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Abstract

We consideronlinealgorithms for pull-based broadcast scheduling. In this setting there aren pages
of information at a server and requests for pages arrive online. When the server serves (broadcasts)
a pagep, all outstanding requests for that page are satisfied. We study two related metrics, namely
maximum response time (waiting time) and maximum delay-factor and theirweightedversions. We
obtain the following results in the worst-case online competitive model.

• We show that FIFO (first-in first-out) is2-competitive even when the page sizes are different.
Previously this was known only for unit-sized pages [10] viaa delicate argument. Our proof
differs from [10] and is perhaps more intuitive.

• We give an online algorithm for maximum delay-factor that isO(1/ǫ2)-competitive with(1 + ǫ)-
speed for unit-sized pages and with(2 + ǫ)-speed for different sized pages. This improves on the
algorithm in [12] which required(2+ǫ)-speed and(4+ǫ)-speed respectively. In addition we show
that the algorithm and analysis can be extended to obtain thesame results for maximumweighted
response time and delay factor.

• We show that a natural greedy algorithm modeled after LWF (Longest-Wait-First) is notO(1)-
competitive for maximum delay factor with any constant speed even in the setting of standard
scheduling with unit-sized jobs. This complements our upper bound and demonstrates the impor-
tance of the tradeoff made in our algorithm.
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1 Introduction

We consideronline algorithms in pull-based broadcasting. In this model therearen pages (representing
some form of useful information) available at a server and clients request a page that they are interested
in. When the server transmits a pagep, all outstanding requests for that pagep are satisfied since it is
assumed that all clients can simultaneously receive the information. It is in this respect that broadcast
scheduling differs crucially from standard scheduling where each jobs needs its own service from the server.
We distinguish two cases: all the pages are of same size (unit-size without loss of generality) and when
the pages can be of different size. Broadcast scheduling is motivated by several applications in wireless
and LAN based systems [1, 2, 26]. It has seen a substantial interest in the algorithmic scheduling literature
starting with the work of Bartal and Muthukrishanan [5]; see[21]. In addition to the applications, broadcast
scheduling has sustained interest due to the significant technical challenges that basic problems in this setting
have posed for algorithm design and analysis. To distinguish broadcast scheduling from “standard” job
scheduling, we refer to the latter as unicast scheduling — weuse requests in the context of broadcast and
jobs in the context of unicast scheduling.

In this paper, we focus on scheduling to minimize two relatedobjectives: the maximum response time
and the maximum delay factor. We also consider theirweightedversions. Interestingly, the maximum re-
sponse time metric was studied in the (short) paper of Bartaland Muthukrishnan [5] where they claimed that
the online algorithm FIFO (for First In First Out) is2-competitive for broadcast scheduling, and moreover
that no deterministic online algorithm is(2−ǫ)-competitive. (It is easy to see that FIFO is optimal in unicast
scheduling). Despite the claim, no proof was published. It is only recently, almost a decade later, that Chang
et al. [10] gave formal proofs for these claims for unit-sizes pages. This simple problem illustrates the diffi-
culty of broadcast scheduling: the ability to satisfy multiple requests for a pagep with a single transmission
makes it difficult to relate the total “work” that the online algorithm and the offline adversary do. The upper
bound proof for FIFO in [10] is short but delicate. In fact, [5] claimed2-competitiveness for FIFO even
when pages have different sizes. As noted in previous work [5, 14, 25], when pages have different sizes,
one needs to carefully define how a request for a pagep gets satisfied if it arrives midway during the trans-
mission of the page. In this paper we consider the sequentialmodel [14], the most restrictive one, in which
the server broadcasts each page sequentially and a client receives the page sequentially without buffering;
see [25] on the relationship between different models. The claim in [5] regarding FIFO for different pages
is in a less restrictive model in which clients can buffer andtake advantage of partial transmissions and the
server is allowed to preempt. The FIFO analysis in [10] for unit-sized pages does not appear to generalize
for different page sizes. Our first contribution in this paper is the following.

Theorem 1.1. FIFO is 2-competitive for minimizing maximum response time in broadcast scheduling even
with different page sizes.

Note that FIFO, whenever the server is free, picks the pagepwith the earliest request andnon-preemptively
broadcasts it. Our bound matches the lower bound shown even for unit-sized pages, thus closing one aspect
of the problem. Our proof differs from that of Chang et al.; itdoes not explicitly use the unit-size assumption
and this is what enables the generalization to different page sizes. The analysis is inspired by our previous
work on maximum delay factor [12] which we discuss next.

Maximum (Weighted) Delay Factor and Weighted Response Time: The delay factor of a schedule is a
metric recently introduced in [10] (and implicitly in [7]) when requests have deadlines. Delay factor captures
how much a request is delayed compared to its deadline. More formally, letJp,i denote thei’th request of
pagep. Each requestJp,i arrives atap,i and has a deadlinedp,i. The finish timefp,i of a requestJp,i is defined
to be the earliest time afterap,i when the pagep is sequentially transmitted by the scheduler starting fromthe
beginning of the page. Note that multiple requests for the same page can have the same finish time. Formally,
the delay factor of the jobJp,i is defined asmax{1,

fp,i−ap,i
dp,i−ap,i

}; we refer to the quantitySp,i = dp,i − ap,i
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as theslackof Jp,i. For a more detailed motivation of delay factor, see [12]. Note that for unit-sized pages,
delay factor generalizes response time since one could setdp,i = ap,i + 1 for each requestJp,i in which
case its delay factor equals its response time. In this paperwe are interested in online algorithms that
minimize the maximum delay factor, in other words the objective function isminmaxp,i{1,

fp,i−ap,i
dp,i−ap,i

}. We
also consider a related metric, namelyweightedresponse time. Letwp,i be a non-negative weight associated
with Jp,i; the weighted response time is thenwp,i(fp,i − ap,i) and the goal is to minimize the maximum
weighted response time. Delay factor and weighted responsetime have syntactic similarity if we ignore the
1 term in the definition of delay factor — one can think of the weight as the inverse of the slack. Although
the metrics are some what similar we note that there is no direct way to reduce one to the other. On the other
hand, we observe that upper bounds for one appear to translate to the other. We also consider the problem
of minimizing the maximum weighted delay factorminmaxp,iwp,i{1,

