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Abstract

We consider the multivariate interlace polynomial introduced by Courcelle
(2008), which generalizes several interlace polynomials defined by Arratia, Bol-
lobás, and Sorkin (2004) and by Aigner and van der Holst (2004). We present
an algorithm to evaluate the multivariate interlace polynomial of a graph with
n vertices given a tree decomposition of the graph of width k. The best previ-
ously known result (Courcelle 2008) employs a general logical framework and
leads to an algorithm with running time f(k) · n, where f(k) is doubly expo-
nential in k. Analyzing the GF (2)-rank of adjacency matrices in the context of
tree decompositions, we give a faster and more direct algorithm. Our algorithm
uses 23k

2+O(k) · n arithmetic operations and can be efficiently implemented in
parallel.

1 Introduction

Inspired by some counting problem arising from DNA sequencing [ABCS00], Arratia,
Bollobás, and Sorkin defined a graph polynomial which they called interlace poly-
nomial [ABS04a]. It turned out that the interlace polynomial is related [ABS04a,
Theorem 24] to the Martin polynomial, which counts the number of edge partitions
of a graph into circuits. This polynomial has been defined in Martin’s thesis from
1977 [Mar77] and generalized by Las Vergnas [LV83]. Further work on the Martin
polynomial has been pursued [LV81, LV88, Jae88, EM98, EM99, Bol02], including
a generalization to isotropic systems [Bou87, Bou88, Bou91, BBD97]. In particular,
the Tutte polynomial of a planar graph and the Martin polynomial of its medial
graph are related. This implies a connection between the Tutte polynomial and the
interlace polynomial (see [EMS07] for an explanation).
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One way to define the interlace polynomial is by a recursion that uses a graph
operation. Arratia et. al. used a pivot operation for edges [ABS04a]. This opera-
tion is a composition of local complementations to neighbor vertices (see [AvdH04],
where the operations are called switch operations). The orbits of graphs under local
complementation are related to error-correcting codes and quantum states, and so is
the interlace polynomial as well [DP08].

The interlace polynomial can also be defined by a closed expression using the
GF (2)-rank of adjacency matrices [AvdH04, Bou05, EMS06]. This linear algebra
approach has been used in several generalizations of the interlace polynomial. In
this paper, we consider the multivariate interlace polynomial C(G) defined by Cour-
celle [Cou08] (see Definition 2.1 below) as it subsumes the two-variable interlace
polynomial of Arratia, Bollobás, and Sorkin [ABS04b] and the weighted versions of
Traldi [Tra08], as well as the interlace polynomials defined by Aigner and van der
Holst [AvdH04]. Furthermore, the interlace polynomials Q(x, y) and QHN

n , which
have emerged from a spectral view on the interlace polynomials [RP06], are also
special cases of Courcelle’s multivariate interlace polynomial.

1.1 Results and related work

Our aim is to present an algorithm that, given a graph G = (V,E) and an evalua-
tion point, i.e. a tuple of numbers ((xa)a∈V , (ya)a∈V , u, v), evaluates the multivariate
interlace polynomial C(G) at ((xa)a∈V , (ya)a∈V , u, v). Whereas this is a #P-hard
problem in general [BH08], it is fixed parameter tractable with cliquewidth as pa-
rameter [Cou08, Theorem 23, Corollary 33]. This is a consequence of the fact that
the interlace polynomial is a monadic second order logic definable polynomial. Such
graph polynomials can be evaluated in time f(k) · n, where n is the number of ver-
tices of the graph and k is the cliquewidth. The function f(k) can be very large
and is not explicitly stated in most cases. In general, it grows as fast as a tower of
exponentials the height of which is proportional to the number of quantifier alterna-
tions in the formula describing the graph polynomial [Cou08, Page 34]. In the case
of the interlace polynomial, this formula involves two quantifier alternations [Cou08,
Lemma 24], [CiO07]. If a graph has tree width k, its cliquewidth is bounded by 2k+1

[CO00]. Thus, the machinery of monadic second order logic implies the existence of
an algorithm that evaluates the interlace polynomial of an n-vertex graph in time
f(k)·n, where k is the tree width of the graph and f(k) is at least doubly exponential
in k. (In particular, the interlace polynomial of graphs of treewidth 1, that is, of
trees, can be evaluated in polynomial time, which also has been observed by Traldi
[Tra08].)
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The monadic second order logic approach is very general and can be applied
not only to the interlace polynomial but to a much wider class of graph polynomi-
als [CMR01]. However, it does not consider characteristic properties of the actual
graph polynomial. In this paper, we restrict ourselves to the interlace polynomial
so as to exploit its specific properties and to gain a more efficient algorithm (Al-
gorithm 2). Our algorithm performs 23k

2+O(k)n arithmetic operations to evaluate
Courcelle’s multivariate interlace polynomial (and thus any other version of interlace
polynomial mentioned above) on an n-vertex graph given a tree decomposition of
width k (Theorem 6.4). The algorithm can be implemented in parallel using depth
polylogarithmic in n (Section 7.2). Apart from evaluating the interlace polynomial,
our approach can also be used to compute coefficients of the interlace polynomial,
for example so called d-truncations [Cou08, Section 5] (Section 7.3). Our approach
is not via logic but via the GF (2)-rank of adjacency matrices, which is specific to
the interlace polynomial.

1.2 Obstacles

It has been noticed that the Tutte polynomial and the interlace polynomial are sim-
ilar in some respect [ABS04b]: Both can be defined by a recursion using a graph
operation, both can be defined as closed sums over edge/vertex subsets involving
some kind of rank. These similarities suggest that evaluating the interlace polyno-
mial using tree decompositions might work completely analogously to the respective
approaches for the Tutte polynomial [And98, Nob98]. This is not the case because
of the following problems.

Andrzejak’s algorithm [And98] to evaluate the Tutte polynomial uses the deletion-
contraction recursion for the Tutte polynomial (via Negami’s splitting formula [Neg87]).
Deletion and contraction of an edge has the nice property that it is compliant with
tree decompositions: If we are given the tree decomposition of a graph and we delete
(or contract) an edge, the original tree decomposition (or, in the case of edge con-
traction, a simple modification of it) is a tree decomposition of the modified graph.
For the interlace polynomial, on the other hand, the respective graph operation is
not compliant with tree decompositions: If we perform the pivot operation from
[ABS04a] on a graph, it is not clear how to obtain a tree decomposition of the mod-
ified graph. In particular, a single pivot operation can turn a tree (treewidth 1) into
a circle (treewidth 2), see Fig. 1.

Another problem is that in the Tutte case the recursion formula naturally gener-
alizes from the simplest versions (chromatic polynomial) to the most general ones (it
is the defining recursion of the Bollobás-Riordan graph invariant [BR99]; cf. also the
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Figure 1: Edge pivoting, a central graph operation for the interlace polynomial,
increases treewidth.

recurrence relation of the polynomial of Averbouch, Godlin and Makowsky, which
generalizes the Tutte polynomial and the matching polynomial [AGM08]). The in-
terlace polynomial, in contrast, needs more and more complicated recursions when
generalizing the vertex-nullity interlace polynomial to the multivariate interlace poly-
nomial1 (see [Cou08, Proposition 12]).

When we consider Noble’s algorithm [Nob98] and concentrate on the definition of
the Tutte/interlace polynomial by sums involving ranks, another problem emerges.
In the Tutte case, the rank is an easy to understand graph theoretic value, namely
the number of vertices minus the number of connected components. Noble observes
that the set of all partitions of a set of extension vertices captures all possible types of
“behavior” of the rank (i.e. number of connected compontents) when adding some or
all extension vertices. – For the interlace polynomial on the other hand, the rank used
in the definition is the rank over GF (2) of the adjacency matrix. Even though there
exists a graph theoretic interpretation of this rank [Tra09], it is substantially more
involved. Furthermore, an appropriate tool to capture the “rank behavior” when
extending a graph (such as vertex partitions in the case of the Tutte polynomial)
seems to be missing. The main contribution of this work is to devise such a tool and
to prove that it works well with tree decompositions.

1.3 Outline

We compute the interlace polynomial by dynamic programming on the tree decom-
position of a graph. To this end, we analyze the behavior of the GF (2)-rank of the
adjacency matrix of a graph when the graph is extended by a fixed number of vertices
(including the respective edges).

Section 2 contains the definition of Courcelle’s multivariate interlace polynomial,
which we will consider in this work. We will also fix our notation for tree decom-
positions there. In Section 3 we present our approach in detail. This includes the

1But note that Traldi reduced a three-term recursion to a two-term recursion [Tra08, Corollary 1].
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motivation and definition of two central terms: extended graphs and scenarios. A
scenario captures the behavior of the rank of an adjacency matrix when adding
vertices. To define this precisely, we introduce symmetric Gaussian elimination in
Section 4. In Section 5, we collect properties of scenarios which enable us to use
scenarios with tree decompositions. In Section 6, we describe and analyze our algo-
rithm, which evaluates the interlace polynomial by splitting it into parts according to
scenarios. In Section 7 we discuss how our algorithm can be parallelized and used to
compute (some of the) coefficients of the interlace polynomial. Finally, in Section 8,
we mention directions for further research.

