
Storing a Compressed Function with Constant
Time Access

Jóhannes B. Hreinsson, Morten Krøyer, and Rasmus Pagh?

IT University of Copenhagen, 2300 København S, Denmark
{johre06,kroyer,pagh}@itu.dk

Abstract. We consider the problem of representing, in a space-efficient
way, a function f : S → Σ such that any function value can be computed
in constant time on a RAM. Specifically, our aim is to achieve space usage
close to the 0th order entropy of the sequence of function values. Our
technique works for any set S of machine words, without storing S, which
is crucial for applications.
Our contribution consists of two new techniques, of independent interest,
that we use in combination with an existing result of Dietzfelbinger and
Pagh (ICALP 2008). First of all, we introduce a way to support more
space efficient approximate membership queries (Bloom filter function-
ality) with arbitrary false positive rate. Second, we present a variation of
Huffman coding using approximate membership, providing an alternative
that improves the classical bounds of Gallager (IEEE Trans. Information
Theory, 1978) in some cases. The end result is an entropy-compressed
function supporting constant time random access to values associated
with a given set S. This improves both space and time compared to a
recent result by Talbot and Talbot (ANALCO 2008).

1 Introduction

Compression is an important technique in modern computing systems. Often,
some kind of random access is required, such that a given data item can be de-
compressed without decompressing all data. The standard way of dealing with
this requirement is to split the data into blocks that are compressed and decom-
pressed individually. The end result is a trade-off between compression and access
time: Larger blocks lead to better compression, but slows down decompression.
A recent theoretical breakthrough of Pǎtraşcu [17] shows how to combine opti-
mal (in a certain sense) compression of an array with logarithmic decompression
time. In this paper we are concerned with compression of functions that allows
random access. Like most other compression methods we deal with the static
case, and do not consider efficient updates.

The problem of storing a function f with certain specified values (referred
to as the retrieval problem) has recently received renewed interest [7, 9, 18]. The

? This work was supported by the Danish National Research Foundation, as part of
the project “Scalable Query Evaluation in Relational Database Systems.”

main finding is that there exist simple methods that store f in space close to
the space that would be needed to store the (uncompressed) function values,
and provide constant access time. For example, if f maps city names to weather,
and there are two kinds of weather, f can be stored in close to 1 bit per value,
with fast random access to the value for a particular city name. This is of course
much less than the space usage required for also storing the set of city names.
The price paid compared to standard dictionary representations is that the data
structure does not detect when it is used on an input where no function value
has been specified—in this case it will simply return some arbitrary value.

The retrieval problem is relevant in situations where the amount of data
associated with each key is small, and it is either known that queries will only
be asked on keys in a fixed set S, or where the query answers for keys not in
S are insignificant. For example, suppose that we have ranked a collection of
web pages. Then a retrieval data structure would be able to return the ranking
of a given URL, without storing the URL itself. This might allow the ranking
information to be stored entirely in RAM (e.g., a browser could show highly
ranked links more prominently). Several applications of retrieval structures as
building blocks in other data structures are described in [1, 2].

Our starting point is that data values are often skewed (e.g., in some parts
of the world it is sunny much more often than it is rainy), and we may like to
extend the set of possible values (e.g., add more rare weather phenomena such
as thunderstorms) without increasing the number of bits required to represent
each function value. Therefore, it is desirable to have representations where the
space usage is dependent on the entropy of the data values rather than on the
number of possible values.

1.1 Our results

Let S = {x1, . . . , xn} denote the domain of the function, and let Σ be the
set of possible (or actual) function values. For simplicity we assume that Σ =
{1, . . . , σ} — the general case can be handled by a separate data structure im-
plementing a bijection between Σ and {1, . . . , σ} (e.g. a minimal perfect hash
function [19, 12, 4] for Σ plus an array of size σ). We describe a new data struc-
ture that represents a function f : S → Σ in space that is close to the (empirical,
0th order) entropy H0 of the sequence f(x1), . . . , f(xn). If p1, p2, . . . are the fre-
quencies of different characters in the sequence, H0 =

∑
i pi log2(1/pi) is a lower

bound on the number of bits needed per function value, assuming that the func-
tion values are independent of the corresponding input values.