fp,i−ap,i
dp,i−ap,i

}.
Surprisingly, the maximum weighted response time metric appears to not have been studied formally

even in classical unicast scheduling; however a special case, namely maximumstretchhas received attention.
The stretch of a job is its response time divided by its processing time; essentially the weight of a job is the
inverse of its processing time. Bender et al. [6, 8], motivated by applications to web-server scheduling,
studied maximum stretch and showed very strong lower boundsin the online setting. Using similar ideas, in
some previous work [12], we showed strong lower bounds for minimizing maximum delay factor even for
unit-time jobs. In [12], constant competitive algorithms were given for minimizing maximum delay factor in
both unicast and broadcast scheduling; the algorithms are based on resource augmentation [20] wherein the
algorithm is given a speeds > 1 server while the offline adversary is given a speed1 server. They showed
thatSSF (shortest slack first) isO(1/ǫ)-competitive with(1+ ǫ)-speed in unicast scheduling.SSF does not
work well in the broadcast scheduling. A different algorithm that involves waiting,SSF-W (shortest slack
first with waiting) was developed and analyzed in [12]; the algorithm isO(1/ǫ2)-competitive for unit-size
pages with(2+ ǫ)-speed and with(4+ ǫ)-speed for different sized pages. In this paper we obtain improved
results by altering the analysis ofSSF-W in a subtle and important way. In addition we show that the
algorithm and analysis can be altered in an easy fashion to obtain the same bounds for weighted response
time and delay factor.

Theorem 1.2. There is an algorithm that is(1 + ǫ)-speedO(1/ǫ2)-competitive for minimizing maximum
delay factor in broadcast scheduling with unit-sized pages. For different sized pages there is a(2+ ǫ)-speed
O(1/ǫ2)-competitive algorithm. The same bounds apply for minimizing maximum weighted response time
and maximum weighted delay factor.

Remark 1.3. Minimizing maximum delay factor is NP-hard and there is no(2 − ǫ)-approximation unless
P = NP for any ǫ > 0 in theoffline setting for unit-sized pages. There is a polynomial time computable
2-speed schedule with the optimal delay factor (with1-speed) [10]. Theorem 1.2 gives a polynomial time
computable(1 + ǫ)-speed schedule that isO(1/ǫ2)-optimal (with1-speed).

We remark that the algorithmSSF-W makes an interesting tradeoff between two competing metrics and
we explain this tradeoff in the context of weighted responsetime and a lower bound we prove in this paper
for a simple greedy algorithm. Recall that FIFO is2-competitive for maximum response time in broadcast
scheduling and is optimal for job scheduling. What are natural ways to generalize FIFO to delay factor
and weighted response time? As shown in [12],SSF (which is equivalent to maximum weight first for
weighted response time) isO(1/ǫ)-competitive with(1+ ǫ)-speed for job scheduling but is not competitive
for broadcast scheduling — it may end up doing much more work than necessary by transmitting a page
repeatedly instead of waiting and accumulating requests for a page. One natural algorithm that extends
FIFO for delay factor or weighted response time is to schedule the request in the queue that has the largest
current delay factor (or weighted wait time). This greedy algorithm was labeledLF (longest first) since it
can be seen as an extension of the well-studiedLWF (longest-wait-first) for average flow time. SinceLWF
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is known to beO(1)-competitive withO(1)-speed for average flow time, it was suggested in [11] thatLF
may beO(1)-speedO(1)-competitive for maximum delay factor. We show that this is not the case even for
unicast scheduling.

Theorem 1.4. For any constantss, c > 1, LF is not c-competitive withs-speed for minimizing maximum
delay factor (or weighted response time) in unicast scheduling of unit-time jobs.

Our algorithmSSF-W can be viewed as an interesting tradeoff betweenSSF andLF. SSF gives pref-
erence to small slack requests while theLF strategy helps avoid doing too much extra work in broadcast
scheduling by giving preference to pages that have waited sufficiently long even if they have large slack.
The algorithmSSF-W considers all requests whose delay factor at timet (or weighted wait time) is within a
constant factor of the largest delay factor att and amongst those requests schedules the one with the smallest
slack. This algorithmic principle may be of interest in other settings and is worth exploring in the future.

Other Related Work: We have focussed on maximum response time and its variants and have already
discussed closely related work. Other metrics that have received substantial attention in broadcast scheduling
are minimizing average flow time and maximizing throughput of satisfied requests when requests have
deadlines. We refer the reader to a comprehensive survey on online scheduling algorithms by Pruhs, Sgall
and Torng [24] (see also [23]). The recent paper of Chang et al. [10] addresses, among other things, the
offline complexity of several basic problems in broadcast scheduling. Average flow-time received substantial
attention in both the offline and online settings [21, 17, 18,19, 3, 4]. For average flow time, there are three
O(1)-speedO(1)-competitive online algorithms.LWF is one of them [14, 11] and the others are BEQUI
[14] and its extention [16]. Our recent work [11] has investigatedLk norms of flow-time and showed that
LWF is O(k)-speedO(k)-competitive algorithm. Constant competitive online algorithms for maximizing
throughput for unit-sized pages can be found in [22, 9, 27, 13]. A more thorough description of related work
is deferred to a full version of the paper.

Organization: We prove each of the theorems mentioned above in a different section. The algorithm and
analysis for weighted response time and weighted delay factor are very similar to that for delay factor and
hence, in this version, we omit the analysis and only describe the algorithm.

Notation: We denote the length of pagep by ℓp. That is,ℓp is the amount of time a 1-speed server takes to
broadcast pagep non-preemptively. We assume without loss of generality that for any requestJp,i,Sp,i ≥ ℓp.
For an algorithmA we letαA denote the maximum delay factor witnessed byA for a given sequence of
requests. We letα∗ denote the optimal delay factor of an offline schedule. Likewise, we letρA denote the
maximum response time witnessed byA andρ∗ the optimal response time of an offline schedule. For a time
intervalI = [a, b] we define|I| = b− a to be the length of intervalI.