2 Preliminaries

We consider undirected graphs without multiple edges but with self loops allowed.
Let G = (V,E) be such a graph and A ⊆ V . By G[A] we denote the subgraph of G
induced by A, i.e. (A, {e | e ∈ E, e ⊆ A}). G∇A denotes the graph G with self loops
in A toggled, i.e. the graph obtained from G by performing the following operation
for each vertex a ∈ A: if a has a self loop, remove it; if a does not have a self loop,
add one.

The adjacency matrix of G is a symmetric square matrix with entries from {0, 1}.
As the matrices that we will consider are adjacency matrices of graphs, we use
vertices as column/row indices. Thus, the adjacency matrix of G is a V × V matrix
M = (muv) over {0, 1} with muv = 1 iff uv ∈ E. Furthermore, we will refer to entries
and submatrices by specifying first the rows and then the columns: the (u, v)-entry
of M = (muv) is muv, the A× B submatrix of M is the submatrix of the entries of
M with row index in A and column index in B. All matrix ranks will be ranks over
the field with two elements, {0, 1} = GF (2), i.e. + is XOR and · is AND. Slightly
abusing notation we write rk(G) for the rank of the adjacency matrix of the graph
G. The nullity (or co-rank) of an n × n matrix M is n(M) = n − rk(M). If G is a
graph, we write n(G) for the nullity of the adjacency matrix of G.

Graph polynomials are, from a formal perspective, mappings of graphs to poly-
nomials that respect graph isomorphism. We will consider a multivariate graph
polynomial, the multivariate interlace polynomial. To define such a polynomial, one
has to distinguish “ordinary” indeterminates from G-indexed indeterminates. For
instance, x being a G-indexed indeterminate means that for each vertex a of G there
is a different indeterminate xa. If A ⊆ V , we write xA for

∏

a∈A xa. Also, if S is a
set, we write

∑

S for the sum of all the elements in the set.
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Definition 2.1 (Courcelle [Cou08]). Let G = (V,E) be an undirected graph. The
multivariate interlace polynomial is defined as

C(G) =
∑

{xAyBu
rk((G∇B)[A∪B])vn((G∇B)[A∪B]) | A,B ⊆ V,A ∩B = ∅},

where u, v are called ordinary indeterminates and x, y G-indexed indeterminates.

2.1 Tree Decompositions

We borrow most of our notation from Bodlaender and Koster [BK08]. A tree decom-
position of a graph G = (V,E) is a pair ({Xi | i ∈ I}, T = (I, F )) where T is a tree
and each node i ∈ I has a subset of vertices Xi ⊆ V associated to it, called the bag
of i, such that the following holds:

1. Each vertex belongs to at least one bag, that is
⋃

i∈I Xi = V .

2. Each edge is represented by at least one bag, i.e. for all e = vw ∈ E there is
an i ∈ I with v, w ∈ Xi.

3. For all vertices v ∈ V , the set of nodes {i ∈ I | v ∈ Xi} induces a subtree of T .

The width of a tree decomposition ({Xi}, T ) is max{|Xi| | i ∈ I}−1. The treewidth
of a graph G, tw(G), is the minimum width over all tree decompositions of G.

Computing the treewidth of a graph is NP-complete. But given a graph with n
vertices, we can compute a tree decomposition of width k (or detect that none exists)
using Bodlaender’s algorithm in time 2O(k3)n [Bod96].

To evaluate the interlace polynomial we will use nice tree decompositions. Note
that our definition slightly deviates from the usual one2. This has no substantial
influence on the running time of the algorithms discussed in this work but it simplifies
the presentation of our algorithm. In a nice tree decomposition ({Xi}, T ), one node
r with |Xr| = 0 is considered to be the root of T , and each node i of T is of one of
the following types:

• Leaf: node i is a leaf of T and |Xi| = 0.

• Join: node i has exactly two children j1 and j2, and Xi = Xj1 = Xj2 .

• Introduce: node i has exactly one child j, and there is a vertex a ∈ V with
Xi = Xj ∪ {a}.

2Usually, there is no special restriction on the bag size of the root node, and the leaf nodes
contain exactly one vertex.
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• Forget: node i has exactly one child j, and there is a vertex a ∈ V with
Xj = Xi ∪ {v}.

A tree decomposition of width k with n nodes can be converted into a nice tree
decomposition of width k with O(n) nodes in time O(n) · poly(k) [Klo94, Lemma
13.1.2, 13.1.3].

For a graph G with a nice tree decomposition ({Xi}, T ), we define

Vi =
(

⋃

{Xj | j is in the subtree of T with root i}
)

\Xi and Gi = G[Vi].

We can think of Gi as the subgraph of G induced by all vertices that have already
been forgotten below node i.

3 Idea

We will now sketch our idea how to evaluate the interlace polynomial. Our approach
is dynamic programming similar to the work of Noble [Nob98]. Let G be a graph
for which we want to evaluate the interlace polynomial and ({Xi}, T ) a nice tree
decomposition of G. For each node i of the tree decomposition, we have defined the
graph Gi that consists of all vertices in the bags below i that are not in Xi. We
will compute “parts” of the interlace polynomial of Gi. These parts are essentially
defined by the answer to the following question: How does the rank of the adjacency
matrix of some subgraph of Gi increase when we add (some or all) vertices of Xi?
For the leaves these parts are trivial. Our algorithm traverses the tree decomposition
bottom-up. We will show how to compute the parts of an introduce, forget, or join
node from the parts of its child node (children nodes, resp.). At the root node, there
is only one part left. This part is the interlace polynomial of G.

Before we go into details, let us remark that the answer to the above question
(“How does the rank of the adjacency matrix increase when adding some vertices?”)
depends on the internal structure of the graph being extended. Consider the graph
on the left hand side in Figure 2. If we extend it by the black vertices, the rank
increases by 2. But if we use the graph on the left hand side in Figure 3, the same
extension causes a rank increase by 4.

Let us see how we handle this issue. We start with the following definition.

Definition 3.1 (Extended graph). Let G = (V,E) be some graph, V ′, U ⊆ V ,
V ′ ∩ U = ∅. Then we define G[V ′, U ] to denote G[V ′ ∪ U ] and call G[V ′, U ] an
extended graph, the graph obtained by extending G[V ′] by U according to G. We
call U the extension of G[V ′, U ].
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Figure 2: Interlace polynomial and rank behavior: Rank over GF (2) of the adjacency
matrix increases by 2 (from 2 to 4).

Figure 3: Interlace polynomial and rank behavior: Rank over GF (2) of the adjacency
matrix increases by 4 (from 2 to 6).

Let us fix an extension U . We consider all V ′ ⊆ V (G) such that G[V ′] may be
extended by U according to the input graph G. For any such extended graph we
ask: “How does the rank of G[V ′] increase when adding some vertices of U?”. Our
key observation is that the answer to this question can be given without inspecting
the actual G if we are provided with a compact description (of size independent of
n = |V (G)|), which we call the scenario of G[V ′, U ].

The scenario of G[V ′, U ] (Definition 4.4) will be constructed in the following
way. Consider M , the adjacency matrix of G[V ′ ∪ U ]. Perform symmetric Gaussian
elimination on M using only the vertices in V ′ (for the details see Section 4). The
resulting matrix M ′ is symmetric again and has the same rank as M . Furthermore,
M ′ is of a form as in Figure 4: The V ′ × V ′ submatrix is a symmetric permutation
matrix with some additional zero columns/rows. The nonzero entries correspond to
edges or self loops (not of the original graph G but of some modified graph that is
obtained from G in a well-defined way) “ruling” over their respective columns/rows:
The edge between v1 and v8 rules over columns and rows v1 and v8. Here, “to rule”
means that the only 1s in these columns and rows are the 1s at (v1, v8) and (v8, v1).
Similarly, the self loop at vertex v5 rules over column and row v5. The columns and
rows that are ruled by some edge or self loop in V ′ are also empty (i.e. entirely zero)
in the U×V ′ submatrix of M ′. Some columns/rows are not ruled by any edge or self
loop in V ′, for instance column/row v4. This is because there is neither a self loop
at vertex v4 nor does it have a neighbor in V ′. However, v4 may have neighbors in
U . Thus, column v4 of the U × V ′ submatrix may be any value from {0, 1}U , which
is indicated by the question marks. Also, the contents of the U ×U submatrix is not
known to us.

Let us choose a basis of the subspace spanned by the nonzero columns of the

8



Figure 4: Adjacency matrix of G[V ′∪U ] after symmetric Gaussian elimination using
V ′. Empty entries are zero.

U × V ′ submatrix and call it sU×V ′

. Let sU×U be contents of the U × U submatrix.
By this construction, we are able to describe the rank of M ′ as the rank of its V ′×V ′

submatrix plus a value that can be computed solely from sU×V ′

and sU×U .
This will solve our problem that the rank increase depends on the internal

structure of the graph G[V ′] being extended: all we need to know is the scenario
s = (sU×V ′

, sU×U) of G[V ′, U ]. From s, without considering G[V ′], we can compute
in time poly(|U |) how the rank of the adjacency matrix of G[V ′] increases when we
add some vertices from U . This motivates the following definition.

