF is a restriction to First Fit, we now state a restricted version ofFFMP.

4 An auxiliary algorithm

Let γ := γ(n) be an integer value, which we are going to choose later. We nowdefine a simplified version
FFMP

∗ of FFMP which can be analyzed more easily. First the tasks are partitioned intogroupsS1, . . . ,Sγ

with Sj = {τi ∈ S | j−1
γ ≤ α(τi) < j

γ }, thus theα-values of tasks from the same group differ only slightly.
Next, FFMP∗ never assigns more than 2 tasks to each processor and tasks from different periods are never
mixed. Here we say that an algorithmmixestwo tasksτ1, τ2, if they are assigned to the same processor. The
algorithm even considers a processor to be full if the first assigned task has a utilization of at most≈ 1/2.
Note that this algorithm is precisely tailored for the used probability distribution. A formal definition of
FFMP

∗ now follows

Algorithm 3 FFMP
∗

Input: Setτ1, . . . , τn of implicit-deadline tasks

(1) Sort tasks such that0 ≤ α(τ1) ≤ . . . ≤ α(τn) < 1
(2) Partition tasks into groupsS1, . . . ,Sγ with Sj = {τi ∈ S | j−1

γ ≤ α(τi) < j
γ }.

(3) FORi = 1, . . . n DO

(4) Assignτi to the processorPj with the least indexj such that eitherPj is empty or all following
conditions are satisfied

(a) Pj contains only one item and this item is from the same group asτi

(b) the item onPj has utilization≥ (1 − ln(2)
γ)/2

(c) u(Pj ∪ {τi}) ≤ 1 − ln(2)
γ

Note that1 − ln(2)
γ is just slightly below1. Observe thatFFMP∗ assigns either1 or 2 tasks to each

processor. LetFFMP∗(S) be the number of processors, needed when scheduling tasksS with algorithm
FFMP

∗. As a slight abuse of notationFFMP∗(S) means as well the schedule, obtained when applyingFFMP
∗

toS, however the meaning will be clear from the context. From Lemma 1 we see that the produced solution
is always feasible since either a single task is assigned to aprocessor or in case that two tasks are assigned,
theirα-values differ by at most1/γ and their cumulated utilization is upper bounded by1 − ln(2)/γ.

The following observation is crucial for our analysis and allows to link the expected waste ofFFMP∗ to
MFF.

Observation 2. Consider tasksτ1, . . . , τm such that one hasj−1
γ ≤ α(τi) < j

γ (i.e. all tasks fall into the

same group) and0 ≤ u(τi) ≤ 1 − ln(2)
γ for all i = 1, . . . ,m. Createm Bin Packing itemsa1, . . . , am with

item sizesai := u(τi) · /(1 − ln(2)/γ), i.e. ai ∈ [0, 1]. ThenFFMP∗ schedulesτ1, . . . , τm in exactly the
same way, thatMFF distributesa1, . . . , am, i.e. taskτi is assigned to theℓth processor if and only if itemai

is assigned to theℓth bin. EspeciallyFFMP∗({τ1, . . . , τm}) = MFF({a1, . . . , am}).

The main result of this section will be to show thatFFMP
∗(S) ≥ FFMP(S) for any set of tasksS. The

6

simplicity of FFMP∗ will enable us to provemonotonicityfor it, meaning that removing tasks fromS can
only lower the value ofFFMP∗(S). Although this is trivially true for algorithms yielding optimal solutions,
for approximation algorithms with a complex behavior this does not necessarily hold.