2 Minimizing the Maximum Response Time

In this section we analyzeFIFO for minimizing maximum response time when page sizes are different. We
first describe the algorithmFIFO. FIFO broadcasts pagesnon-preemptively. Consider a timet whenFIFO
finished broadcasting a page. LetJp,i be the request inFIFO’s queue with earliest arrival time breaking
ties arbitrarily. FIFO begins broadcasting pagep at timet. At any time during this broadcast, we will say
thatJp,i forcedFIFO to broadcast pagep at this time. When broadcasting a pagep all requests for pagep
that arrived before the start of the broadcast are simultaneously satisfied when the broadcast completes. Any
request for pagep that arrive during the broadcast are not satisfied until the next full transmission ofp.

We considerFIFO when given a1-speed machine. Letσ be an arbitrary sequence of requests. Let OPT
denote some fixed offline optimum schedule and letρ∗ denote the optimum maximum response time. We
will show thatρFIFO ≤ 2ρ∗. For the sake of contradiction, assume thatFIFO witnesses a response time
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cρ∗ by some jobJq,k for somec > 2. Let t∗ be the timeJq,k is satisfied, that ist∗ = fq,k. Let t1 be the
smallest time less thant∗ such that at any timet during the interval[t1, t∗] the request which forcesFIFO
to broadcast a page at timet has response time at leastρ∗ when satisfied. Throughout the rest of this section
we letI = [t1, t

∗]. LetJI denote the requests which forcedFIFO to broadcast duringI. Notice that during
the intervalI, all requests inJI are completely satisfied during this interval. In other words, any request in
JI starts being satisfied duringI and is finished duringI.

We say that OPTmergestwo distinct requests for a pagep if they are satisfied by the same broadcast.

Lemma 2.1. OPTcannot merge any two requests inJI into a single broadcast.

Proof. Let Jp,i, Jp,j ∈ JI such thati < j. Note that thatJp,i is satisfied beforeJp,j. Let t′ be the time
that FIFO startssatisfying requestJp,i. By the definition ofI, requestJp,i has response time at leastρ∗.
The requestJp,j must arrive after timet′, that isap,j > t′, otherwise requestJp,j is satisfied by the same
broadcast of pagep that satisfiedJp,i. Therefore, it follows that if OPT mergesJp,i andJp,j then the finish
time of Jp,i in OPT is strictly greater than its finish time inFIFO which is already at leastρ∗; this is a
contradiction to the definition ofρ∗.

Lemma 2.2. All requests inJI arrived no earlier than timet1 − ρ∗.

Proof. For the sake of contradiction, suppose some requestJp,i ∈ JI arrived at timeap,i < t1 − ρ∗.
During the interval[ap,i+ ρ∗, t1] the requestJp,i must have wait time at leastρ∗. However, then any request
which forcesFIFO to broadcast during[ap,i + ρ∗, t1] must have response time at leastρ∗, contradicting the
definition oft1.

We are now ready to prove Theorem 1.1, stating thatFIFO is 2-competitive.

Proof. Recall that all requests inJI are completely satisfied duringI. Thus we have that the total size of
requests inJI is |I|. By definitionJq,k witnesses a response time greater than2ρ∗ and thereforet∗− aq,k >
2ρ∗. SinceJq,k ∈ JI is the last request done byFIFO duringI, all requests inJI must arrive no later than
aq,k. Therefore, these requests must be finished by timeaq,k+ρ∗ by the optimal solution. From Lemma 2.2,
all the requestsJI arrived no earlier thant1 − ρ∗. Thus OPT must finish all requests inJI , whose total
volume is|I|, during Iopt = [t1 − ρ∗, aq,k + ρ∗]. Thus it follows that|I| ≤ |[t1 − ρ∗, aq,k + ρ∗]|, which
simplifies tot∗ ≤ aq,k + 2ρ∗. This is a contradiction to the fact thatt∗ − aq,k > 2ρ∗.

t1 − ρ∗ t1 aq,k aq,k + ρ∗ t∗
Time

I

Iopt

Jq,k

Figure 1: Broadcasts byFIFO satisfying requests inJI are shown in blue. Note thataq,k andaq,k + ρ∗ are
not necessarily contained inI.

We now discuss the differences between our proof ofFIFO for varying sized pages and the proof given
by Chang et al. in [10] showing thatFIFO is 2-competitive for unit sized pages. In [10] it is shown that at
anytimet, F (t), the set ofuniquepages inFIFO’s queue satisfies the following property:|F (t) \ O(t)| ≤
|O(t)| whereO(t) is the set of unique pages in OPT’s queue. This easily impliesthe desired bound. To
establish this, they use a slot model in which unit-sized pages arrive only during integer times which allows
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one to define unique pages. This may appear to be a technicality, however when considering different sized
pages, it is not so clear how one even defines unique pages since this number varies during the transmission
of p as requests accumulate. Our approach avoids this issue in a clean manner by not assuming a slot model
or unit-sized pages.

3 Minimizing Maximum Delay Factor and Weighted Response time

In this section we consider the problem of minimizing maximum delay factor and prove Theorem 1.2.

3.1 Unit Sized Pages

In this section we consider the problem of minimizing the maximum delay factor when all pages are of
unit size. In this setting we assume preemption is not allowed. In the standard unicast scheduling setting
where each broadcast satisfies exactly one request, it is known that the algorithm which always schedules the
request with smallest slack at any time is(1 + ǫ)-speedO(1ǫ )-competitive [12]. However, in the broadcast
setting this algorithm, along with other simple greedy algorithms, do not provide constant competitive ratios
even with extra speed. The reason for this is that the adversary can force these algorithm to repeatedly
broadcast the same page even though the adversary can satisfy each of these requests in a singe broadcast.