Definition 3.2 (Scenario). Let U be an extension, i.e. a finite set of vertices. A
scenario of U is a tuple s = (sU×V ′

, sU×U) where sU×V ′

is an ordered set of linear
independent vectors spanning a subspace of {0, 1}U and sU×U is a symmetric (U×U)-
matrix with entries from {0, 1}. A scenario for k vertices is a scenario of some vertex
set U with |U | = k.

Let us come back to the evaluation of the interlace polynomial of G using a tree
decomposition. Recall that at a node i of the tree decomposition we want to compute
“parts” of the interlace polynomial of G[Vi]. Essentially every scenario s of Xi will
define such a part: The interlace polynomial itself is a sum over all induced sub-
graphs with self loops toggled for some vertices. The part of the interlace polynomial
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corresponding to scenario s will be the respective sum not over all these graphs but
only over the ones such that s is the scenario of G[Vi, Xi]. This will lead us to (6.1)
in Section 6. To compute the parts of a join, forget and introduce node from the
parts of its children nodes (child node, resp.), we will employ Lemma 6.1, 6.2 and
6.3. These are based on the fact that scenarios are compliant with tree decomposi-
tions, which we will prove in Section 5 (Lemma 5.1, Lemma 5.3 and Lemma 5.5).
An example for the overall procedure of the algorithm is depicted in Figure 5.

Figure 5: Computation of the interlace polynomial C(G; y = 0, v = 1) of a triangle.
In order to simplify the illustration, we ignore parameter D in (6.1), which handles
the “self loop toggling feature” of the interlace polynomial.

The time bound of our algorithm stems from the following observation: The
number of parts managed at a node i of the tree decomposition is essentially bounded
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by the number of scenarios of its bag Xi. This number is independent of the size of G
and single exponential in the bag size (and thus single exponential in the treewidth
of G):

Lemma 3.3. Let U be an extension, i.e. a finite set of vertices, |U | = k. There are
less than 2(3k+1)k/2 scenarios of U .

Proof. The number of symmetric {0, 1}-matrices of dimension k × k is 2(k+1)k/2, as
a symmetric matrix is determined by its left lower half. Thus, there are 2(k+1)k/2

possibilities for sU×U .
For sU×V ′

, there less than 2k
2
possibilities: As there are 2k − 1 non-zero elements

of {0, 1}k, the number of linear independent subsets of {0, 1}U with d elements is

bounded by
(

2k−1
d

)

. Thus, the number of all linear independent subsets of {0, 1}U is
at most

∑

0≤d≤k

(

2k − 1

d

)

≤ (k + 1)

(

2k − 1

k

)

< 2k
2

.

4 Symmetric Gaussian Elimination

We want to convert adjacency matrices into matrices of a form as in Figure 4 without
touching the rank. In order to achieve this, we introduce a special way of performing
Gaussian elimination that differs from standard Gaussian elimination in the following
way. First, it is symmetric, as in general every column operation is followed by a
corresponding row operation. In this way, we maintain the correspondence between
rows/columns of the matrix we are manipulating and vertices of a graph. Second,
we adhere to a particular order when deciding which entry to use for the next pivot
operation. This order is (partially) fixed by the tree decomposition. It is crucial
for our proofs of the statements in Sect. 5 that the elimination process proceeds
according to this order. Third, we perform symmetric Gaussian elimination using
only vertices in a subset V ′ of the vertices: When seeking a pivot entry in a particular
row/column, we do not consider all entries of the row/column but only the ones that
correspond to edges between vertices in V ′.

4.1 Elimination with a single vertex

Assume we are given a graph G, its adjacency matrix M and a vertex v. We would
like to compute the rank of M as the “effect of v on the rank” plus the rank of a
submatrix in which we have deleted v. This might not immediately be possible using
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M itself, but we can achieve it modifying M by a symmetric Gaussian elimination
step on M using v. This is defined in the following way:

• If v is an isolated vertex without a self loop, we have situation (1) of Figure 6.
Vertex v has no influence on the rank of the adjacency matrix and we can
delete the column and row corresponding to v without changing the rank of
the adjacency matrix. The result of the elimination step is just M .

• If v has a self loop, there is a 1 in the (v, v)-entry of M . The elimination step
consists of the following operations. Except for entry (v, v), we remove all 1s in
the v-column and v-row using the following pair of operations for each neighbor
u of v: First, add the v-column to the u-column. Then, in the modified matrix,
add the v-row to the u-row. We denote the result of the whole process byM⋊v,
which is depicted as (2) in Figure 6. Note that M ⋊ v is symmetric again. The
rank of M equals 1 plus the rank of M ⋊ v with v-column and v-row deleted.

• If v is neither isolated nor has a self loop, there is a neighbor u of v. Assume
that u does not have a self loop. The (u, v)- and (v, u)-entries of M equal
1. The elimination step consists of the following operations. In the first stage,
except for (u, v) and (v, u), we remove all 1s in the v-column and v-row. This is
accomplished by the following pair of operations for each neighbor u′ of v, u′ 6=
u: First, add the u-column to the u′-column. Then, in the modified matrix,
add the u-row to the u′-row. Again, performing such a pair of column/row
operations keeps a symmetric matrix symmetric. At the end of the first stage
the v-column and v-row consist entirely of 0s, except for the entry at the
u-position, which is 1. The second stage proceeds as follows: we add the v-
column to every column which has a 1 in the u-row, and we also add the v-row
to every row which has a 1 in the u-column. At the end of this stage also the
u-column and u-row consist only of 0s except at the v-position. The result of
the second stage is a symmetric matrix again, which we denote by M⋊vu. It is
depicted as (3) in Figure 6. We do not swap columns/rows, as we must keep the
vertices in a particular order, which is determined by the tree decomposition,
cf. Section 4.2. The rank of M equals 2 plus the rank of M ⋊ vu with u- and
v-column and u- and v-row deleted.

If u has a self loop we proceed analogously to obtain a matrix with a structure
as (4) in Figure 6. Then we can eliminate the self loop at u by, say, adding
column v to column u. (As at this point column v is zero everywhere except
at u, only entry (u, u) of the matrix is changed by this operation and the
symmetry is not destroyed.) Thus, we obtain a matrix exactly as (3) in Fig. 6.

12



Figure 6: Effect of a symmetric Gaussian elimination step. Adjacency matrix with
isolated unlooped vertex v (1), adjacency matrix after eliminating with a self loop
at v (2), adjacency matrix after eliminating with edge vu (3).

We can describe the effect of a symmetric elimination step on the entries of the
matrix (aside from the entries being set to 0) in the following way.

Lemma 4.1. Let M = (mij) be an adjacency matrix, let a be a vertex with a self
loop, and myx some entry of M which is not in column or row a, i.e. a 6∈ {x, y}.
Then, after symmetric Gaussian elimination using a, the (y, x)-entry of M will be

(M ⋊ a)yx = myx +maxmya.

Lemma 4.2. Let M = (mij) be an adjacency matrix, let a be a vertex without a self
loop, ab an edge and myx some entry of M which is not in column or row a or b,
i.e. {x, y} ∩ {a, b} = ∅. Then, after symmetric Gaussian elimination using ab, the
(y, x)-entry of M will be

(M ⋊ ab)yx = myx +maxmyb +myambx +maxmyambb.

We prove the statement about edge elimination, the case of self loop elimination
is completely analogously.

Proof of Lemma 4.2. Let us assume that x ≤ y (the case x > y is analogous). The
situation is depicted in Figure 7. Depending on the (a, x)-entry being 1 or not,
column b is added to column x, which adds the (y, b)-entry to the (y, x)-entry. This
gives the term maxmyb. After that, depending on the (y, a)-entry, row b is added
to row y. This adds the actual value of the (b, x)-entry to the (y, x)-entry. By the
previous column addition, the actual (b, x)-entry is mbx + maxmbb. Thus, the row
addition contributes a term mya(mbx +maxmbb). The second stage has no effect on
the (y, x) entry: Column a may be added to some other columns. But at this point of
time, column a is entirely zero, except at the b entry. Thus, addition of the a column
has no effect on the (y, x) entry. The same is true for addition of the a row.
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Figure 7: During a symmetric Gaussian elimination step using edge ab, entry (y, x)
is affected only by the entries at (a, x), (y, b), (y, a), (b, x) and (b, b).

4.2 Vertex order, elimination with vertex sets, and the sce-

nario of an extended graph

We want to define symmetric Gaussian elimination using a whole set V ′ ⊆ V of
vertices. This means that we perform elimination steps using each vertex from V ′.
The result of this process depends on the order in which we use the vertices for
elimination steps. Therefore we introduce an order on the vertices of the graph,
which will be computed before the computation of the interlace polynomial starts.
We will use this order throughout the rest of the paper. Whenever there could be
any ambiguity, we proceed according to this order.