We present our results in the Word RAM model of computation [11] with
word size w. To simplify the presentation we assume that elements of S as well
as values in Σ can be represented in a single word, and specifically that w ≥
2 + log σ. We show the following:

Theorem 1. Let n, w, and σ be positive integers, where w3 < n < 2w and
σ ≤ 2w, let δ > 0 be a constant, and let S = {x1, . . . , xn} ⊆ {0, 1}w be a set of
size n. Given a function f : S → {1, . . . , σ}, let H0 denote the empirical (0th

2

order) entropy of the sequence f(x1), . . . , f(xn), and let p1 denote the frequency
of the most common function value. If n is larger than some constant (depending
on δ) there exists a retrieval data structure for f using space

(1 + δ)H0 + min(p1 + 0.086, 1.82(1− p1)) bits

per function value, plus o(σ) bits to store information about the distribution,
such that a function value can be computed in O(1) time on a Word RAM with
word size w.

Discussion. The term o(σ) is negligible in most cases that are interesting
from a compression point of view, i.e., in cases where the number σ of possible
values is not much larger than the number of values n. Ignoring this term, the
number of bits per character is at most H0 (a lower bound) times 1 + δ, plus
a small additive term. This is similar to the space that would be obtained by
Huffman coding the sequence of function values (with no random access). If p1

is close to 1 the space usage becomes much better than using Huffman coding —
in fact, the space per value can get arbitrarily close to 0, while Huffman coding
uses at least 1 bit per value. An example where this is important is storage of
functions with many undefined/NULL values.

While the algorithm used to construct our data structure is somewhat com-
plex, the algorithm for evaluating f is extremely simple. It consists of looking
up O(1) w-bit strings, performing a bitwise exclusive or, and applying a con-
stant time decoding procedure similar to Huffman decoding. This is illustrated
in Figure 1. Thus, we show how to extend the simplicity of existing retrieval
data structures (with no compression) to the compressed case.

Techniques. Technically, we first show how to extend existing retrieval data
structures to support variable length bit strings as values. The method works
under the condition that the set of possible values is prefix-free, and involves
a nontrivial load balancing idea using slightly correlated hash functions. Com-
bining this with a variation of (length-limited) Huffman coding, and showing
how the decoding can be done in constant time, yields a result that is close to
Theorem 1, but missing the second part of the minimum in the additive term.
To strengthen the result in the important case where the majority of function
values are identical we show how to use an approximate membership data struc-
ture (i.e., a data structure with the same functionality as a Bloom filter [3]) to
decrease the space usage.

To reduce the redundancy as much as possible, we describe a general reduc-
tion that can be used to obtain space-efficient approximate membership data
structures for any false positive rate ε > 0. Previous space-efficient methods
(see [9] for an overview) provided false positive rates that are negative powers
of two. This means that one needs to “pay” (with extra space usage) for a false
positive rate that is up to 50% smaller than desired – our method reduces this
to less than 6%.

3

h2 h1 h3

w w w

+

+

 Decoding of
prefix-free code

f(x)

a

b

c

a b c

(x) (x) (x)

Fig. 1. Illustration of how a value f(x) is computed from our data structure.

1.2 Related work

Several previous papers described data structures having two independent func-
tionalities: They support retrieval queries (given x ∈ S, return f(x)), and ap-
proximate membership queries (given x, return “true” if x ∈ S, and return
“false” with probability at least 1 − ε if x 6∈ S). A data structure with this in-
terface is sometimes referred to as a bloomier filter [8]. In this paper we consider
only the retrieval problem, but note that approximate membership queries can
be added (without loss) by a separate approximate membership data structure.

A faster approach to space-efficient retrieval is through space-efficient mini-
mal perfect hashing [19, 12, 4]. For Σ = {0, 1}r, where r ≤ w is a positive integer,
this gives a space usage of nr + O(n) bits and O(1) query time. However, this
approach is rather complicated, and it seems especially complicated to generalize
it to variable-length function values (which would be required for compression).
Also, even without compression the use of minimal perfect hashing is known to
yield a redundancy of at least log2 e ≈ 1.44 bits per element in S, which is more
than we achieve.

Rather than building on minimal perfect hashing, we use as a starting point
the recent retrieval structure described by Dietzfelbinger and Pagh [9], which
gives a very simple query algorithm for function values in Σ = {0, 1}r (with
no compression). Similar techniques have recently been studied in two other
papers [9, 18]. The result of Porat [18] is that a space usage of nr + o(n) bits
is possible with O(1) query time. While this is asymptotically superior to [9],
it relies heavily on tabulation and does not seem to admit a similarly efficient
generalization to the compressed case. We refer to the discussion in [9] for a
history of related data structures.