Due to this, we consider a more sophisticated algorithm calledSSF-W (Shortest-Slack-First with Wait-
ing). This algorithm was developed and analyzed in [12]. In this paper we alter the algorithm in a slight but
practically important way. The main contribution is, however, a new analysis that is at a high-level similar
in outline to the one in [12] but is subtly different and leadsto much improved bound on its performance.
SSF-W adaptivelyforces requests to wait after their arrival before they are considered for scheduling. The
algorithm is parameterized by a real valuec > 1 which is used to determine how long a request should wait.
Before scheduling a page at timet, the algorithm determines the largest current delay factorof any request
that is unsatisfied at timet, αt. Amongst the unsatisfied requests that have a current delay factor at least
1
cαt, the page corresponding to the request with smallest slack is broadcasted. Note that in the algorithm,
each request is forced to wait to be scheduled until it has delay factor at least1cαt. ThusSSF-W can be seen
an adaptation of the algorithm which schedules the request with smallest slack in broadcasting setting with
explicit waiting. Waiting is used to potentially satisfy multiple requests with similar arrival times in a single
broadcast. Another interpretation, that we mentioned earlier, is thatSSF-W is a balance betweenLF and
SSF.

Algorithm: SSF-W

• Let αt be the maximum delay factor of any request inSSF-W’s queue at timet.

• At time t, letQ(t) = {Jp,i | Jp,i has not been satisfied andt−ap,i
Sp,i

≥ 1
cαt}.

• If the machine is free att, schedule the request inQ(t) with the smallest slacknon-preemptively.

First we note the difference betweenSSF-W above and the one described in [12]. Letα′
t denote the

maximum delay factor witnessed so far bySSF-W at timet over all requests seen byt including satisfied
and unsatisfied requests. In [12], a requestJp,i is in Q(t) if t−ap,i

Sp,i
≥ 1

cα
′
t. Note thatα′

t is monotonically

increases witht while αt can increase and decrease witht and is never more thanα′
t. In the old algorithm it

is possible thatQ(t) is empty and no request is scheduled att even though there are outstanding requests!
Our new version ofSSF-W can be seen as more practical since there will always be requests inQ(t) if
there are outstanding requests and moreover it adapts and may reduceαt as the request sequence changes
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with time. It is important to note that our analysis and the analysis given in[12] hold for both definitions of
SSF-W with some adjustments.

We analyzeSSF-W when it is given a(1 + ǫ)-speed machine. Letc > 1 + 2
ǫ be the constant which

parameterizesSSF-W. Let σ be an arbitrary sequence of requests. We let OPT denote some fixed offline
optimum schedule and letα∗ andαSSF-W denote the maximum delay factor achieved by OPT andSSF-W,
respectively. We will show thatαSSF-W ≤ c2α∗. For the sake of contradiction, suppose thatSSF-W
witnesses a delay factor greater thanc2α∗. We consider thefirst time t∗ whenSSF-W has some request
in its queue with delay factorc2α∗. Let the requestJq,k be a request which achieves the delay factorc2α∗ at
time t∗. Let t1 be the smallest time less thant∗ such that at each timet during the interval[t1, t∗] if SSF-W
is forced to broadcast by requestJp,i at timet it is the case thatt−ap,i

Sp,i
≥ α∗ andSp,i ≤ Sq,k. Throughout

this section we letI = [t1, t
∗]. The main difference between the analysis in [12] and the onehere is in the

definition oft1. In [12], t1 was implicitly defined to beaq,k + c(fq,k − aq,k).
We letJI denote the requests which forcedSSF-W to schedule broadcasts during the interval[t1, t

∗].
We now show that any two request inJI cannot be satisfied with a single broadcast by the optimal solution.
Intuitively, the most effective way the adversary to performs better thanSSF-W is to merge requests of the
same page into a single broadcast. Here we will show this is not possible for the requests inJI . We defer
the proof of Lemma 3.1 to the Appendix, since the proof is similar to that of Lemma 2.1

Lemma 3.1. OPTcannot merge any two requests inJI into a single broadcast.

To fully exploit the advantage of speed augmentation, we need to ensure that the length of the intervalI
is sufficiently long.

Lemma 3.2. |I| = |[t1, t
∗]| ≥ (c2 − c)Sq,kα

∗.

Proof. The requestJq,k has delay factor at leastcα∗ at any time duringI ′ = [t′, t∗], wheret′ = t∗ − (c2 −
c)Sq,kα

∗. Let τ ∈ I ′. The largest delay factor any request can have at timeτ is less thanc2α∗ by definition
of t∗ being the first timeSSF-W witnesses delay factorc2α∗. Hence,ατ ≤ c2α∗. Thus, the requestJq,k is in
the queueQ(τ) becausecα∗ ≥ 1

cατ . Moreover, this means that any request that forcedSSF-W to broadcast
during I ′, must have delay factor at leastα∗ and sinceJq,k ∈ Q(τ) for anyτ ∈ I ′, the requests scheduled
duringI ′ must have slack at mostSq,k.

We now explain a high level view of how we lead to a contradiction. From Lemma 3.1, we know any two
requests inJI cannot be merged by OPT. Thus if we show that OPT must finish allthese requests during
an interval which is not long enough to include all of them, wecan draw a contradiction. More precisely, we
will show that all requests inJI must be finished duringIopt by OPT, whereIopt = [t1 − 2Sq,kα

∗c, t∗]. It
is easy to see that all these requests already have delay factor α∗ by timet∗, thus the optimal solution must
finish them by timet∗. For the starting point, we will bound the arrival times of the requests inJI in the
following lemma. After that, we will draw a contradiction inLemma 3.4.

Lemma 3.3. Any request inJI must have arrived after timet1 − 2Sq,kα
∗c.

Proof. For the sake of contradiction, suppose that some requestJp,i ∈ JI arrived at timet′ < t1−2Sq,kα
∗c.

Recall thatJp,i has a slack no bigger thanSq,k by the definition ofI. Therefore at timet1 − Sq,kα
∗c, Jp,i

has a delay factor of at leastcα∗. Thus any request scheduled during the intervalI ′ = [t1 − Sq,kα
∗c, t1] has

a delay factor no less thanα∗. We observe thatJp,i is in Q(τ) for τ ∈ I ′; otherwise there must be a request
with a delay factor bigger thanc2α∗ at timeτ and this is a contradiction to the assumption thatt∗ is the first
time thatSSF-W witnessed a delay factor ofc2α∗. Therefore any request scheduled duringI ′ has a slack
no bigger thanSp,i. Also we know thatSp,i ≤ Sq,k. In sum, we showed that any request done duringI ′ had
slack no bigger thanSq,k and a delay factor no smaller thanα∗, which is a contradiction to the definition of
t1.
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Now we are ready to prove the competitiveness ofSSF-W.