The vertex order we are using must be compliant with the tree decomposition we
are using: Whenever a vertex is forgotten, it must be greater than all the vertices
which have been forgotten before. Or, equivalently, the vertices in the extension Xi

must be greater than the vertices in Vi for each node i of the tree decomposition.
Such an order can be obtained by Algorithm 1.

Now we are ready to define elimination using a set of vertices.

Definition 4.3. Let V ′ ⊆ V be a set of vertices of a graph G = (V,E) with adjacency
matrix M . Symmetric Gaussian elimination on G using V ′ is defined as the following
process: If V ′ = ∅, we are done and M is the output of the symmetric Gaussian
elimination process using V ′. Otherwise, we let v be the minimum vertex in V ′. If v
has a self loop we let M ′ = M ⋊ v. Otherwise, we check whether v has a neighbor u
in V ′. If yes, we let M ′ = M ⋊ vu, where u is the minimum neighbor of v. If no, we
let M ′ = M . This concludes the processing of v. To complete the elimination using
V ′, we continue recursively with V ′ \ {v} in the role of V ′ and M ′ in the role of M .

We also order vertex vectors (i.e. elements from {0, 1}U , U some vertex set) and
sets of vertex vectors according to the vertex order (lexicographically). This induced
order is used for choosing a “minimal” basis in the following definition.
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Algorithm 1 Supplying a vertex order.

1: procedure SupplyVertexOrder

2: c← 1
3: for all nodes i, in the order of bottom-up traversal, i.e. each father node is

visited after all its children do

4: if i is a forget node then

5: a← vertex being forgotten at node i
6: give vertex a number c in the vertex order
7: c← c+ 1
8: end if

9: end for

10: end procedure

Definition 4.4 (Scenario of an extended graph). Let G[V ′, U ] be an extended graph
obtained by extending G[V ′] by U according to graph G = (V,E). Let the vertex order
be such that v′ < u for all v′ ∈ V ′ and u ∈ U . Then the scenario scen(G[V ′, U ]) of
G[V ′, U ] is defined as follows: Let M be the adjacency matrix of G[V ′∪U ]. Perform
symmetric Gaussian elimination on M using V ′ to obtain M ′. Let M ′

UV ′ be the
U × V ′ submatrix of M ′. Consider the column space W of M ′

UV ′. We can choose a
basis of W from the column vectors of M ′

UV ′. Let sU×V ′

be the minimal such basis.
Let sU×U be the contents of the U × U submatrix of M ′. We define scen(G[V ′, U ])
to be (sU×V ′

, sU×U).

The minimal basis sU×V ′

in the preceding definition can by obtained by the
following steps: Start with an empty set of columns and then as often as possible
take the minimum column of M ′

UV ′ which is not in the span of the so far collected
columns.

5 Scenarios and nice tree decompositions

Consider a join node i with children j1 and j2 in a nice tree decomposition of a
graph G the interlace polynomial of which we want to evaluate. By the properties
of tree decompositions, this implies a situation as depicted in Figure 8: Gj1 = G[Vj1]
and Gj2 = G[Vj2] are disjoint graphs with a common extension Xj1 = Xj2 = Xi.
Gi = G[Vi] = G[Vj1 ∪ Vj2] is the disjoint union of Gj1 and Gj2. Assume that we have
computed all parts (see Section 3 and (6.1)) of the interlace polynomial of Gj1 and
all parts of the interlace polynomial of Gj2. From this we want to compute the parts
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Figure 8: Graphs corresponding to a join node i and its child nodes j1, j2.

of the interlace polynomial of Gi. Consider one such part, say the one corresponding
to some scenario s of Xi. Somehow we have to find out for which subgraphs3 G[V ′] of
Gi the scenario of the extended graph G[V ′, Xi] is s. Fortunately, these are exactly
the subgraphs G[V1 ∪ V2], V1 ⊆ Vj1, V2 ⊆ Vj2, with the property that the “join” of
the scenario of G[V1, Xj1] and the scenario of G[V2, Xj2] is s. This is guaranteed by
the following lemma.

Lemma 5.1 (Join). Let G = (V,E) be a graph, U ⊆ V , and s1, s2 two scenarios
of U . Then there is a unique scenario s3 of U such that the following holds: If
G[V1] and G[V2] are disjoint subgraphs of G that may be extended by U according
to G, scen(G[V1, U ]) = s1, and scen(G[V2, U ]) = s2, then scen(G[V1 ∪ V2, U ]) = s3.
Moreover, s3 can be computed from s1, s2 and G[U ] within poly(|U |) steps.

Proof. We will apply Definition 4.4 to determine s3. We will see that s3 is uniquely
defined by s1, s2 and G[U ], and can be computed from these within the claimed time
bound. This will prove the lemma.

Let G1 = G[V1] and G2 = G[V2]. Let M be the adjacency matrix of G[V1∪V2∪U ].
As G1 and G2 are disjoint, M has a form as depicted on the left hand side in Figure 9,
the V1 × V2 submatrix as well as the V2 × V1 submatrix of M consists only of 0s.

By Definition 4.4, symmetric Gaussian elimination using V1 ∪ V2 has to be per-
formed on M to obtain M ′, which is of the form depicted on the right hand side in
Figure 9 and from which s3 can be read off. Let us analyze a single elimination step
occurring during the elimination process in detail, say eliminating with a self loop
at a vertex v ∈ V1. One action in this step is that the 1 in the (v, v) entry will be
used to eliminate another 1 in the v-row by adding the v-column to the respective

3In fact induced subgraphs with self loops toggled at some vertices — but we will ignore this
detail for the rest of the section as it is not important to understand the idea.
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Figure 9: Effect of symmetric Gaussian elimination to gain the scenario of
G[V1∪̇V2, U ].
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column u. Let us argue that this does not affect neither the V1× V2 submatrix of M
nor the V2×V1 submatrix of M . As v ∈ V1, in the v-row the V2-entries are already 0.
Thus we know that u 6∈ V2, i.e. the v-column will be added to a column from V1∪U .
Thus, the V1 × V2 submatrix is not changed. Again as v ∈ V1, the V2-entries in the
v-column are 0 and addition of the v-column to any other column u does not change
the V2-entries of column u. Thus, the V2 × V1 submatrix of M is not changed.

Analogous observations can be made for the role of columns and rows reversed
(i.e. when adding the v-row to other rows to eliminate 1s in the v-column), as well as
for elimination steps using an edge between different vertices (instead of self loops).
We conclude that symmetric Gaussian elimination steps with V1-vertices affect only
the (V1 ∪ U)× (V1 ∪ U) submatrix of M , but not the V1 × V2 or V2 × V1 submatrix.
Analogously, elimination steps with V2-vertices affect only the (U ∪ V2) × (U ∪ V2)
submatrix of M . Thus, except for the U×U submatrix, when performing symmetric
Gaussian elimination onM using V1∪V2, the same things happen as when performing
symmetric Gaussian elimination first on G[V1 ∪ U ] using V1 and then on G[V2 ∪ U ]
using V2. The only difference may be that depending on the vertex order elimination
steps with V1-vertices are interlaced with steps using V2 vertices. But we argued that
V1-elimination steps do not influence parts ofM which are relevant for V2-elimination
steps and vice versa, so this is not an issue.

As elimination on M using V1∪V2 (yielding M ′) on the one hand does the same as
elimination on G[V1 ∪U ] using V1 (yielding, say, M

(1)) and elimination on G[V2 ∪U ]
using V2 (yielding, say, M (2)) on the other hand, the U × (V1 ∪ V2) submatrix of

M ′ is just the union of M
(1)
UV1

, the U × V1 submatrix of M1, and M
(2)
UV2

, the U × V2

submatrix of M2. Recall that s1
U×V1 and s2

U×V2 are minimum bases of the column
space of M

(1)
UV1

, M
(2)
UV2

, resp, taken from the columns of these matrices. To compute

s3
U×(V1∪V2), the minimum basis of the column space of the U × (V1 ∪ V2) submatrix

of M ′ taken from the columns of this matrix, we proceed in the following way: Start
with the empty set and as long as possible add the minimum vector of s1

U×V1∪s2
U×V2

which is not in the span of the so far collected vectors. This can be done in time
polynomial in |U | using standard Gaussian elimination.

The U×U submatrix is the only part ofM which is affected by both, eliminations
with V1-vertices and eliminations with V2-vertices. However, the use of the U ×
U submatrix is “write-only” during the elimination process: Consider symmetric
Gaussian elimination in general, say on some extended graph G[V ′ ∪ U ] using V ′.
Recall that by Definition 4.3 all the elimination steps will involve only vertices from
V ′ in the sense that the step is either M ⋊ v or M ⋊ vu with u, v ∈ V ′. Thus, the
contents of the U × U submatrix has no influence on what elimination steps will be
performed. All that happens with this submatrix is that column/row vectors are
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Figure 10: Joining the extended graphs G[V1, U ] and G[V2, U ].