The first paper to consider compressed retrieval was recently published by
Talbot and Talbot [20]. The authors consider a relaxation of the retrieval prob-
lem, where a fraction ε of the function values are allowed to be incorrect (“mis-
assignments”). Arguably, this makes their data structure unusable for some ap-
plications, but we still find it instructive to compare their result to ours (even
assuming ε is close to 1). Talbot and Talbot show how to obtain two different
trade-offs between compression and query time: Space 1.44H0 + 1 + log log σ per

4

value is possible with query time O(log2 σ), or alternatively space 2.88H0 + 2
per value is possible with query time O(log σ). It is also stated (without proof)
that the multiplicative constants can be improved to 1.23 and 2.46, respectively.
The technique used in [20] is essentially adaptive decoding of Huffman encoded
values (one bit at a time). Our data structure performs O(1) non-adaptive mem-
ory accesses, does not have misassignments, and improves time as well as space
of both trade-offs. In addition, the query algorithm is considerably simpler, and
more likely to be of practical use.

Recently, another retrieval data structure that is able to take advantage of
skew in the value distributions, “two-step MWHC”, was described in [2]. While
this method has O(1) query time, its space usage is larger than ours, and cannot
be bounded in terms of the 0th order entropy.

1.3 Preliminaries

Each element in S = {x1, x2, . . . , xn} ⊆ D maps to the value f(xi) from an
the alphabet Σ = {1, . . . , σ}. Let ai denote the ith most frequent value in Σ,
breaking ties arbitrarily. For uniformly random x ∈ S we let pi = Pr{f(x) = ai},
for i = 1, 2, . . . , σ.

Since we build on the data structure of Dietzfelbinger and Pagh [9], we now
briefly describe it. Suppose that k ≥ 3 hash functions h1, . . . , hk are given such
that for any xi ∈ S the set {h1(xi), . . . , hk(xi)} is a random set of size k (no
collisions), and the sets associated with different xi are independent1. The idea
is to set up a vector A of r-bits values, such that f(xi) can be calculated as a
bitwise exclusive-or of k vector entries.

f(xi) =
⊕

j∈{1,...,k}

Ahj(xi). (1)

On inputs x ∈ D \ S, the query algorithm returns an arbitrary value. The
existence of a suitable vector A depends on the hash function values of the keys
in S. It is shown in [9], using results from [5], that for any δ > 0 there exists a
constant k = O(log(1/δ)), such that array size m = (1 + δ)n suffices to ensure
the existence of A with high probability, given that n exceeds some sufficiently
large constant. Specifically, the probability of failure for k ≥ 4 is O(n−5/7) [9].
We observe that a failure is not a serious problem, since we may simply choose
k new hash functions and try again until we succeed. Even a small value of k
allows a very space-efficient data structure, e.g., the redundancy δ for k = 3, 4, 5
is around 12%, 3%, and 1%, respectively.

Computing the entries of vector A requires solving a system of linear equa-
tions over GF(2). At first glance this seems to require Gaussian elimination in
time O(n3), but it is shown in [9] how to set up equation systems that are easier
to solve, and require time O(n1+ε), for any ε > 0, or even linear time (increasing
1 The assumption that fully independent hash functions are available can be justified,

in the sense that there is a simulation of full randomness that makes everything
work. See [9] for details.

5

k by O(1)). The first technique is based on splitting the set S into buckets of
size nε/2, and this also applies to our setting in a straightforward fashion. This
means we can achieve construction time O(n1+ε), for any ε > 0. Since the details
are very similar to [9] we do not further describe this.

Overview of paper. In section 2 we present an efficient data structure for the
retrieval problem with variable length values from a prefix-free set of bit strings.
Section 3 describes how to combine this with a variation of Huffman coding that
can be decoded in constant time. Finally, in section 5 we show how to improve
the result in the case where some function value is much more frequent than
others, using a result on approximate membership described in section 4.

