
Modeling and Extracting Deep-Web
Query Interfaces

Wensheng Wu, AnHai Doan, Clement Yu, and Weiyi Meng

Abstract. Interface modeling & extraction is a fundamental step in building a uni-
form query interface to a multitude of databases on the Web. Existing solutions are
limited in that they assume interfaces are flat and thus ignore the inherent struc-
ture of interfaces, which then seriously hampers the effectiveness of interface in-
tegration. To address this limitation, in this chapter, we model an interface with a
hierarchical schema (e.g., an ordered-tree of attributes). We describe ExQ, a novel
schema extraction system with two distinct features. First, ExQ discovers the struc-
ture of an interface based on its visual representation via spatial clustering. Second,
ExQ annotates the discovered schema with labels from the interface by imitating
the human-annotation process. ExQ has been extensively evaluated with real-world
query interfaces in five different domains and the results show that ExQ achieves
above 90% accuracy rate in both structure discovery & schema annotation tasks.

1 Introduction

Besides the billions of Web pages indexed by search engines, the Web also contains
a large number of databases whose contents are only accessible through query in-
terfaces and out of reach of conventional search engines [5]. These databases form

Wensheng Wu
University of North Carolina at Charlotte, Charlotte, NC 28223
e-mail: w.wu@uncc.edu

AnHai Doan
University of Wisconsin at Madison, Madison, WI 53706
e-mail: anhai@cs.wisc.edu

Clement Yu
University of Illinois at Chicago, Chicago, IL 60607
e-mail: yu@cs.uic.edu

Weiyi Meng
Binghamton University, Binghamton, NY 13902
e-mail: meng@cs.binghamton.edu

Z.W. Ras and W. Ribarsky (Eds.): Advances in Information & Intelligent Sys., SCI 251, pp. 65–90.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

w.wu@uncc.edu
anhai@cs.wisc.edu
yu@cs.uic.edu
meng@cs.binghamton.edu

66 W. Wu et al.

the Deep-Web, and they are the Deep-Web data sources [4]. The Deep-Web was es-
timated to be at least 500 times larger than the surface Web [4], and it continues to
grow at a phenomenal rate [18].

The Deep-Web covers a great variety of subject areas, ranging from business,
government, education, to entertainment [18, 4]. For any domain of interest, there
may be hundreds or even thousands of Web databases, e.g., book databases from
Amazon, Barnes & Noble, and many other online book stores. These databases con-
tain high-quality, structured contents, but may vary greatly in their content coverage
& query capability. As a result, to find the desired information, users often need to
interact with multiple sources, understand their query syntaxes, formulate separate
queries, and compile query results from different sources. This can be an extremely
time-consuming and labor-intensive process.

The search problem on the Deep-Web has received great attention from both
academia and industry in the past few years. Early work includes [8, 21, 6, 15, 17,
20] in the database and AI communities. Recent efforts include [18, 9, 3, 10, 29,
24, 2, 19, 27], and recent industrial activities involve many startups, such as Trans-
formic, Glenbrook Networks, and Webscalers, as well as large Internet companies,
such as Google and Yahoo [18]. Given a domain of interest, an important focus of
the above efforts is to build a uniform query interface to the data sources in the
domain, thereby making access to the individual sources transparent to users.

To build such a uniform query interface, a domain developer often must solve the
interface matching problem: given a large set of sources in a domain, find semantic
correspondences, called mappings, between the attributes of the query interfaces of
the sources [9, 29, 24]. Once the interfaces have been matched, the semantic matches
are employed to construct the uniform query interface [27], to translate queries for-
mulated over this interface to those over the interfaces of the data sources, and to
translate the results obtained from the sources into a format that conform to the

Dest.CityDepart City Return DateDepart Date

daymonth daymonth

Passengers

ChildAdults

Class

year year

(a) Schema extraction

(b) Schema matching

A source query interface Qa Its hierarchical schema Sa

Source interface Qa Source interface Qb Source interface Qc

A1
A2

A3-A5
A6-A8

A9-A10

A11

B1-B4

B5-B8

B9-B10

C1-C3

C4-C6

A1
A2

A3-A5
A6-A8

A9-A10
A11

Fig. 1 Schema extraction & matching

Modeling and Extracting Deep-Web Query Interfaces 67

uniform query interface [24]. Interface matching therefore plays an important role
in the integration of Deep-Web data sources (regardless of whether the integration
is virtual or materialized [26]).

Typically, interface matching involves three major tasks: interface modeling,
schema extraction, and schema matching.

Interface Modeling: A query interface typically consists of multiple attributes.
For example, there are 11 attributes on the interface Qa shown in Figure 1.a (left).
An attribute may be denoted by a label, e.g., attribute A1 on Q has a label Depart
City. An attribute may also have a set of values. For example, attribute A11 (Class)
on Qa has values: {Economy, First Class, Business}.