Figure 11: Adding a vertex to an extension.

added to it.
Thus, the effect on the U × U submatrix of all the elimination steps during

symmetric Gaussian elimination of G[V1 ∪ U ] using V1 can be described as adding a
matrix, say A1 to the adjacency matrix of G[U ]. We can compute A1 as A1 = s1

U×U−
M(G[U ]), where M(G[U ]) denotes the adjacency matrix of G[U ]. Analogously, we
can compute A2 which describes the effect of symmetric Gaussian elimination of
G[V2∪U ] using V2 on the U×U submatrix. Because of the “write-only” property, the
effect of symmetric Gaussian elimination of M using V1∪V2 on the U ×U submatrix
of M can be described by A1 + A2. Thus we have s3

U×U = M(G[U ]) + A1 + A2,
which is the second component of s3.

Definition 5.2. In the situation of Lemma 5.1 we write sjoin(s1, s2, G[U ]) for s3.

To handle join nodes of the tree decomposition we proved Lemma 5.1: from the
scenario of two extended graphsG[V1, U ] andG[V2, U ] with a common extension U we
can compute the scenario of the joined extended graph G[V1 ∪ V2, U ] (cf. Figure 10).
To handle also introduce and forget nodes we prove two more lemmas (cf. Figure 11,
Figure 12).

Figure 12: Transforming an extending vertex into a normal vertex.
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Lemma 5.3 (Introduce vertex). Let G = (V,E) be a graph, U ⊆ V , s a scenario
of U , u ∈ V \ U . Then there is a unique scenario s̃ of Ũ = U ∪ {u} such that the
following holds: If G[V ′] may be extended by Ũ according to G, u is not connected
to V ′ in G, and scen(G[V ′, U ]) = s, then scen(G[V ′, Ũ ]) = s̃. Moreover, s̃ can be
computed from s and G[Ũ ] in poly(|U |) steps.

Proof. As u is not connected to V ′, s̃Ũ×V ′

is sU×V ′

with a zero component for u
added to all the basis vectors. Also, s̃Ũ×Ũ is just sU×U with a row and column added
representing the neighbors of u in Ũ .

Definition 5.4. In the situation of Lemma 5.3 we write sintroduce(s, u,G[Ũ ]) for s̃.

Lemma 5.5 (Forget vertex). Let G = (V,E) be a graph, u ∈ U ⊆ V , Ũ = U \ {u},
Ṽ = V ′ ∪ {u}, and s a scenario of U . Then there is a unique scenario s̃ of Ũ and
r, n ∈ {0, 1, 2} such that the following holds: If G[V ′] is a subgraph of G that may be
extended by U according to G, u > v′ for all v′ ∈ V ′, and scen(G[V ′, U ]) = s, then
scen(G[Ṽ , Ũ ]) = s̃ and the rank (nullity) of the adjacency matrix of G[Ṽ ] equals the
rank (nullity, resp.) of the adjacency matrix of G[V ′] plus r (n, resp.). Moreover, s̃
and r can be computed from s and G[U ] in poly(|U |) steps, and we have n = 2− r.

Proof. Consider the situation after symmetric Gaussian elimination on G[V ′ ∪ U ] =
G[Ṽ ∪ Ũ ] using V ′ (Figure 13). We distinguish three cases: (1) there is a basis vector
of the (U ×V ′) column space with a 1 in the u-component, (2) there is no such basis
vector, but the (u, u)-entry of the U ×U submatrix equals 1, (3) neither case (1) nor
(2).

Let us first consider cases (2) and (3). As all u-components of the vectors in
sU×V ′

are zero, we know that symmetric Gaussian elimination on G[Ṽ ∪ Ũ ] using
Ṽ will consist of the following two stages: first, exactly the same operations will be
performed as in symmetric Gaussian elimination on G[V ′ ∪ U ] using V ′ (which will
end up in the situations depicted in Figure 13 (2), (3)), and then elimination using
vertex u will be performed if possible.

Thus, in case (3), s̃ can be obtained from s in the following way: remove the

u component of each vector of sU×V ′

to gain s̄Ũ×Ṽ . Let a be the first column of
sU×U . Remove the first component of a. With standard Gaussian elimination, check
in time poly(|U |) if a is in the span of s̄Ũ×Ṽ . If it is, let s̃Ũ×Ṽ = s̄Ũ×Ṽ , otherwise let

s̃Ũ×Ṽ = s̄Ũ×Ṽ ∪ {a}. Let s̃Ũ×Ũ be sU×U with first column and first row deleted. We
have r = 0 and n = 2. (Note that the step from G[V ′] to G[Ṽ ] adds a row and a
column to the adjacency matrix, so the nullity increases by 2.)
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Figure 13: Cases when “forgetting” an extension vertex u.
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In case (2), we first perform an elimination step with the 1 at the (u, u)-entry:
let s̄U×U = sU×U

⋊ u. Then we continue as in case (3) but with s̄U×U in the role of
sU×U . We have r = n = 1.

The rest of this proof deals with case (1). Let w ∈ V ′ be the vertex corresponding
to the minimum vector of sU×V ′

with a 1 in the u-component (cf. Figure 13 (1)).
Compare symmetric Gaussian elimination on G[V ′∪U ] using V ′ (which is performed
to obtain s) to symmetric Gaussian elimination on G[Ṽ ∪ Ũ ] using Ṽ (which is
performed to obtain s̃). Before these two processes reach w, they are equal, but from
w on they will differ: Using V ′, the edge uw will not be used for elimination and
the process will continue with the next vertex in V ′ immediately. Using Ṽ , the edge
uw will be used for elimination (which will not affect the V ′ × V ′ submatrix, but
possibly change the contents of the U × (V ′ ∪U) and the (V ′∪U)×U submatrices).
Only after that, the process will continue with the next vertex in Ṽ . However, we
will prove in Lemma 5.8 that we can defer the elimination using edge uw until all
vertices of V ′ have been proceeded and still obtain s̃. Thus, s̃ can be computed in
the following way: perform the same steps as with symmetric Gaussian elimination
on G[V ′∪U ] using V ′. Then, simulate the effect of a symmetric Gaussian elimination
step using edge uw in a similar way as in cases (2) and (3).

This simulation can be done as follows: Let ~w be the minimum vector of sU×V ′

with the u-component equal to 1. Let s̄U×V ′

= sU×V ′

\ {~w} and s̄U×U = sU×U . For
each row i, i 6= u, with the ~wi = 1 simulate addition of column/row u to column/row
i doing the following:

1. For each vector ~c of s̄U×V ′

, add component u of ~c to component i of ~c.

2. Change s̄U×U by first adding the u column to the i column and then, in the
modified matrix, the u row to the i row.

We have s̃Ũ×Ṽ = s̄U×V ′

, and s̃Ũ×Ũ is s̄U×U with first column and first row removed.
Note that after an elimination step using edge wu, the u column/row will consist
entirely of zeros (except at (u, w) and (w, u)). Thus, the first column of s̄U×U will be

zero after the elimination with wu and we do not need to incorporate it into s̃Ũ×Ṽ .
Finally note that we have r = 2 and n = 0 in case (1).

Definition 5.6. In the situation of Lemma 5.5 we write sforget(s, u,G[U ]) for s̃,
∆rforget(s, u,G[U ]) for r, and ∆nforget(s, u,G[U ]) for n.

The operation defined in Definition 5.6 deletes a vertex u from a scenario in the
sense that u is deleted from the extension but added to the graph being extended.
We also need a notation for deleting a vertex completely from a scenario, i. e. ignoring
some vertex of the extension.
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Figure 14: Symmetric Gaussian elimination using Ṽ (including steps such as elimi-
nating with edge ab) and eliminating with edge wu can be swapped without changing
the result.

Definition 5.7. Let s = (sU×V ′

, sU×U) be a scenario of an extension U and u ∈ U .
Then signore(s, u) is the scenario obtained from s in the following way: Delete the u-
components from the elements of sU×V ′

to obtain s1. Choose the minimum (according
to the vertex order) basis s′1 for the span of s1 from the elements of s1 using standard
Gaussian elimination. Delete the u-column and u-row from sU×U to obtain s2. We
define signore(s, u) = (s′1, s2).

The following lemma is used in the proof of Lemma 5.5.

Lemma 5.8. Let G = (V,E) be a graph, u ∈ U ⊆ V and G′ = G[V ′] a subgraph of
G which may be extended by U and u > v′ for all v′ ∈ V ′. Let w be the minimum
vertex of V ′ and assume that u is the minimum neighbor of w (which implies that w
has no neighbor in V ′). Let V ′′ = V ′ ∪ {u}, Ṽ = V ′ \ {w} and M be the adjacency
matrix of G[V ′ ∪ U ] (cf. Figure 14). Then the following two sequences of operations
on M lead to the same result:

1. Symmetric Gaussian elimination on M using V ′′, i.e. first the elimination step
using edge wu and then the elimination steps using Ṽ .

2. Symmetric Gaussian elimination on M using V ′ (i.e. the elimination steps us-
ing Ṽ , as w has no neighbor in V ′) and after that, on the result, the elimination
step using edge wu.