2 Retrieval with variable-length values

We will use a prefix-free code for values in Σ, so that we get a function f : S →
{0, 1}∗, where the keys are mapped to codewords of various length. We assume
that the longest codeword has length at most w, which will be the case in our
application. Our data structure will represent a similar function, f̂ : S → {0, 1}w,
so that for each key xi ∈ S, f(xi) is a prefix of f̂(xi). Since the values of f are
prefixes of the values of f̂ , and the code is prefix-free, we can use a code tree to
determine the value of f(xi) from f̂(xi), so in effect this gives a representation
of f . Section 3 will describe how to do the decoding efficiently.

The data structure and query algorithm. Our data structure is simply a bit array
A of length m, where m = (1 + δ/3)

∑
i |f(xi)| + O(w), i.e., m is essentially a

factor 1 + δ/3 larger than the total length of all strings in f(S). We round up m
to the nearest multiple of w, and implement “wrap-around” reads by duplicating
the initial word of A after the last word. This means that when we look up w
consecutive bits, the data structure behaves like a cyclic array of m bits.

Let k ≥ 3 be an integer constant, and let h1, . . . , hk be hash functions map-
ping each key to k bit positions in A (details below). We arrange the array so
that for any key x ∈ S, we can compute f̂(x) as the bitwise exclusive-or of the k
words starting at the bit positions h1(x), . . . , hk(x). (Note that these words are
not necessarily aligned with the Word RAM machine words.)

Hash functions and construction algorithm. Let h′1, . . . , h
′
k : S → [m/w] be hash

functions such that for any x, the set {h′1(x), . . . , h′k(x)} contains k (distinct)
values, and is uniformly distributed over all such sets. (See [9] for a discussion on
how to construct such hash functions in an efficient way.) Also, let q : S → [w]
be a fully random hash function. We use the k hash functions defined by:

hi(x) = h′i(x)w + q(x) . (2)

That is, for any x the logw least significant bits of the hash function values
h1(x), . . . , hk(x) are identical, while the dlog(m/w)e most significant bits are
distinct.

6

In order to construct A we must solve the following system of linear equations

f(xi)d =
k⊕
j=1

Ah′
j(xi)w+q(xi)+d, for (3)

i = 1, . . . , n, d = 1, . . . , |f(xi)|

where f(xi)d is the dth bit in the codeword associated with the key xi. We
observe that all equations involve only bit positions in A that have the same
residue modulo w. This means that there are in effect w systems of equations
that may be solved individually. In each such system, an equation for f(x)d
involves the k variables at positions {h′1(x), . . . , h′k(x)} within the system. This
is exactly the setting of [9], which means that the same construction algorithm
and analysis applies to each system.

2.1 Analysis

Let nd denote the number of equations in the linear system corresponding to bits
in positions with residue d modulo w. Note that nd =

∑
iXd,i, where Xd,i is

an indicator random variable that is 1 if and only if some equation involving xi
involves bits in position with residue dmodulo w. Note thatXd,i depends entirely
on q(xi). For every d, the random variables Xd,i, i = 1, . . . , n, are independent,
so the sum nd is tightly concentrated around the expectation of

∑
i |f(xi)|/w.

By Chernoff bounds (e.g. [16, Theorem 4.1]), and using that n > w3, we have
that Pr[nd > (1 + δ/2)n/w] < 1/(2w) when n is sufficiently large. This means
that with probability at least 1/2 (over the choice of q) the w equation systems
are “well balanced” in the sense that nd ≤ (1 + δ/2)n/w for all d.

Conditioned on nd ≤ (1 + δ/2)n/w we can use Calkin’s bounds [5, 9], which
imply that each equation system is solvable with probability 1−O((n/w)−5/7) ≥
1 − o(1/w), where the inequality uses that n ≥ w3. By the union bound this
means that with probability 1 − o(1) all equation systems are simultaneously
solvable, and hence a suitable bit array A exists. In conclusion, the probability
that the randomly chosen hash functions are suitable is bounded away from 0,
so a constant number of trials suffices in expectation to find good hash functions
for a given set S.

3 Constant time Huffman-like decoding

Without loss of generality assume that δ < 1 in the statement of Theorem 1.
We wish to apply the data structure of section 2 with a near-optimal prefix-free
code. One possibility would be a Huffman code [13], but since we are willing to
sacrifice a factor 1 + δ/3 in space usage it is possible to do better, both in terms
of decoding time and in terms of the size of the representation of the code tree.