Related attributes are placed near each other on the query interface, forming a
group; and closely related attribute groups may be further grouped into a super-
group. For example, attributes A9 (Adult) and A10 (Child) on Qa form a group with
a group label Passengers. In addition, attributes and attribute groups are intuitively
ordered. For example, A9 is placed before A10. As a result, query interface may be
best modeled by a hierarchical schema such as ordered tree. For example, Figure
1.a (right) shows such a schema Sa for the interface Qa, where leaves and internal
nodes in Sa correspond to attributes and attribute groups on Qa respectively.

Schema Extraction: A query interface is typically rendered from a HTML form
script. The script is largely concerned with the visual representation of the attributes
(e.g., using a text-input field to display attribute Depart City on Qa) and the place-
ment of attributes and labels on the interface. It typically does not explicitly specify
the attribute-label and attribute-attribute relationships on the interface. Therefore,
such relationships and thus the structural aspect of the interface need to be inferred
from its visual representation via schema extraction. For example, given Qa as the
input, a schema extraction algorithm might produce a schema like Sa as the output.

Schema Matching: Given a set of interface schemas extracted from source query
interfaces, we need to accurately determine the mappings of attributes from dif-
ferent interfaces. There may be two types of mappings: simple and complex. A
simple mapping is a 1:1 semantic correspondence between two attributes. For ex-
ample, consider query interfaces shown in Figure 1.b. An example of 1:1 mapping
is attribute A1 (Depart city) of interface Qa matching B1 (Leaving from) of inter-
face Qb. Mappings may also be complex, e.g., 1-m mappings. A 1-m mapping is
a mapping where an attribute on one interface semantically corresponds to multi-
ple attributes on another interface. For example, attribute B9 (Passengers) on Qb

matches both A9 (Adult) and A10 (Child) on Qa.

In this chapter, we consider the problem of interface modeling & schema extrac-
tion. Schema matching is addressed in our early work [28, 29]. While there have
been many research efforts on modeling & extracting Deep-Web query interfaces,
almost all existing solutions assume that query interfaces are flat, and thus largely
ignore the inherent ordering and grouping relationships among the attributes on the
interfaces. For example, these solutions would discover a flat schema, which con-
tains simply a set of attributes {Depart City, Destination City, ...} for the interface

68 W. Wu et al.

Structure
extractor

Schema
annotator

Query
interface

Unannotated
schema

Final
schema

Fig. 2 The ExQ architecture

Qa (Figure 1.a). Such a schema fails to capture the structural aspect of the interface,
which makes it very difficult to infer the semantic relationships among the attributes.

To address this challenge, we propose to model an interface with a hierarchical
schema such as an ordered tree. We show that such a hierarchical schema can capture
the semantics of the interface more precisely. In [29], we showed that the captured
semantics can be exploited to help find the semantic matches & resolve ambiguous
match candidates among the attributes from different interfaces.

In this chapter, we describe ExQ, an interface modeling & extraction system.
Figure 2 shows the architecture of ExQ. ExQ takes as input a query interface and
outputs a schema of the interface, represented as a labeled, order tree of attributes.
It consists of two major components: structure extractor, which takes the interface
and produces an unannotated ordered-tree schema of the interface; and schema an-
notator, which then assigns labels from the interface to the nodes in the schema tree,
producing the final schema.

In developing ExQ, we make the following contributions:

• A novel spatial clustering-based algorithm to discover the structure of the inter-
face based on its visual representation.

• A novel label attachment algorithm to infer the labels for both attributes & at-
tribute groups, based on several observations on the human-annotation process.

• Extensive real-world evaluation of ExQ, achieving above 90% accuracy rate in
both structure discovery & schema annotation tasks.

The rest of the chapter is organized as follows. Section 2 discusses related work.
Section 3 describes hierarchical modeling of query interfaces. Sections 4 & 5 de-
scribe ExQ’s structure extractor and schema annotator in detail. Section 6 presents
experimental results and Section 7 concludes the chapter.

2 Related Work

We discuss related work from several perspectives.

Structure Discovery & Label Attachment: As discussed earlier, almost all ex-
isting solutions assume that the interface is flat, i.e., containing a set of attributes.
Thus, the focus is largely on attaching right labels to the attributes on the interface.

[12] proposes several algorithms for attaching labels to the attributes on the in-
terface. The algorithms are largely based on matching labels with the names of the
attributes (as specified in the HTML script). Group labeling is also considered, but
limited to groups of check boxes or radio buttons. Further, their accuracy rate (80%)
is much lower than ours.