Lemma 3. For any set of tasksS andτ∗ ∈ S one has

FFMP
∗(S) ≥ FFMP

∗(S\{τ∗}) ≥ FFMP
∗(S) − 1

Proof. DenoteS ′ = S\{τ∗} and letS1, . . . ,Sγ [S ′
1, . . . ,S ′

γ] be the groups ofS [S ′, resp.]. Leti∗ be the
index such thatτ∗ ∈ Si∗ . Since the algorithm never mixes tasks from different groups one hasFFMP∗(S ′

i) =
FFMP

∗(Si) for all i 6= i∗ andFFMP∗(S) =
∑γ

i=1 FFMP
∗(Si). Thus we may assume that all groups butSi∗

are empty. Furthermore tasks with utilization larger than1 − ln(2)
γ are never mixed with other tasks, thus

their removal does not change the claim. Due to this we may assume that such tasks are not contained in
S = Si∗ , henceS contains just tasks from the same group, all with utilization at most1 − ln(2)

γ . Sticking
together Observation 2 and the monotonicity ofMFF [25] yields the claim.

By iteratively applying Lemma 3 we obtain

Corollary 4. For all task setsS andS ′ ⊆ S one has

FFMP
∗(S) ≥ FFMP

∗(S ′).

We may now conclude that the restricted variant ofFFMP never produces better solutions thanFFMP
itself.

Theorem 5. For all task setsS one has

FFMP
∗(S) ≥ FFMP(S).

Proof. Let P1∪̇ . . . ∪̇Pm = S be the solution computed byFFMP and denote the groups ofS by S1, . . . Sγ .
Consider an arbitrary processorPj and after renaming letτ1, . . . , τp be the tasks onPj in incoming order
(p ≥ 1). Removeτ3, . . . , τp. Given thatp ≥ 2, removeτ2 if at least one of the following conditions is true

• τ1 andτ2 stem from different groups
• u(τ1) < 1

2 (1 − ln(2)
γ)

• u({τ1, τ2}) > 1 − ln(2)
γ

Let S ′ ⊆ S the remaining tasks. ClearlyFFMP∗ schedulesS ′ in exactly the same way thatFFMP sched-
ules them in the solution leading toFFMP(S). ThusFFMP∗(S ′) = FFMP(S). From Corollary 4 we gain
FFMP

∗(S) ≥ FFMP
∗(S ′). Plugging both equations/inequalities together, yields the claim.

5 An upper bound for FFMP∗

In this section we will give an upper bound on the expected waste ofFFMP∗, by exploiting the bound on the
waste ofMFF. Again Observation 2 will be crucial.

Theorem 6. Let f : R≥1 → R be a concave and monotonic increasing function, such thatf(n) yields an
upper bound on the expected waste ofMFF applied ton items drawn uniformly at random from[0, 1]. Then
the expected waste ofFFMP∗ is bounded bynγ + γ · f(n/γ) for n tasks with arbitrary periods, but utilization
values drawn uniformly at random from[0, 1].

7

Proof. Let S1, . . . ,Sγ be the partition of the tasksS into groups. Denoten = |S| andni = |Si|. FFMP
∗

never mixes tasks from different groups, thus

FFMP
∗(S) =

γ
∑

i=1

FFMP
∗(Si).

Consider an arbitrary groupSi. Call tasksτ with a utilization ofu(τ) > 1 − ln(2)
γ full tasksandordinary

tasksotherwise. LetS full
i be the set of full tasks fromSi and letS ′

i = Si\S full
i be the ordinary tasks.

Condition that|S ′
i| = no

i . Clearly the algorithmFFMP∗ does not mix ordinary and full tasks, thus

FFMP
∗(Si) = FFMP

∗(S full
i) + FFMP

∗(S ′
i).

A full task has a utilization of at least1 − ln(2)
γ , thus for each full task it suffices to account a waste of

ln(2)
γ ≤ 1

γ . The expected waste stemming from the processors, owning the full tasks of groupi is then

E[FFMP∗(S full
i) − u(S full

i)] ≤ ni − no
i

γ
.

It remains to bound the waste from the ordinary tasks. The utilization values of tasks inS ′
i are conditioned

to be in [0, 1 − ln(2)
γ]. It is not difficult to see that the distribution ofu(τ) for τ ∈ S ′

i is uniformly w.r.t.