Proof. Elimination with edge wu will add the u column (row, resp.) to all columns
(rows, resp.) which have a 1 in the w-row (column, resp.), and will then eliminate
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any remaining 1 in the u column (row, resp.). As the V ′-part of the w row (column.,
resp.) is entirely zero, this has no influence on the Ṽ × Ṽ submatrix of M . Thus,
the only difference between 1. and 2. is whether the elimination step using edge wu
is performed before or after symmetric Gaussian elimination using Ṽ . Also, it is
enough to consider the U -columns and U -rows of M . We will ignore the V ′ × V ′

submatrix of M in the following.
We will prove the following: every elimination step using an edge ab (a self loop at

a, resp.) in Ṽ can be swapped with elimination using wu, i.e. the results of ⋊ab⋊wu
and ⋊wu⋊ ab (⋊a ⋊ wu and ⋊wu⋊ a, resp.) are equal. Applying this observation
repeatedly proves the lemma. We only prove the case of an edge ab in Ṽ , the case
of a self loop at a in Ṽ can be dealt with similarly.

Let ab an edge in Ṽ . First, let us consider the column and rows of a, b, w and
u. It is not hard to see, that, no matter whether we use first ab for elimination and
then wu or vice versa, in the end these columns will consist entirely of zeros, except
for (u, w), (w, u), (a, b), (b, a). Thus, it is sufficient to examine the effect of both
elimination steps on entries (y, x) with {x, y} ∩ {a, b, u, w} = ∅, cf. Figure 14.

Let Mab = M ⋊ ab be M after the elimination step using edge ab. Analogously
we let Mwu = M ⋊wu, as well as Mab,wu = M ⋊ab⋊wu and Mwu,ab = M ⋊wu⋊ab.
We use small m to denote the entries of these matrices. For instance, mab,wu

yx denotes
the entry in row y and column x of Mab,wu.

Case “ab first”. By Lemma 4.2 we have

mab
yx = myx +max ·myb +mya ·mbx +mya ·max ·mbb.

By Lemma 4.2 again, the final value of entry (y, x) is

mab,wu
yx = mab

yx +mab
wx ·m

ab
yu +mab

yw ·m
ab
ux +mab

wx ·m
ab
yw ·m

ab
uu,

where mab
wx = mwx and mab

yw = myw, as the elimination using edge ab does not
affect column/row w (cf. Figure 14). Further on, we have

mab
yu = myu +mau ·myb +mya ·mbu +mau ·mya ·mbb,

mab
ux = mux +max ·mub +mua ·mbx +max ·mua ·mbb,

mab
uu = muu +mau ·mub +mua ·mbu +mau ·mua ·mbb,

once more by Lemma 4.2.

Case “wu first”. Here we have

mwu,ab
yx = mwu

yx +mwu
ax ·m

wu
yb +mwu

ya ·m
wu
bx +mwu

ax ·m
wu
ya ·m

wu
bb ,
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where mwu
bb = mbb, as the entry (b, b) is not affected by edge elimination using

edge wu. For the remaining values we have by Lemma 4.2:

mwu
yx = myx +mwx ·myu +myw ·mux +mwx ·myw ·muu,

mwu
ax = max +mwx ·mau,

mwu
yb = myb +myw ·mub,

mwu
ya = mya +myw ·mua,

mwu
bx = mbx +mwx ·mbu.

An easy calculation yields that mwu,ab
yx = mab,wu

yx , which completes the proof.

6 The Algorithm

Algorithm 2 evaluates the interlace polynomial using a tree decomposition. The
input for the algorithm is G = (V,E), the graph of which we want to evaluate the
interlace polynomial, and a nice tree decomposition ({Xi}I , (I, F )) of G with O(n)
nodes, n = |V |. In Section 2.1 we discussed how to obtain a nice tree decomposition.
Let k − 1 be the width of the tree decomposition, i.e. k is the maximum bag size.

6.1 Interlace Polynomial Parts

Algorithm 2 essentially traverses the tree decomposition bottom-up and computes
parts S(i, D, s) of the interlace polynomial for each node i. One such part is defined
in the following way:

S(i, D, s) =
∑

{xAyBu
rk((Gi∇B)[A∪B])vn((Gi∇B)[A∪B]) |

A,B ⊆ Vi, A ∩B = ∅, scen(G′[A ∪B,Xi]) = s,

where G′ = G∇(B ∪D)},

(6.1)

where D ⊆ Xi and s is a scenario of Xi. Recall that we write
∑

S for the sum of all
the elements in S and that Vi is the set of vertices which have been forgotten below
node i. Thus, S(i, D, s) is the part of the interlace polynomial of G[Vi] corresponding
to D and s.

For every leaf i of the tree decomposition we have Vi = ∅ and also Xi = ∅.
Thus, in Line 5 of Algorithm 2 we have D = ∅. Trivially, scen(G[∅, ∅]) is the empty
scenario. Thus, we have S(i, ∅, ((), ())) = 1 if i is a leaf.
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Algorithm 2 Evaluating the interlace polynomial using a tree decomposition.

Input: Graph G, nice tree decomposition ({Xi}i, (I, F )) of G, k such that any bag
Xi of the tree decomposition contains at most k vertices

1: SupplyVertexOrder ⊲ Algorithm 1
2: for all nodes i of the tree decomposition, in the order they appear in bottom-up

traversal do
3: for all D ⊆ Xi do

4: if i is a leaf then
5: S(i, D, ((), ()))← 1
6: else if i is a join node then

7: Join(i, D)
8: else if i is an introduce node then

9: Introduce(i, D)
10: else if i is a forget node then

11: Forget(i, D)
12: end if

13: end for

14: end for

15: return S(root, ∅, ((), ())) ⊲ Xroot = ∅
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At the root node r the bag Xr is empty and all vertices have been forgotten,
i.e. Vr = V . There is only one part left, S(r, ∅, ((), ()), and this is just the interlace
polynomial of G.

6.2 Join nodes

Join nodes are handled by Algorithm 3. The correctness follows from

Lemma 6.1. Let i be a join node with children j1 and j2, D ⊆ Xi and s a scenario
of Xi. Then

S(i, D, s) =
∑

{S(j1, D, s1)S(j2, D, s2)

| s1, s2 scenarios of Xi, sjoin(s1, s2, G∇D[Xi]) = s}.
(6.2)

Proof. Recall (6.1) for node i. Every admissible A,B give rise to A1 = A ∩ Vj1,
A2 = A ∩ Vj2, B1 = B ∩ Vj1, B2 = B ∩ Vj2. G′[A ∪ B] is the disjoint union of
G′[A1 ∪ B1] and G′[A2 ∪ B2]. (These graphs are subgraphs of the ones depicted in
Figure 8.)

We can apply Lemma 5.1 with G′ in the role of G, A1 ∪B1 in the role of V1 and
A2 ∪ B2 in the role of V2. This implies that A ∪ B takes the role of V1 ∪ V2. Using
this it is not hard to argue that every admissible (A,B) in (6.1) corresponds to one
pair ((A1, B1), (A2, B2)) of the expanded version of (6.2).

Algorithm 3 Computing the parts at a join node.

1: procedure Join(i, D)
2: for all scenarios s for |Xi| vertices do
3: ⊲ i.e., enumerate all pairs s = (sXi×V ′

, sXi×Xi) with sXi×V ′

being a list
4: of linear independent vectors from {0, 1}Xi and sXi×Xi a symmetric
5: Xi ×Xi matrix with entries from {0, 1} – cf. Definition 3.2
6: S(i, D, s)← 0
7: end for

8: (j1, j2)← (left child of i, right child of i)
9: for all scenarios s1, s2 for |Xi| vertices do
10: s← sjoin(s1, s2, G∇D[Xi]) ⊲ Definition 5.2
11: S(i, D, s)← S(i, D, s) + S(j1, D, s1) · S(j2, D, s2)
12: end for

13: end procedure
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6.3 Introduce nodes

Introduce nodes are handled by Algorithm 4, which is based on

Lemma 6.2. Let i be an introduce node with child j and Xi = Xj∪{a}. Let D ⊆ Xi

and s a scenario of Xi. Let D′ = D \ {a}. Then one of the following cases applies:

• If there is a scenario s′ of Xj with sintroduce(s
′, a, G∇D[Xi]) = s, then we have

S(i, D, s) = S(j,D′, s′).

• Otherwise, S(i, D, s) = 0.

Proof. Assume there is some (A,B) such that scen(G′[A ∪B,Xi]) = s. Let s′ =
scen(G′[A ∪B,Xj]). By Lemma 5.3 it follows s = sintroduce(s

′, a, G′[Xi]). Conversely,
Lemma 5.3 also guarantees that for all (A,B) with scen(G′[A ∪B,Xj]) = s′ and
sintroduce(s

′, a, G′[Xi]) = s we have scen(G′[A ∪B,Xi]) = s.

Algorithm 4 Computing the parts at an introduce node.