The first step is to identify the set of values Σ′ for which the number of
occurrences is above n/σ1/(1+δ/3). Observe that |Σ′| ≤ σ1/(1+δ/3). Conceptually,
we substitute all function values in Σ\Σ′ with a new value ⊥, and then consider

7

a code tree for the values of the resulting function f∗. Length-limited Huffman
codes [14, 15] provide codewords of maximum length ` = log |Σ′|+O(1), whose
redundancy is within an additive constant of Huffman codes. In fact, the additive
constant can be made arbitrarily small by increasing the O(1) term. Decoding
of length-limited Huffman codes can be done in constant time using a table
indexed by all bit strings of length `, where an entry contains the value in Σ
corresponding to its prefix. The size of the table is 2` log σ = O(|Σ′| log σ) = o(σ)
bits.

Whenever the value ⊥ is observed in the lookup table, we fall back on a
trivial encoding of the appropriate symbol. We store the codeword for ⊥, and
use the next dlog σe bits to encode the value. Since the frequency of each symbol
encoded in this way is at most σ−1/(1+δ/3), the total length of the resulting n
codewords is at most a factor 1/(1+δ/3) from the length if an optimal code was
used.

In conclusion, we have described a variation of Huffman coding that can be
decoded in constant time, using a table of o(σ) bits, at the expense of increasing
the length of codewords by a factor arbitrarily close to (but bounded away
from) 1. Using this with section 2 we get a result that is very close to Theorem 1,
but where the additive term in the space usage does not decrease with p1.

4 Approximate Membership with Arbitrary Error

As a building block to be used in the next section, we now consider the ap-
proximate membership problem. Using traditional theory on approximate mem-
bership (AM), the theoretical lower limit for the space usage of AM structures
is n log2(1/ε) bits [6]. In known optimal constructions, the limit can only be
reached (or reached within a factor 1 + δ) when ε is a negative power of 2.
We now describe a way to circumvent this limitation that is more efficient than
simply choosing a lower false positive probability.

We describe an AM structure with near optimal space complexity and with
an arbitrary false positive error rate, ε = c 2−i, where c ∈ [1/2; 1], and i is a
positive integer. Let g be a random hash function, g : D → [0; 1] mapping the
keys in S uniformly and independently to [0; 1] (a discrete approximation would
be needed in an implementation, but the analysis would be essentially the same
as in the idealized scenario). Let γ = 2(1 − c) ∈ [0; 1], and divide S into two
subsets, S1 and S2, mapping to values smaller and larger than γ respectively.
Formally

S1 = S ∩ g−1([0; γ])

S2 = S ∩ g−1((γ; 1]).

Note that the expected number of keys in S1 is a fraction 2(1− c) of all the keys
in S.

The AM structure is made up of two ordinary AM structures, each with a
false positive rate that is a negative power of 2: one for S, with false positive rate

8

ε0 = 2−i, and one for S1, with ε1 = 1/2. A query on a key x is performed by first
consulting the larger structure. In case of a negative answer, we know the key is
not present. In case of a positive answer, we calculate g(x). If g(x) indicates that
the key is in S2, we return a positive answer. Otherwise, we consult the smaller
AM structure, and return the answer obtained.

It is easy to analyze the expected false positive rate of the AM structure
described above. Consider the false positives of the structure for S. For a fraction
2(1− c) of those, the hash function g will point to S1 and we therefore consult
the AM structure for S1. This will in turn result in a negative result for half of
the queries, since ε1 = 1/2. That is, a fraction 1− c of the false positives of the
structure for S has been eliminated. Since the structure for S has an error rate
ε0 = 2−i, the error rate of the whole AM structure is ε = c 2−i.

The expected space usage of the AM structure is i + 2(1 − c) bits per key,
which is close to the optimal log(1/ε) = i − log c bits per key. In fact, the
expected space usage is at most 1− log2 e+ log2 log2 e ≈ 0.086 bits per key from
the optimal value.

5 Improvement for skewed distributions

We now provide the last part needed to show Theorem 1. In particular, we focus
on the setting where the probability p1 of the most frequent value is large. The
idea is to use one or more approximate membership data structures as “filters”
that determine a large fraction of values at little cost.

The redundancy of a prefix-free code is the difference between the expected
cost of coding and the theoretical lower limit cost. The lower limit for coding a
sequence of symbols related to n keys (assuming that values and corresponding
keys are independent) is nH0, where H0 is the 0th order entropy of the value
distribution. The redundancy per key is therefore r = E(|u|)−H0.