[0, 1 − ln(2)
γ]. If we define a Bin Packing instanceI ′i with an item of sizeu(τ)/(1 − ln(2)

γ) for eachτ ∈ S ′
i,

then the item sizes inI ′i are distributed uniformly w.r.t.[0, 1]. By Observation 2

E[FFMP∗(S ′
i)] = E[MFF(I ′i)] ≤

no
i

2
+ f(no

i).

The rest of the proof simply consists of summing up the achieved bounds on the waste. We can express the
expected waste, stemming from the processors owning ordinary tasks from theith group as

E[FFMP∗(S ′
i) − u(S ′

i)] ≤ (
no

i

2
+ f(no

i)) − E[u(S ′
i)] = (

no
i

2
+ f(no

i)) − no
i

1 − ln(2)/γ

2

≤ f(no
i) +

no
i

γ

Combining ordinary and full tasks yields

E[FFMP∗(Si) − u(Si)] ≤
ni − no

i

γ
+ (f(no

i) +
no

i

γ
) ≤ f(ni) +

ni

γ

using monotonicity off . Hence the total expected waste for solutionFFMP
∗(S) can be written as

E[FFMP∗(S) − u(S)]
(∗)
=

γ
∑

i=1

E[FFMP∗(Si) − u(Si)] ≤
γ

∑

i=1

(f(ni) +
ni

γ
)

(∗∗)
≤ n

γ
+ γ · f(n/γ)

For (∗) we used linearity of expectation and(∗∗) follows by Jensen’s inequality and concaveness off .

Applying the best known bound onf(n) we obtain

8

Theorem 7. For the expected waste ofFFMP one has

E[FFMP(S) − u(S)] = O(n3/4(log n)3/8)

if S consists ofn tasks, whose utilization values are drawn uniformly at random from [0, 1].

Proof. Theorem 5 provides that bounding the waste ofFFMP
∗ is sufficient. Choosingγ(n) = ⌈n1/4/(log n)3/8⌉

and using the bound off(n) = O(n2/3(log n)1/2) [25] together with Theorem 6 yields the claim (observe
thatc · n2/3 · (log n)1/2 is concave and monotonic).

Observing thatOPT (S) = Ω(n) with very high probability, we conclude that

Corollary 8. Let S consist ofn tasks, whose utilization values are drawn uniformly at random from [0, 1].
Then the expected approximation ratio ofFFMP is

E

[
FFMP(S)

OPT (S)

]

≤ 1 + O(n−1/4(log n)3/8)

Using essentially the same proof as [20] (see also Leung et al. [19]) one can easily show that even in the
worst-case one hasFFMP(S) ≤ 2u(S) + 4, i.e. the asymptotic worst-case approximation ratio ofFFMP is 2.
For the sake of completeness the proof of this fact can be found in the appendix.

6 Experimental Results

We have performed simulations of ourFFMP algorithm and compared it withRMFF, FFDU, andRMGT. The
experimental setting is as follows. We choose the periodsp(τi) ∈ [0, 500] and the utilizationsu(τi) ∈ [0, 1]
uniformly at random. We create random instances in the rangeof 10 to 100000 tasks. For each givenn, we
generate 100 random samples to get a good estimate of the expected value of the waste. We use the same
instances to test each algorithm to allow also a direct comparison of their performance.

The log-log-plot in Figure 2 shows the power law behavior of the average waste ofFFMP as predicted by
Theorem 7. The regression yields an exponent of0.70 which is close to3

4 from the Theorem showing that
the theoretical analysis is almost tight, i.e. that we do notloose much by analyzing the dominated algorithm
FFMP

∗. In contrast to that, the average waste produced by the otheralgorithms shows an almost linear
dependence on the number of tasks. In fact, we believe that the dependence is linear since the measurements
of their average waste show a slight curvature to the left, indicating that the averages are actually growing
faster than the fitted straight lines.