1: procedure Introduce(i, D)
2: for all scenarios s for |Xi| vertices do
3: S(i, D, s)← 0
4: end for

5: j ← child of i
6: a← vertex being introduced in Xi

7: for all scenarios s′ for |Xj| vertices do
8: s← sintroduce(s

′, a, G∇D[Xi]) ⊲ Definition 5.4
9: S(i, D, s)← S(j,D \ {a}, s′)
10: end for

11: end procedure

6.4 Forget nodes

Finally, let us consider Algorithm 5, which handles forget nodes. It is based on

28



Lemma 6.3. Let i be a forget node with child j and Xj = Xi ∪ {a}. Let D ⊆ Xi

and s a scenario of Xi. Then

S(i, D, s) =
∑

{

S(j,D, s′) | s′ scenario of Xj with signore(s
′, a) = s

}

+
∑

{

xau
∆rforget(s

′,a,G∇D[Xj])v∆nforget(s
′,a,G∇D[Xj])S(j,D, s′) |

s′ scenario of Xj with sforget(s
′, a, G∇D[Xj]) = s

}

+
∑

{

yau
∆rforget(s

′,a,G∇D′[Xj ])v∆nforget(s
′,a,G∇D′[Xj ])S(j,D′, s′) |

s′ scenario of Xj

with sforget(s
′, a, G∇D′[Xj]) = s, D′ = D ∪ {a}

}

.

(6.3)

Proof. We use (6.1) again. Let (A,B) admissible. There are three cases: (1) a 6∈
A ∪ B, (2) a ∈ A and (3) a ∈ B. In case (1), the term corresponding to (A,B) is
contained in the first sum in (6.3). In case (2) we obtain the term corresponding
to (A,B) from the second sum in (6.3), where we use Lemma 5.5 and multiply by
xa to represent the fact that a is in A. We also multiply by some power of u and v
depending on the rank (nullity, resp.) difference with vs. without a in the extension.
Case (3) is similar, but we also have to use D′ instead of D as in this case a belongs
to B and thus the self loop at a is toggled.

6.5 Running time

We start with a nice tree decomposition with O(n) nodes. Recall that k is the max-
imum bag size of the tree decomposition. To obtain the vertex order (Algorithm 1)
O(n) · poly(k) steps are sufficient.

The running time of Algorithm 2 can be analyzed as follows. The i loop is
executed O(n) times, as there are O(n) nodes in the tree decomposition. There are
at most 2k sets D ⊆ Xi for every node i. There are at most 2(3k+1)k/2 scenarios for
k vertices (Lemma 3.3). The join case (Algorithm 3) sums over pairs of scenarios
and thus dominates the running time of the introduce (Algorithm 4) and forget
(Algorithm 5) case. In the join case, we have to sum over at most (2(3k+1)k/2)2 pairs
(s1, s2). Converting the scenarios (Line 10 of Algorithm 3, Line 8 of Algorithm 4,
and Lines 8, 11 and 15 of Algorithm 5) takes time polynomial in k, as we have shown
in Section 5. Thus, the running time of Algorithm 2 is at most

O(n) · 2k · (2(3k+1)k/2)2 · poly(k),

29



Algorithm 5 Computing the parts at a forget node.

1: procedure Forget(i, D)
2: for all scenarios s for |Xi| vertices do
3: S(i, D, s)← 0
4: end for

5: j ← child of i
6: a← vertex being forgotten in Xi

7: for all scenarios s′ for |Xj| vertices do
8: s← signore(s

′, a) ⊲ Definition 5.7
9: S(i, D, s)← S(i, D, s) + S(j,D, s′)
10: G′ ← G∇D[Xj]
11: s← sforget(s

′, a, G′) ⊲ Definition 5.6
12: S(i, D, s)← S(i, D, s) + xau

∆rforget(s
′,a,G′)v∆nforget(s

′,a,G′)S(j,D, s′)
13: D′ ← D ∪ {a}
14: G′ ← G∇D′[Xj]
15: s← sforget(s

′, a, G′)
16: S(i, D, s)← S(i, D, s) + yau

∆rforget(s
′,a,G′)v∆nforget(s

′,a,G′)S(j,D′, s′)
17: end for

18: end procedure
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if we assume that arithmetic operations such as addition and multiplication (of num-
bers) can be performed in one time step. The degree of the interlace polynomial is
at most n in every variable (cf. Definition 2.1). This leads to the following result.

Theorem 6.4. Let G = (V,E) be a graph with n vertices. Let a nice tree decompo-
sition of G with O(n) nodes and width k be given, as well as numbers u, v and, for
each a ∈ V , xa, ya. Then Algorithm 2 evaluates the multivariate interlace polynomial
C(G) at ((xa)a∈V , (ya)a∈V , u, v) using 23k

2+O(k) · n arithmetic operations. If the bit
length of u, v, and xa, ya, a ∈ V , is at most ℓ, the operands occurring during the
computation are of bit length O(ℓn).

To evaluate the interlace polynomial of Arratia et al. [ABS04b], which does not
use self loop toggling in its definition, we do not need parameter D in (6.1) and the
D-loop in Algorithm 2. This simplifies the algorithm a bit. The running time is also
reduced, but only by a factor ≤ 2k and thus it is still 23k

2+O(k)n.
If we consider path decompositions (see, for example, [Bod98]) instead of tree

decompositions, we have no join nodes. Thus, for graphs of bounded pathwidth, we
get a result similar to Theorem 6.4 but with running time reduced to 21.5k

2+O(k) · n.

7 Variants of the algorithm

7.1 Evaluation vs. computation

The main motivation for our algorithm is evaluation of the multivariate interlace
polynomial: We are given numerical values for the variables xa, ya, u, v, an n-vertex
graph G and a nice tree decomposition of G. From this, we want to compute the
numerical value C(G; (xa)a∈V , (ya)a∈V , u, v). Our algorithm solves this problem as
described above.

Another problem one might be interested in is the computation of the interlace
polynomial: Given G, output a description of the polynomial C(G), which is a
polynomial over the indeterminates {xa, ya | a ∈ V } ∪ {u, v}. As the number of
monomials of C(G) is exponential in n, there is no algorithm with running time
polynomial in n that computes the multivariate interlace polynomial if we represent
C(G) as a list of the coefficients of all the monomials. However, there are other ways
of representing polynomials, for example arithmetic formulas and arithmetic circuits,
which are considered in algebraic complexity theory [BCS97].

An arithmetic circuit is a directed graph with nodes of indegree 0 or 2. Nodes
with indegree 0 are inputs and labeled by a constant or a variable. They compute
the polynomial they are labeled with. Nodes with indegree two are labeled with plus
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or times and compute the sum (product, resp.) of their children. We say that a
circuit computes a polynomial if it computes it at one of its nodes.

If one accepts arithmetic circuits as a compact way to describe polynomials,
then our algorithm actually computes the multivariate interlace polynomial: Use
Algorithm 2 as a procedure to create an arithmetic circuit for the polynomial C(G)
in the following way. Start with a circuit with inputs xa and ya for each a ∈ V , as
well as inputs for u, v, 0, and 1. For each operation of the algorithm of Section 6
using the “parts” S(i, D, S), add gates that implement this operation. In this way,
the algorithm creates an arithmetic circuit C of size 23k

2+O(k)n that computes C(G).
In the following two subsections, we use this point of view for parallel evaluation

and for computation of d-truncations of the multivariate interlace polynomial.

7.2 Parallelization

In this subsection we discuss a way to parallelize our algorithm. We do this using two
operations on the tree decomposition: (1) removing all leaves and (2) contracting
every path with more than one node. Our approach is not new but a variation of
standard methods [Lei92, Section 2.6.1], [JaJ92, Section 3.3].

To describe the operations, we need some formalism. We use vectors σ to collect
the parts of the interlace polynomial which are computed. For each node i we
define the vector σi = (S(i, D, s) | D ⊆ Xi, s scenario of Xi), where the order of the
components of the vector is fixed appropriately. We call σi the “output” of node i.
We call nodes with one child 1-nodes and nodes with two children 2-nodes. Nodes
without children are leaves. Every 1-node has one input vector σj which is the output
of its child, every 2-node has two input vectors which are the output vectors of its
children. By definition, for leaves the input and the output is identical.

With each 1-node i with child j we associate a matrix Ai. The computation of
the 1-node i is σi = Aiσj . For an introduce node i with child j, by Lemma 6.2 we
trivially can write σi = Aiσj for some matrix Ai. The entries of Ai are either 0 or 1.
Now let i be a forget node with child j. Consider (6.3). Note that in each of the three
sums, the question, which S(j,D, s′) (S(j,D′, s′), resp.) are used, i. e. over which
(D, s′) ((D′, s′), resp.) is summed, can be answered considering only G[Xj ] and the
involved scenarios. Thus, we can compute from this a matrix Ai with σi = Aiσj ,
too. The entries of Ai are 0, 1, xau

lv2−l or yau
lv2−l, where l ∈ {0, 1, 2}.