Gallager [10] established that the redundancy of a Huffman code could be
bounded by

r ≤ p1 + ρ (4)

where p1 is the probability of the most frequent symbol a1 and ρ = 1− log2 e+
log2 log2 e ≈ 0.086. For p1 ≥ 0.5 the bound further reduces to r ≤ p1. Together
with the analysis in section 3 this immediately implies Theorem 1 whenever
p1 < 1/2.

In the following we examine the case where p1 ≥ 0.5, and determine a con-
stant bound lower than 1, by adding a filter for handling the most frequent
symbol. More specifically, we create an approximate membership structure, us-
ing the approach from the previous section. The structure supports O(1) time
membership queries on n keys, in space

(1 + δ)n(log2(1/ε) + ρ) bits,

where ρ ≈ 0.086 and ε is the false positive rate. Recall that the data structure
returns “true” for any key in the filter, and “false” with probability at least 1−ε
for other keys.

9

We build an AM structure for the subset S∗ that contains all keys in S
except those mapping to a1. All queries start by consulting this AM structure.
A negative result for a key x ∈ S means that the key with certainty maps
to a1. A positive result, however, means that the key is either in S∗ or is a false
positive (in which case it maps to a1). The remaining task is therefore to store
the restriction of f to the set SAM of keys for which the AM structure returned
“true”. This can be done using the method previously described (base case), or
recursively using the same method — we analyze the former case, where only
one filter is used. The expected number of keys in SAM is (1− p1 + εp1)n.

In terms of our original code tree, this approach corresponds to adding a top
level node, with the old root and a new a1 leaf as children. The new code is one
that allows two codewords for one symbol; one represented by the new leaf, and
another in a modified version of the old tree. The advantage lies in the the low
cost of coding the first bit using an AM structure, analyzed in the following.

5.1 Space Analysis

We now examine the space cost incurred by adding a filter as described. To
simplify the calculations we pretend that Huffman coding is used rather than
the method described in section 3. This means that all space bounds should be
multiplied by a factor 1 + δ/3. The size of the approximate membership data
structure with false positive rate ε is

n(1− p1)(log2(1/ε) + ρ) bits. (5)

If we let α = (1 − p1 + εp1) and assume that a2 is the second most frequent
symbol, with probability p2, Gallager [10] tells us that the space for encoding
the remaining values using a Huffman code can be bounded by

αn(H ′0 +
p2

α
+ ρ), (6)

bits per value, where H ′0 is the 0th order entropy of the distribution of values
over keys in SAM. Note that a2 may be identical to a1 if the same value remains
the most frequent.

In order to determine the redundancy of the combined structure, we express
H ′0 in terms of the original entropy H0, p1, and ε,

H ′0 =
σ∑
i=2

(
ni
αn

log
αn

ni

)
+
εn1

αn
log

αn

εn1
, (7)

By using

H0 =
σ∑
i=2

(
ni
n

log
n

ni

)
+
n1

n
log

n

n1
, (8)

we may conclude from (7) that

αH ′0 = H0 + p1 log p1 + (1− p1) logα+ εp1 log
(
α

εp1

)
. (9)

10

Summing the space usage from (5) and (6) and subtracting the lower bound H0

we can bound the redundancy per value r by a function of p1, p2, and ε:

r < log p1 + α log
(
α

εp1

)
+ p2 + (1− p1 + α)ρ. (10)

If we choose ε = 1 − p1, which is a near-optimal choice, we get α = 1 − p2
1,

and using p2 ≤ 1− p1 the redundancy is bounded by

r̂(p1) = log p1 + (1− p2
1) log

(
1 + p1

p1

)
+ (1− p1) + (2− p1 − p2

1)ρ. (11)

The function r̂ is convex, r̂(1) = 0, and du
dt r̂(1) > −1.82. Therefore r̂(p1) ≤

1.82(1 − p1). At the same time, Gallager’s bound means that we should not
use filtering whenever the resulting redundancy is above p1 bits per element
(assuming p1 > 0.5). The crossover happens around p1 = 0.63, meaning that
this is the maximum redundancy.

We have shown the following upper bound for the redundancy of our prefix-
free code:

r < min(p1 + 0.086, 0.63, 1.82(1− p1)) (12)

providing an alternative to Gallager’s [10] bound for Huffman codes. Our bound
is an improvement when there is a significant imbalance in the distribution of
symbols, in the way that one symbol dominates with p1 > 0.63. In the state-
ment of Theorem 1 we have omitted the middle term, which is only a small
improvement for a narrow range of p1 values.