The simulated average processor load shown in Figure 3 supports this claim. Byaverage processor load,
we mean the expected value of the mean utilization of the processors. The closer this value is to1 the less
processor cycles are wasted. Hence, it comes to no surprise that the average load forFFMP tends to1 with
increasingn. For the other algorithms, there is strong evidence that they converge to respective constants
strictly smaller than1 and likely even not more than0.9.

Interestingly, the quadratic running time ofRMGT, which is due to the exact feasibility test for the large
tasks, does not pay off in comparison withFFMP, which runs inO(n log n) time. This does not only hold
for the average waste, but also on a per instance basis:FFMP performs better thanRMGT for 94 out of 100
random instances with 10 tasks and always better on our random test instances with a larger number of tasks.
This is due to the splitting of the tasks into small tasks (i.e. utilization at most1/3) and large tasks. Thus
all tasks with utilization at least2/3 are deterministically scheduled alone on a processor. For example in

9

10 100 1000 10000 1e+05
number of tasks

1

10

100

1000

10000

av
er

ag
e

w
as

te

FFDU: waste = 0.15 n^0.94
RMFF: waste = 0.20 n^0.93
RMGT: waste = 0.20 n^0.90
FFMP: waste = 0.33 n^0.70

Figure 2: The average waste depending on the number of tasks are shown with3σ error bars forFFMP and
three algorithms from literature. For each algorithm, we fita power function (straight lines in the log-log
plot) and display the results in the legend box.

10 100 1000 10000 1e+05
number of tasks

0.7 0.7

0.8 0.8

0.9 0.9

1 1

av
er

ag
e

lo
ad

FFMP
RMGT-FF
RMGT
FFDU
RMFF

Figure 3: The average load of the processors is shown with3σ error bars. In the algorithm RMGT-FF, the
Next Fit distribution for the small tasks is replaced by First Fit.

10

expectation10% of all tasks have a utilization between0.7 and0.8. Each of those tasks contributes at least
0.2 to the total waste. Therefore the expected waste ofRMGT must be at least0.1 · 0.2 · n = Ω(n), even if
after splitting, the algorithm would find an optimum solution for both parts.FFMP can be implemented in
O(n log n) using a heap data structure. For the sake of completeness a detailed description can be found in
the appendix.

Acknowledgement

The authors want to thank Sanjoy K. Baruah, for reading a preliminary version of this paper and giving very
helpful advices.

References

[1] Audsley, A. N., Burns, A., Richardson, M., and Tindell, K. (1993). Applying new scheduling theory to
static priority pre-emptive scheduling.Software Engineering Journal, pages 284–292.

[2] Baruah, S. and Goossens, J. (2004). Scheduling real-time tasks: Algorithms and complexity. In Leung, J.
Y.-T., editor,Handbook of Scheduling — Algorithms, Models, and Performance Analysis, Computer and
Information Science Series, pages 28–28, Boca Raton-London-New York-Washington, D.C. Chapman &
Hall/CRC.

[3] Coffman, Jr., E. G., Garey, M. R., and Johnson, D. S. (1984). Approximation algorithms for bin-
packing—an updated survey. InAlgorithm design for computer system design, volume 284 ofCISM
Courses and Lectures, pages 49–106. Springer, Vienna.

[4] Coffman, E.G., J., So, K., Hofri, M., and Yao, A. C. (1980). A stochastic model of bin-packing.
Inf. Control, 44:105–115.

[5] Davari, S. and Dhall, S. K. (1995). On-line algorithms for allocating periodic-time-critical tasks on
multiprocessor systems.Informatica (Slovenia), 19(1).

[6] Eisenbrand, F. and Rothvoß, T. (2008a). A ptas for staticpriority real-time scheduling with resource
augmentation. InICALP (1), pages 246–257.

[7] Eisenbrand, F. and Rothvoß, T. (2008b). Static-priority Real-time Scheduling: Response Time Compu-
tation is NP-hard. InIEEE Real-Time Systems Symposium (RTSS).