Lemma 3.4. Supposec is a constant s.t.c > 1 + 2/ǫ. If SSF-W has(1 + ǫ)-speed thenαSSF-W ≤ c2α∗.

Proof. For the sake of contradiction, suppose thatαSSF-W > c2α∗. During the intervalI, the number of
broadcasts whichSSF-W transmits is(1 + ǫ)|I|. From Lemma 3.3, all the requests processed duringI
have arrived no earlier thant1 − 2cα∗Sq,k. We know that the optimal solution must process these requests
before timet∗ because these requests have delay factor at leastα∗ by t∗. By Lemma 3.1 the optimal solution
must make a unique broadcast for each of these requests. Thus, the optimal solution must finish all of these
requests in2cα∗Sq,k + |I| time steps. Thus, the it must hold that(1 + ǫ)|I| ≤ 2cα∗Sq,k + |I|. Using
Lemma 3.2, this simplifies toc ≤ 1 + 2/ǫ, which is a contradiction toc > 1 + 2/ǫ,.

The previous lemmas prove the first part of Theorem 1.2 whenc = 1 + 3/ǫ. Namely thatSSF-W
is a (1 + ǫ)-speedO( 1

ǫ2 )-competitive algorithm for minimizing the maximum delay factor in broadcast
scheduling with unit sized pages.

We now compare proof of Theorem 1.2 and the proof of Theorem 1.1 with the analysis given in[12].
The central technique used in[12] and in our analysis is to draw a contradiction by showing thatthe optimal
solution must complete more requests than possible on some time intervalI. This technique is well known
in unicast scheduling. At the heart of this technique is to find the which requests to consider and bounding
the length of the intervalI. This is where our proof and the one given in [12] differ. Herewe are more
careful on howI is defined and how we find requests the optimal solution must broadcast duringI. This
allows us to show tighter bounds on the speed and competitiveratios while simplifying the analysis. In fact,
our analysis ofFIFO andSSF-W shows the importance of these definitions. Our analysis ofFIFO shows
that a tight bound on the length ofI can force a contradiction without allowing extra speed-up given to the
algorithm. Our analysis ofSSF-W shows that when the length ofI varies how resource augmentation can
be used to force the contradiction.

3.2 Weighted Response Time and Weighed Delay Factor

Before showing thatSSF-W is (2 + ǫ)-speedO( 1
ǫ2
)-competitive for minimizing the maximum delay factor

with different sized pages, we show the connection of our analysis of SSF-W to the problem of minimizing
weightedresponse time. In this setting a requestJp,i has a weightwp,i instead of a slack. The goal is to
minimize the maximum weighted response timemaxp,iwp,i(fp,i−ap,i). We develop an algorithm which we
call BWF-W for Biggest-Wait-First with Waiting. This algorithm is defined analogously to the definition
of SSF-W. The algorithm is parameterized by a constantc > 1. At any timet before broadcasting a page,
BWF-W determines the largest weighted wait time of any request which has yet to be satisfied. Let this
value beρt. The algorithm then chooses to broadcast a page corresponding to the request with largest weight
amongst the requests whose current weighted wait time at time t is larger than1cρt.

Algorithm: BWF-W

• Let ρt be the maximum weighted wait time of any request inBWF-W’s queue at timet.

• At time t, letQ(t) = {Jp,i | Jp,i has not been satisfied andwp,i(t− ap,i) ≥
1
cρt}.

• If the machine is free att, schedule the request inQ(t) with largest weightnon-preemptively.

Although minimizing the maximum delay factor and minimizing the maximum weighted flow time are
very similar metrics, the problems are not equivalent.
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It may also be of interest to minimize the maximumweighteddelay factor. In this setting each request
has a deadline and a weight. The goal is to minimizemaxp,iwp,i(fp,i − ap,i)/Sp,i. For this setting we
develop another algorithm which we callSRF-W (Smallest-Ratio-First with Waiting). The algorithm takes
the parameterc. At any timet before broadcasting a page,SRF-W determines the largest weighted delay
factor of any request which has yet to be satisfied. Let this value beαw

t . The algorithm then chooses to
broadcast a page corresponding to the request with the smallest ratio of the slack over the weight amongst
the requests whose current weighted delay factor at timet is larger than1cα

w
t . The algorithm can be formally

expressed as follows.

Algorithm: SRF-W

• Let αw
t be the maximum weighted delay factor of any request inSRF-W’s queue at timet.

• At time t, letQ(t) = {Jp,i | Jp,i has not been satisfied andwp,i(t− ap,i)/Sp,i ≥
1
cα

w
t }.

• If the machine is free att, schedule the request inQ(t) with smallest slack over weightnon-
preemptively.

For the problems of minimizing the maximum weighted response time and weighted delay factor, the
upper bounds shown forSSF-W in this paper also hold forBWF-W andSRF-W, respectively. The analysis
of BWF-W andSRF-W is very similar to that ofSSF-W and the proofs are omitted.

3.3 Varying Sized Pages

Here we extend our ideas to the case where pages can have a different sizes for the objective of minimizing
the maximum delay factor. We develop a generalization ofSSF-W for this setting which is similar to the
generalization ofSSF-W given in [12]. For each pagep, we letℓp denote the length of pagep. Since pages
have different lengths, we allow preemption. Therefore, ift1 is the time where the broadcast of pagep is
started andt2 is the time that this broadcast is completed it is the case that ℓp ≤ t2 − t1. A request for the
pagep is satisfied by this broadcast only if the request arrives before timet1. A request that arrives during
the interval(t1, t2] does not start being satisfied because it must receive a sequential transmission of pagep
starting from the beginning. It is possible that a transmission of pagep is restarteddue to another request
for pagep arriving which has smaller slack. The original transmission of pagep in this case is abandoned.
Notice that this results in wasted work by the algorithm. It is because of this wasted work that more speed
is needed to show the competitiveness ofSSF-W.