Consider a 2-node i with children j1 and j2. The computation performed at i is

σi(D, s) =
∑

σj1(D, s1)σj2(D, s2), (7.1)

where the sum is taken over the same elements as in (6.2).
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The parallel computation of the interlace polynomial works as follows. We start
with the nice tree decomposition of the input graph with O(n) nodes and an arith-
metic circuit of constant depth which computes σi for all leaves i of the tree decom-
position and Ai for all matrices associated with any node i of the tree decomposition.
Then we reduce the tree underlying the tree decomposition step by step. Every time
we reduce the tree, we extend the arithmetic circuit such that the above invariant is
preserved.

We initialize the arithmetic circuit as follows: We insert the constants 0 and 1,
u, v and for every vertex a of G we insert xa and ya. Then we produce all entries
of all matrices associated with any node of the tree decomposition in parallel. This
takes constant depth.

We repeat the following operations on the tree decomposition until it consists
only of one leave: (1) contract all paths of 1-nodes and (2) remove all leaves.

Path contraction works as follows. For a sequence i1, i2, . . . , iℓ of 1-nodes we have
σiℓ = Aiℓ · . . . · Ai1σj , where σj is the input of node i1. Thus, we can substitute the
sequence by one node which has Ã = Aiℓ · . . . · Ai1 associated with it and gets σj

as input. The depth of computing the matrix product in parallel is Θ(log ℓ). Thus
a step contracting any number of disjoint 1-nodes paths of length ≤ ℓ increases the
depth of the arithmetic circuit by Θ(log ℓ).

Now we come to removal of leaves. By this we mean the following: Let L be the
set of all leaves of the tree decomposition. Remove the elements of L distinguishing
the following cases: (1) node i has two children j1 and j2 which are both leaves, (2)
node i has two children j1 and j2, one of which is a leaf (j1, say) whereas the other is
not, and (3) node i has one child j which is a leaf. To handle case (1) we introduce a
level with multiplications and a level with additions to perform (7.1). This increases
the depth by 2. In case (2) node i becomes a 1-node: The σj1(D, s) in (7.1) become
coefficients of a new matrix Ã associated to i. As by the invariant, the arithmetic
circuit already computes the σj1(D, s), we do not need any new gates and depth is
not increased. For case (3) we have to implement the matrix multiplication Aiσj to
compute σi. This increases the depth by a constant. Thus, removing all leaves in L
increases the depth only by a constant.

After performing all possible path contractions, the number of 1-nodes is at most
two times the number of 2-nodes. Thus, at least 1/4 of the nodes are leaves. This
implies that the following removal of leaves decreases the number of nodes of the
tree decomposition by a factor of at least 1/4. Thus, after O(logn) steps the tree
decomposition is reduced to a single leave. In each step the depth increases by
at most O(logn), which gives a O(log2 n) bound on the depth of the constructed
arithmetic circuit.
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7.3 Computation of the coefficients

As discussed in Section 7.1, our algorithm can be used to create an arithmetic circuit
C of size 23k

2+O(k)n that computes C(G) for an n-vertex graph G with appropriate
tree decomposition of width k. Now one can apply standard techniques to convert C
into a procedure computing some of the coefficients of C(G).

Let us elaborate this for an example, the computation of the d-truncation of
the multivariate interlace polynomial. Courcelle defines the d-truncation [Cou08,
Section 5] of a multivariate polynomial as follows. The quasi-degree of a monomial
is the number of vertices that index its indeterminates. As the G-indexed part of
the monomials of the multivariate interlace polynomial are multilinear, the quasi-
degree of a monomial of C(G) is the degree of its G-indexed part. For example, the
quasi-degree of the monomial xAyBu

rvs is |A| + |B|. The d-truncation P (G)|d of a
polynomial P (G) is the sum of its monomials of quasi-degree at most d. LetM be
a set of monomials. If

f =
∑

m∈M

amm

is a polynomial andM′ ⊆M, we set

f |M′ =
∑

m∈M′

amm.

As we want to use a result on fast multivariate polynomial multiplication which
uses computation trees [BCS97, Section 4.4] as model of computation, we also for-
mulate our result in this model. In addition to the arithmetic operations (addition,
multiplication, division), also comparisons are allowed in this model. Each of these
operations is counted as one step.

Theorem 7.1 ([LS03, Theorem 1]). Consider polynomials over the indeterminates
x1, . . . , xn. Let d be a positive integer, and D the monomials of degree at most d. Let
f, g be two polynomials. Then, assuming the coefficients of f |D and g|D are given,
the coefficients of (f · g)|D can be computed using

O(D(logD)3 log(logD))

operations in the computation tree model, where D = |D|.

Corollary 7.2. Let G be a graph with n vertices. Let a nice tree decomposition of
G with width k and O(n) nodes be given. Then the coefficients of all monomials of
the d-truncation of C(G) can be computed using

23k
2+O(1)nd(1+o(1))+O(1)
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operations in the computation tree model.

Note that the d-truncation of C(G) has more than
(

n
d

)

≥ nd(1−log d/ logn) monomi-
als.

Proof of Corollary 7.2. Let us fix a d and a graph G with n vertices and treewidth
k. We want to compute the coefficients of the d-truncation of C(G). As discussed
in Section 7.1, there exists an arithmetic circuit C of size 2k

3+O(k)n computing C(G).
We convert every operation f = g+ h or f = g · h in C into a sequence of operations
computing the coefficients of each monomial of f |d. In this way, we also get the
coefficients of C(G)|d. To prove the corollary, it is sufficient to show that each
operation is converted into at most nd(1+o(1))+O(1) operations.

We start with additions. We convert every addition gate f = g + h in C into the
operations fm = gm + hm, m ∈ M, where M is an appropriate set of monomials.
The monomials of C(G)|d are a subset ofM ifM denotes the set of all monomials
over G-indexed variables x and y and ordinary variables u and v such that the quasi-
degree is at most d and the degree in u and in v is at most n. We can select a
monomial in M in the following way. First, choose d times either 1 or a variable
from {xa, ya | a ∈ V }. Then, choose the exponent of u and v from {0, 1, . . . , n}.
Thus, we have

|M| ≤ (2n+ 1)d(n + 1)2 = nd
(

1+O(1)
log n

)

+O(1). (7.2)

As we convert every addition from C into |M| operations, the claimed bound of the
corollary is fulfilled.

Now let us consider multiplications, i.e. let f = g ·h be a multiplication gate in C.
We use fast multivariate polynomial multiplication for the G-indexed variables and
the school method for the ordinary variables. To this end, we fix the u- and v-part
of the monomial, i.e. we choose du and dv, 0 ≤ du, dv ≤ n. We want to compute the
coefficients of the monomials m of f with degu(m) = du and degv(m) = dv. Choose
nonnegative integers du,g, du,h, dv,g, dv,h such that du,g+du,h = du and dv,g+dv,h = dv.
Let

D = {xAyB | A,B ⊆ V (G), |A|+ |B| ≤ d}.

We can assume that we have already computed all coefficients of g̃ := g|udu,gvdv,gD
and h̃ := h|udu,hvdv,hD. (Here, an expression of the form uavbD denotes the set
{uavbm | m ∈ D}.) By Theorem 7.1, we can compute all coefficients of the product
g̃ · h̃ using

O(|D|(log |D|)3 log log |D|) = nd
(

1+O(1)
log n

)

+O(log log n)
log n
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operations, as |D| ≤ (2n + 1)d ≤ nd
(

1+ log 3
log n

)

. We do this for every choice of du,g,

du,h, dv,g, and dv,h. As these are at most (n + 1)2 many, this takes nd
(

1+
O(1)
log n

)

+O(1)

steps. Adding the results monomial-wise needs at most |D|(n+1)2 = nd
(

1+O(1)
log n

)

+O(1)

additions and yields the coefficients of f |uduvdvD. We do this for all (n+1)2 choices
of du and dv to obtain the coefficients of all monomials of the d-truncation of f .

Thus, each multiplication in C is converted into nd
(

1+
O(1)
log n

)

+O(1) operations. This,
again, is within the claimed bound of the corollary.

8 Further questions

If we consider graphs of bounded cliquewidth instead of treewidth, so called k-
expressions take the role of tree decompositions. Our concept of scenarios is tailor-
made for tree decompositions and does not work with k-expressions. Is there a linear
algebra approach, possibly similar to the one we presented in this work, to compute
the interlace polynomial using k-expressions?

The notion of rankwidth, which is related to cliquewidth [Oum05, OS06], is de-
fined using the GF (2)-rank of some matrices derived from a graph. Furthermore,
local complementation is studied in the context of the interlace polynomial as well
as in the context of rankwidth [Oum05, Section 2]. Thus, it seems to be possible
that rank decompositions support the computation of the interlace polynomial very
nicely. We have not investigated this question in detail and leave it as a direction
for further research.

Acknowledgement

We would like to thank Bruno Courcelle and the anonymous referees for their helpful
comments on previous versions of the paper, which led to a reduction of the running
time bound.

References
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[Bol02] Béla Bollobás. Evaluations of the circuit partition polynomial. J. Comb.
Theory Ser. B, 85(2):261–268, 2002.
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