6 Conclusion

We have described a data structure for space efficiently representing a function
with skewed function values. The representation uses space close to the entropy of
the function values, and is independent of the size of the domain of the function.

Our adaptation of [9] to handle variable-length strings is nontrivial in the
sense that the most straightforward generalizations do not seem to work, while
our method of choosing hash functions that are slightly correlated does. In ad-
dition, we have introduced several techniques that may be of independent in-
terest: A general reduction that gives approximate membership data structures
with arbitrary error probability, the use of filtering for efficient compression, and
constant time decoding of a Huffman-like code.

Acknowledgement. We thank the anonymous reviewers for their thorough
comments.

References

1. D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Monotone minimal perfect hash-
ing: Searching a sorted table with O(1) accesses. In Proceedings of the 20th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA ’09). ACM Press, 2009.

11

2. D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Theory and practise of monotone
minimal perfect hashing. In I. Finocchi and J. Hershberger, editors, ALENEX,
pages 132–144. SIAM, 2009.

3. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, July 1970.

4. F. C. Botelho, R. Pagh, and N. Ziviani. Simple and space-efficient minimal perfect
hash functions. In Proceedings of the 10th International Workshop on Algorithms
and Data Structures (WADS ’07), volume 4619 of Lecture Notes in Computer
Science, pages 139–150. Springer, 2007.

5. N. J. Calkin. Dependent sets of constant weight binary vectors. Combinatorics,
Probability & Computing, 6(3):263–271, 1997.

6. L. Carter, R. Floyd, J. Gill, G. Markowsky, and M. Wegman. Exact and approxi-
mate membership testers. In Proceedings of the 10th Annual ACM Symposium on
Theory of Computing (STOC ’78), pages 59–65. ACM Press, 1978.

7. D. Charles and K. Chellapilla. Bloomier filters: A second look. In Proceedings of
the 16th European Symposium on Algorithms (ESA ’08), volume 5193 of Lecture
Notes in Computer Science, pages 259–270. Springer, 2008.

8. B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The Bloomier filter: An efficient
data structure for static support lookup tables. In Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA ’04), pages 30–39. ACM
Press, 2004.

9. M. Dietzfelbinger and R. Pagh. Succinct data structures for retrieval and ap-
proximate membership. In Proceedings of the 35th International Colloquium on
Automata, Languages and Programming (ICALP ’08), Lecture Notes in Computer
Science. Springer, 2008.

10. R. Gallager. Variations on a theme by Huffman. IEEE Transactions on Information
Theory, 24(6):668–674, 1978.

11. T. Hagerup. Sorting and searching on the word RAM. In Proceedings of the 15th
Symposium on Theoretical Aspects of Computer Science (STACS ’98), volume 1373
of Lecture Notes in Computer Science, pages 366–398. Springer-Verlag, 1998.

12. T. Hagerup and T. Tholey. Efficient minimal perfect hashing in nearly minimal
space. In Proceedings of the 18th Symposium on Theoretical Aspects of Computer
Science (STACS ’01), volume 2010 of Lecture Notes in Computer Science, pages
317–326. Springer-Verlag, 2001.

13. D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the Institute of Radio Engineers, 40(9):1098–1101, 1952.

14. L. L. Larmore and D. S. Hirschberg. A fast algorithm for optimal length-limited
Huffman codes. Journal of the ACM, 37(3):464–473, July 1990.

15. R. L. Milidiú and E. S. Laber. Bounding the inefficiency of length-restricted prefix
codes. Algorithmica, 31(4):513–529, 2001.

16. R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University
Press, 1995.

17. M. Pǎtraşcu. Succincter. In Proceedings of the 49th Annual Symposium on Foun-
dations of Computer Science (FOCS ’08), pages 305–313, 2008.

18. E. Porat. An optimal Bloom filter replacement based on matrix solving. CoRR,
abs/0804.1845, 2008.

19. J. P. Schmidt and A. Siegel. The spatial complexity of oblivious k-probe hash
functions. SIAM J. Comput., 19(5):775–786, 1990.

20. D. Talbot and J. M. Talbot. Bloom maps. In Proceedings of the Fourth Workshop
on Analytic Algorithmics and Combinatorics (ANALCO). IEEE, 2008.

12