We outline the details of modifications toSSF-W. As before, at any timet, the algorithm maintains
a queueQ(t) at each time where a requestJp,i is in Q(t) if and only if t−ap,i

Sp,i
≥ 1

cαt. The algorithm

broadcasts a request with the smallest slack inQ(t). The algorithm may preempt a broadcast ofp that is
forced by requestJp,i if another requestJp′,j becomes available for scheduling such thatSp′,j < Sp,i. If the
requestJp,i ever forcesSSF-W to broadcast again, thenSSF-W continues to broadcast pagep from where
it left off before the preemption. If another request for page p forcesSSF-W to broadcast pagep before
Jp,i is satisfied, then the transmission of pagep is restarted. A key difference between our generalization of
SSF-W and the one from [12] is that in our new algorithm, requests can be forced out ofQ even after they
have been started. Hence, in our version ofSSF-W every request inQ(t) has current delay factor at least
1
cαt at timet. Our algorithm breaks ties arbitrarily. In [12], ties are broken arbitrarily, but the algorithm
ensures that if a requestJp,k is started before a requestJp′,j thenJp,k will be finished before requestJp′,j.
Here, this requirement is not needed. Note that the algorithm may preempt a requestJp,i by another request
Jp,k, for the same pagep if Sp,k < Sp,i. In this case the first broadcast of pagep is abandoned. Notice that
multiple broadcasts of pagep can repeatedly be abandoned.
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We now analyze the extended algorithm assuming that it has a(2 + ǫ)-speed advantage over the op-
timal offline algorithm. As mentioned before, the extra speed is needed to overcome the wasted work by
abandoning broadcasts.

As before, letσ be an arbitrary sequence of requests. We let OPT denote some fixed offline optimum
schedule and letα∗ denote the optimum delay factor. Letc > 1 + 4

ǫ be the constant that parameterizes
SSF-W. We will show thatαSSF-W ≤ c2α∗. For the sake of contradiction, suppose thatSSF-W witnesses
a delay factor greater thanc2α∗. We consider thefirst time t∗ whenSSF-W has some request in its queue
with delay factorc2α∗. Let the requestJq,k be a request which achieves the delay factorc2α∗ at timet∗. Let
t1 be the smallest time less thant∗ such that at each timet during the interval[t1, t∗] if SSF-W is forced to
broadcast by requestJp,i at timet it is the case thatt−ap,i

Sp,i
≥ α∗ andSp,i ≤ Sq,k. Throughout this section

we let I = [t1, t
∗]. Notice that some requests that forceSSF-W to broadcast duringI could have started

being satisfied beforet1.
We say that a requeststartsbeing scheduled at timet if it is the request which forcesSSF-W to broadcast

at timet andt is the first time the request forcesSSF-W to schedule a page. Notice that a request can only
start being satisfied once and at most one request starts being scheduled at any time. We now show a lemma
analogous to Lemma 3.1.

Lemma 3.5. Consider two distinct requestsJx,j andJx,i for some pagex. If Jx,j andJx,i both start being
scheduled bySSF-W during the intervalI thenOPTcannot satisfyJx,j andJx,i by a single broadcast.

Proof. Without loss of generality say that requestJx,j was satisfied before requestJx,i by SSF-W. Let t′

be the time thatSSF-W startssatisfying requestJx,j. By the definition ofI, requestJx,j must have delay
factor at leastα∗ at this time. We also know that the requestJx,i must arrive after timet′, otherwise request
Jx,i must also be satisfied at timet′. If the optimal solution combines these requests into a single broadcast
then the requestJx,j must wait until the requestJx,i arrives to be satisfied. However, this means that the
requestJx,j must achieve a delay factor greater thanα∗ by OPT, a contradiction of the definition ofα∗.

The next two lemmas have proofs similar to Lemma 3.2 and Lemma3.3, we defer the proofs to the
Appendix.

Lemma 3.6. |I| = |[t1, t
∗]| ≥ (c2 − c)Sq,kα

∗.

Lemma 3.7. Any request which forcedSSF-W to schedule a page duringI must have arrived after time
t1 − 2Sq,kα

∗c.

Using the previous lemmas we can bound the competitiveness of SSF-W. In the following lemma the
main difference between the proof for unit sized pages and the proof for varying sized pages can be seen.
The issue is that there can be some requests which start beingsatisfied before timet1 which forceSSF-W
to broadcast a page during the intervalI. When these requests were started, their delay factor need not be
bounded byα∗. Due to this, it is possible for these requests to be merged with other requests which forced
SSF-W to broadcast on the intervalI.

Lemma 3.8. Supposec is a constant s.t.c > 1 + 4/ǫ. If SSF-W has(2 + ǫ)-speed thenαSSF-W ≤ c2α∗.

Proof. For the sake of contradiction, suppose thatαSSF-W > c2α∗. LetA be the set of requests which start
being satisfied before timet1 which forceSSF-W to broadcast at some time duringI. Notice that no two
requests inA are for the same page. LetB be the set of requests which start being satisfied during the interval
I. Note that the setsA andB may consist of requests whose corresponding broadcast was abandoned at
some point and thatA ∩ B = ∅ by definition. LetVA andVB denote the total sum of size of the requests in
A andB, respectively.
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During the intervalI, the volume of broadcasts whichSSF-W transmits is(2 + ǫ)|I|. Notice that
VA + VB ≥ (2 + ǫ)|I|, sinceA ∪ B accounts for all requests which forcedSSF-W to broadcast their pages
duringI. From Lemma 3.7,all the requests processed duringI have arrived no earlier thant1 − 2cα∗Sq,k.
We know that the optimal solution must process these requests before timet∗ because these requests have
delay factor at leastα∗ by this time.