[8] Fernandez de la Vega, W. and Lueker, G. S. (1981). Bin packing can be solved within1 + ε in linear
time. Combinatorica, 1(4):349–355.

[9] Fisher, N. and Baruah, S. (2005). A fully polynomial-time approximation scheme for feasibility anal-
ysis in static-priority systems with arbitrary relative deadlines. InECRTS ’05: Proceedings of the 17th
Euromicro Conference on Real-Time Systems (ECRTS’05), pages 117–126, Washington, DC, USA. IEEE
Computer Society.

[10] Frederickson, G. N. (1980). Probabilistic analysis for simple one- and two-dimensional bin packing
algorithms.Information Processing Letters, 11(4/5):156–161.

11

[11] Garey, M. R., Graham, R. L., Johnson, D. S., and Yao, A. C.C. (1976). Resource constrained schedul-
ing as generalized bin packing.J. Combin. Theory Ser. A, 21:257–298.

[12] Johnson, D. S. (1973).Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge, MA.

[13] Karmarkar, N. and Karp, R. M. (1982). An efficient approximation scheme for the one-dimensional
bin-packing problem. In23rd annual symposium on foundations of computer science (Chicago, Ill.,
1982), pages 312–320. IEEE, New York.

[14] Knödel, W. (1981). A bin packing algorithm with complexity O(n log n) and performance 1 in the
stochastic limit. In Gruska, J. and Chytil, M., editors,Mathematical Foundations of Computer Science
1981, volume 118 oflncs, pages 369–378,̌Strbské Pleso, Czechoslovakia. Springer-Verlag.

[15] Korst, J., Aarts, E., and Lenstra, J. K. (1997). Scheduling periodic tasks with slack.INFORMS J.
Comput., 9(4):351–362.

[16] Korst, J., Aarts, E. H. L., Lenstra, J. K., and Wessels, J. (1991). Periodic multiprocessor schedul-
ing. In PARLE ’91: Proceedings on Parallel architectures and languages Europe : volume I: parallel
architectures and algorithms, pages 166–178, New York, NY, USA. Springer-Verlag New York, Inc.

[17] Lehoczky, J. P. (1990). Fixed priority scheduling of periodic task sets with arbitrary deadlines. In
IEEE Real-Time Systems Symposium, pages 201–213.

[18] Lehoczky, J. P., Sha, L., and Ding, Y. (1989). The rate monotonic scheduling algorithm: Exact char-
acterization and average case behavior. InIEEE Real-Time Systems Symposium, pages 166–171.

[19] Leung, J., Kelly, L., and Anderson, J. H. (2004).Handbook of Scheduling: Algorithms, Models, and
Performance Analysis. CRC Press, Inc., Boca Raton, FL, USA.

[20] Liebeherr, J., Burchard, A., Oh, Y., and Son, S. H. (1995). New strategies for assigning real-time tasks
to multiprocessor systems.IEEE Trans. Comput., 44(12):1429–1442.

[21] Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time
environment.J. ACM, 20(1):46–61.

[22] Lueker, G. S. (1982). An average-case analysis of bin packing with uniformly distributed item sizes.
Technical Report 181, Dept. Information and Computer Science, University of California at Irvine.

[23] Oh, D.-I. and Baker, T. P. (1998). Utilization bounds for N-processor rate monotone scheduling with
static processor assignment.Real-Time Systems.

[24] Oh, Y. and Son, S. H. (1995). Allocating fixed-priority periodic tasks on multiprocessor systems.
Real-Time Syst., 9(3):207–239.

[25] Shor, P. W. (1984). The average-case analysis of some on-line algorithms for bin packing. InProceed-
ings of the 25th Annual IEEE Symposium on Foundations of Computer Science, FOCS’84 (Singer Island,
FL, October 24-26, 1984), pages 193–200. IEEE, IEEE.