By Lemma 3.5 the optimal solution must make a unique broadcast for each request inB. We also know
that no two requests inA can be merged because no two requests inA are for the same page. The optimal
solution, however, could possibly merge requests inA with requests inB. Thus, the optimal solution must
broadcast at least amax{VA, VB} volume of requests during the interval[t1 − 2cα∗Sq,k, t

∗]. Notice that
max{VA, VB} ≥ 1

2(VA + VB) ≥
1
2(2 + ǫ)|I| and that|[t1 − 2cα∗Sq,k, t

∗]| = 2cα∗Sq,k + |I|. Therefore,
it must hold that12(2 + ǫ)|I| ≤ 2cα∗Sq,k + |I|. With Lemma 3.6, this simplifies toc ≤ 1 + 4/ǫ. This is a
contradiction toc > 1 + 4/ǫ.

Thus, we have the second part of Theroem 1.2 by settingc = 1 + 5/ǫ. Namely thatSSF-W is (2 + ǫ)-
speedO( 1

ǫ2
)-competitive for minimizing the maximum delay factor for different sized pages.

4 Lower Bound for a Natural Greedy Algorithm LF

In this section, we consider a natural algorithm which is similar to SSF-W. This algorithm, which we will
call LF for Longest Delay First, always schedules the page which hasthe largest delay factor. Notice that
LF is the same asSSF-W whenc = 1. However, we are able to show a negative result on the algorithm for
minimizing the maximum delay factor. This demonstrates theimportance of the tradeoff between scheduling
a request with smallest slack and forcing requests to wait. The algorithmLF was suggested and analyzed
in our recent work [11] and is inspired byLWF which was shown to beO(1)-competitive withO(1)-speed
for average flow time [15]. In [11]LF is shown to beO(k)-competitive withO(k)-speed forLk norms of
flow time and delay factor in broadcast scheduling for unit sized pages. Note thatLF is a simple greedy
algorithm. It was suggested in [11] thatLF may be competitive for maximum delay factor which is the
L∞-norm of delay factor.

To show the lower bound on theLF, we will show that it is notO(1)-speedO(1)-competitive, even in
the standard unicast scheduling setting with unit sized jobs. Since we are considering the unicast setting
where processing a page satisfies exactly one request, we drop the terminology of ‘requests’ and use ‘jobs’.
We also drop the index of a requestJp,i and useJi since there can only be one request for each page. Let us
say thatJi has a wait ratio ofri(t) =

t−ai
Si

at timet > ai, whereai andSi is the arrival time and slack size
of Ji. Note that the delay factor ofJi ismax(1, ri(fi)) wherefi is Ji’s finish time. We now formally define
LF. The algorithmLF schedules the request with the largest wait ratio at each time. LF can be seen as a
natural generalization ofFIFO. This is becauseFIFO schedules the request with largest wait time at each
time. Recall thatSSF-W forces requests to wait to help merge potential requests in asingle broadcast. The
algorithmLF behaves similarly since it implicitly delays each request until it is the request with the largest
wait ratio, potentially merging many requests into a singlebroadcast. Hence, this algorithm is a natural
candidate for the problem of minimizing the maximum delay factor and it does not need any parameters like
the algorithmSSF-W. However, this algorithm cannot have a constant competitive ratio with any constant
speed.

For any speed-ups ≥ 1 and any constantc ≥ 2, we construct the following adversarial instanceσ. For
this problem instance we will show thatLF has wait ratio at leastc, while OPT has wait ratio at most1.
Hence, we can forceLF to have a competitive ratio ofc, for any constantc ≥ 2. In the instanceσ, there
are a series job groupsJi for 0 ≤ i ≤ k, wherek is a constant to be fixed later. We now fix the jobs in
each group. For simplicity of notation and readability, we will allow jobs to arrive at negative times. We can
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simply shift each of the times later, so that all arrival times are positive. It is also assumed thats andc are
integers in our example.

All jobs in each groupJi have the same arrival timeAi = −(sc)k−i+1 −
∑k−i−1

j=0 (sc)j and have the

same slack size ofSi =
c(sc)k−i

(1−1/sc)k−i . There will bes(sc)k+1 jobs in the groupJ0 ands(sc)k−i jobs in the
groupJi for 1 ≤ i ≤ k.

We now explain howLF and OPT behave for the instanceσ. For simplicity, we will refer toJi, instead
of a job inJi, since all jobs in the same group are indistinguishable to the schedular. For the first group
J0, LF starts and keeps processingJ0 upon its arrival until completing it. On the other hand, we let OPT
procrastinateJ0 until OPT finishes all jobs inJ1 to Jk. This does not hurt OPT, since the slack size of
the jobs inJ0 is so large. In fact, we will show that OPT can finishJ0 by its deadline. For each groupJi

for 1 ≤ i ≤ k, OPT will startJi upon its arrival and complete each job inJi without interruption. To the
contrary, for each1 ≤ i ≤ k LF will not begin schedulingJi until the jobs have been substantially delayed.
The delay ofJk is critical for LF, since the slack ofJk is small. For intuitive understanding, we refer the
reader to Figure 2.

Ak Fk

OPT LF
Ak−1 Fk−1

OPT LF
Fk−2

LF

Wait Ratio

1

2

3

Jk

Jk−1

Jk−2

Time

Jk
Jk−1

Jk−2

Figure 2: Comparison of scheduling of groupJk, Jk−1, andJk−2 by LF and OPT.

We now formally prove thatLF achieves wait ratioc, while OPT has wait ratio at most 1 for the given
problem instanceσ. LetFi = Ai + (sc)k−i+1, 0 ≤ i ≤ k. LetRi be the maximum wait ratio for any job in
Ji witnessed byLF. We now definek to be a constant such that(1− 1

sc)
kc ≤ 1

3s .

Lemma 4.1. LF, given speeds, processesJ0 during [A0, F0] andJi during [Fi−1, Fi], 1 ≤ i ≤ k.

Proof Sketch:By simple algebra one can check that the length of the time intervals[A0, F0] and[Fi−1, Fi]
is the exact amount of time forLF with s-speed needs to completely processJ0 andJi, respectively.

First we show thatJ0 is finished during[A0, F0] by LF. It can be seen that at timeF0 the jobs inJj for
2 ≤ j ≤ k have not arrived, so we can focus on the classJ1. The jobs inJ1 can be shown to have the same
wait ratio as the jobs inJ0 at timeF0 and therefore the jobs inJ1 have smaller wait ratio than the jobs in
J0 at all times beforeF0. This is becauseJ0 has a bigger slack thanJ1. Hence,LF will finish all of the
jobs inJ0 before beginning the jobs inJ1.

To complete the proof, we show thatJi is finished during[Fi−1, Fi] by LF. It can be seen that at time
Fi the jobs inJj for i + 2 ≤ j ≤ k have not arrived, so we can focus on the classJi+1. The jobs inJi

can be shown to have the same wait ratio as the jobs inJi+1 at timeFi and therefore the jobs inJi+1 have
smaller wait ratio than the jobs inJi at all times beforeFi. Hence,LF will finish all of the jobs inJi before
beginning the jobs inJi+1.
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Using Lemma 4.1 and the given arrival times of each of the jobswe have the following lemma.

Lemma 4.2. Ri = c(1− 1
sc)

k−i for 0 ≤ i ≤ k.

Notice that Lemma 4.2 implies thatRk ≥ c. Hence, the maximum delay factor witnessed byLF is at
leastc. In the following lemma, we show that there exists a valid scheduling by OPT where the maximum
wait ratio is at most one. This will show thatLF achieves a competitive ratio ofc. Note that Lemma 4.2
shows thatR0 ≤

1
3s .

Lemma 4.3. Consider a schedule which processes each job inJ0 during [Fk, Fk + |J0|] and each job in
Ji during [Ai, Ai + |Ji|] for 1 ≤ i ≤ k. This schedule is valid and, moreover, the maximum wait ratio
witnessed by this schedule is at most one.

Proof Sketch:It is not hard to show that the time intervals[Fk, Fk + |J0|] and[Ai, Ai + |Ji|] for 1 ≤ i ≤ k
do not overlap, therefore this is a valid schedule.

The wait ratio witnessed by the jobs in groupsJi for 1 ≤ i ≤ k can easily be seen to be at most 1. This
is because this schedule processes each of these jobs as soonas they arrive. We now show that the wait ratio
of each of the jobs inJ0 is at most1. Recall thatR0, the maximum wait ratio ofJ0 by LF is at most 13s at
timeF0. Using the factsc ≥ 2, we can easily show that|Fk −A0| ≤ 2|F0 −A0|. Note that OPT can finish
J0 during [Fk, Fk + s|F0−A0|], sinceLF with s-speed could finishJ0 during[A0, F0]. Thus the wait ratio
of J0 at timeFk + s|F0 −A0| is at most2+s

3s ≤ 1.

From Lemma 4.2 the maximum delay factor witnessed byLF is c and by Lemma 4.3 the maximum
delay factor witnessed by OPT is1. Hence we have the proof of Theorem 1.4.

5 Conclusion

In this paper, we showed an almost fully scalable algorithm1 for minimizing the maximum delay factor in
broadcasting for unit sized jobs. The slight modification wemake toSSF-W from [12] makes the algorithm
more practical. Using the intuition developed for the maximum delay factor, we proved thatFIFO is in fact
2-competitive for varying sized jobs closing the problem for minimizing the maximum response time online
in broadcast scheduling.

We close this paper with the following open problems. Although the new algorithm for the maximum
delay factor with unit sized jobs is almost fully scalable, it explicitly depends on speed given to the algorithm.
Can one get another algorithm independent of this dependency? For different sized pages, it is still open
on whether there exists a(1 + ǫ)-speed algorithm that isO(1)-competitive. For minimizing the maximum
response time offline it is of theoretical interest to show a lower bound on the approximation ratio that can
be achieved or to show an algorithm that is ac-approximation for somec < 2.
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A Omitted Proofs

A.1 Proof of Lemma 3.1

Proof. Let Jx,i, Jx,j ∈ JI such thati < j. Let t′ be the time thatSSF-W starts satisfying requestJx,i. By
the definition ofI, requestJx,i must have delay factor at leastα∗ at timefx,i. We also know that the request
Jx,j must arrive after timet′, otherwise requestJx,j must also be satisfied at timet′. If the optimal solution
combines these requests into a single broadcast then the requestJx,i must wait until the requestJx,j arrives
to be satisfied. However, this means that the requestJx,i must achieve a delay factor greater thanα∗ by
OPT, a contradiction of the definition ofα∗.

A.2 Proof of Lemma 3.6

Proof. The requestJq,k has delay factor at leastcα∗ at any timet duringI ′ = [t′, t∗], wheret′ = t∗− (c2−
c)Sq,kα

∗. The largest delay factor any request can have duringI ′ is less thanc2α∗ by definition oft∗ being
the first timeSSF-W witnesses delay factorc2α∗. Hence the requestJq,k is in the queueQ(t) at any timet
duringI ′. Therefore, any request that forcedSSF-W to broadcast onI ′, must have delay factor at leastα∗

and sinceJq,k ∈ Q(t) for all t ∈ I ′, the requests scheduled onI ′ must have slack at mostSq,k.
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A.3 Proof of Lemma 3.7

Proof. For the sake of contradiction, suppose that some requestJp,i that forcedSSF-W to broadcast page
p on the intervalI arrived at timet′ < t1 − 2Sq,kα

∗c. Recall thatJp,i has a slack no bigger thanSq,k by
the definition ofI. Therefore at timet1 − Sq,kα

∗c, Jp,i has a delay factor of at leastcα∗. Thus any request
scheduled during the interval[t1 − Sq,kα

∗c, t1] has a delay factor no less thanα∗. We observe thatJp,i is
in Q(τ) for τ ∈ [t1 − Sq,kα

∗c, t1]; otherwise there must be a request with a delay factor biggerthanc2α∗

at timeτ and this is a contradiction to the assumption thatt∗ is the first time thatSSF-W witnessed a delay
factor ofc2α∗. Therefore any request that forcedSSF-W to broadcast during[t1 − Sq,kα

∗c, t1] has a slack
no bigger thanSp,i. Also we know thatSp,i ≤ Sq,k by the definition ofI. In sum, we showed that any
request that forcedSSF-W to do a broadcast during[t1 − Sq,kα

∗c, t1] have a slack no bigger thanSq,k and
a delay factor no smaller thanα∗, which is a contradiction of the definition oft1.
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