12

Appendix

Implementation

In the following, we explain how to implement theFFMP algorithm with a complexity ofO(n log n) using
a heap data-structure. To this end, we rewrite the predicateof the feasibility test as follows. Consider the
current taskτi and a processorP . Recall that the tasks are ordered by increasingα-values. Thus, the value
of β always depends on the current task and the task already onP that defines the minimumα-value, say
α(P) = min{α(τj) | τj ∈ P}. Hence, taskτi can be scheduled on processorP if

u(P) + u(τi) ≤ 1 − (α(τi) − α(P)) · ln(2)

which is equivalent to
u(τi) + α(τi) ln(2)
︸ ︷︷ ︸

vi

≤ 1 − u(P) + α(P) ln(2)
︸ ︷︷ ︸

ℓP

.

Note that the left-hand side (calledvi in the following) only depends on the current taskτi, and that the
right-hand side (calledℓP in the following) only depends on the tasks which are alreadyscheduled on the
processorP . ForP = ∅, we defineℓP = ∞. Hence, we may maintain a binary heap data-structure to find
in logarithmic time the processor with the least index that passes the feasibility test. Viewed as a binary tree,
we haven leaves corresponding to processors. They are labeled with the right-hand sidesℓP depending on
their current utilization and theα-value of the first task which was scheduled on each one. Initially, they
are empty and their labels are∞. The other nodes of the tree are labeled with the maximum label of their
respective children. See Figure 4 for a visualisation. Starting from the root, we proceed with the left child if
thevi value for the current task is not greater than the label of theleft child. Otherwise, we turn to the right
child, which then has a sufficiently large label by construction. The leaf that we eventually reach determines
the processor on which we schedule the current task. Since the height of the binary tree is logarithmic in the
number of leaves, i.e.n, we can schedule each task inO(log n). Moreover, the update of the data-structure
also takesO(log n) since we only need to traverse the tree back to the root and update the labels on this
path; any other label remains invariant.

τ3

P1

τ1
τ2

P2

τ4

P3 P4

ℓP1
= 0.40 ℓP2

= 0.37 ℓP3
= 0.81 ℓP4

= ∞

0.40 ∞

∞

Figure 4: Example for the heap structure. We use notationτi = (u(τi), α(τi)). ThenFFMP schedules tasks
τ1 = (0.3, 0.0), τ2 = (0.7, 0.1), τ3 = (0.3, 0.2), τ4 = (0.4, 0.3) as depicted.

13

Worst-case behaviour

In this section we outline, why the asymptotic worst-case approximation ratio is bounded by2.

Lemma 9. One has
FFMP(S) ≤ 2 · u(S) + 4.

Proof. Let P1, . . . , Pm be the used processors. Byα(Pi) = min{α(τj) | τj ∈ P} we denote theα-value of
the first task, assigned toPi. Clearly0 ≤ α(P1) ≤ . . . ≤ α(Pm) < 1. Let τj be the first task, assigned to
Pi+1 for i ∈ {1, . . . ,m − 1}, thusα(τj) = α(Pi+1). But the(i + 1)th processor was only opened because
τj did not fit on a prior processor. Especially it did not fit onPi, thus

u(Pi) + u(Pi+1) ≥ u(Pi) + u(τj)

> 1 − β(Pi ∪ {τj}) · ln(2)

≥ 1 − ln(2) · (α(Pi+1) − α(Pi))

Hence

u(S) ≥
⌊m/2⌋
∑

i=1

(u(P2i−1) + u(P2i))

≥
⌊m/2⌋
∑

i=1

(1 − ln(2) · (α(P2i) − α(P2i−1)))

≥ ⌊m/2⌋ − ln(2)

≥ m/2 − 2

using that the differences of theα-values sum up to at most1. We conclude that

m ≤ 2u(S) + 4.

14

	Introduction
	Preliminaries
	The result of Shor
	An auxiliary algorithm
	An upper bound for FFMP*
	Experimental Results