Modeling and Extracting Deep-Web Query Interfaces 69

[21] exploits spatial location, font size, and font style of labels for label attach-
ment. In contrast, our approach is mainly based on annotation patterns (described
in Section 5). [21] does not consider group labeling. In addition, our accuracy rate
(95.5% in F-measure) on attribute labeling is higher than that in [21], and is achieved
on a data set which is much more complex than that in [21].

[30] focuses on extracting query conditions from interfaces. The query conditions
may indicate a restricted form of attribute groups, e.g., a text input box for author
may be associated with a group of radio buttons, indicating if the required input is
first name, last name, or full name. Such specific grouping of attributes may be
handled by a grouping pattern by our structure extraction algorithm. Besides, our
accuracy rate in attribute grouping (92.3%) is much higher than that in [30] (85%).

[11] proposes an approach to extracting attributes and their labels from the inter-
faces based on layout expressions. Its accuracy rate is comparable to ours. But simi-
lar to other existing solutions, it also assumes that interfaces are “flat” and therefore
does not extract grouping relationships among the attributes on the interface.

Wrapper Construction: Wrapper construction [15, 16] studies the problem of ex-
tracting structured contents from semi-structured documents (such as HTML pages).
Therefore, the problem of extracting schemas from query interfaces is closely re-
lated to wrapper construction. But wrapper construction largely focuses on discov-
ering presentation patterns (e.g., special HTML tags or tag paths) of the contents
from a set of training examples, and then employs the patterns to extract additional
contents from similar pages (e.g., pages generated by the same Web site). On the
other hand, our work is specifically targeted at HTML forms. We seek an automatic
solution to infer the relationships among interface attributes and associate labels
with the attributes, by exploiting their presentation patterns and spatial layout.

Interface Integration: The accuracy of schema extraction is critical to the next
two steps in interface integration, namely schema matching & schema merging.
There has been a large body of work especially on schema matching (see [22] for an
excellent survey). The problem of matching interface schemas is addressed in [9, 10,
29]. In particular, [29] shows that the ordering, sibling, and grouping relationships
of attributes can be utilized to effectively discover both 1:1 and complex mappings
among interface attributes.

[10, 27] propose solutions to merging interface schemas. In particular, [10] orders
the attributes on the unified interface by observing how the attributes are ordered on
the source query interfaces. [27] proposes an optimization framework to interface
merging, where each source interface expresses constraints on how attributes should
be ordered and grouped, and a desired (i.e., intuitive & user-friendly) unified inter-
face is one that maximally satisfies these constraints.

3 Modeling Query Interfaces

In this section, we first describe query interfaces, and show how prior work has
modeled such interface with a flat set of attributes and how we model it with a tree
of attributes.

70 W. Wu et al.

(a) An airfare query interface Q (b) The HTML script of Q

Attribute Name Label Domain

f1 origin From: City {s|s is any string}

f2 destination To: City {s|s is any string}

f3 departureMonth “” {Jan, Feb, …, Dec}

f4 departureDay “” {1, 2, …, 31}

f5 departureTime “” {1am, …, 12pm}

f6 returnMonth “” {Jan, Feb, …, Dec}

f7 returnDay “” {1, 2, …, 31}

f8 returnTime “” {1am, …, 12pm}

f9 numAdultPassengers Adults {1, 2, …, 6}

f10 numChildPassengers Children {0, 1, …, 5}

f11 cabinClass Class of Services {Economy, …, Business}

(c) The attributes on Q

{from city, to city, …, class of services}

(d) A flat schema of Q

Where…? When…? Number…? Class of Services

Return
Date

Departure
Date

Adults Children

f3 f4 f5 f6 f7 f8

From City To City

N1

(e) A hierarchical schema of Q

Fig. 3 A query interface, its HTML script, attributes, and schemas

Modeling and Extracting Deep-Web Query Interfaces 71

3.1 Flat vs. Hierarchical Modeling of Query Interfaces

Query interfaces are typically written in HTML forms. For example, Figure 3(a)
shows a query interface Q in the airfare domain and Figure 3(b) shows the HTML
form script of Q.

A query interface can be modeled using multiple attributes. For example, Q con-
tains 11 attributes whose details are shown in Figure 3(c). Note that the attributes
are numbered in the order of their appearance (left-right, top-down) on the interface.
Each attribute consists of three components: label, (internal) name, and domain.

• Label: The label of an attribute is a piece of text on the query interface, which
denotes the meaning of the attribute to the user. For example, the first attribute
on Q (i.e., f1) has a label From: City.

• Name: The name of an attribute is the internal name of the attribute given
in the HTML script for the identification purpose. For example, the name of
attribute f1 is origin.

• Domain: The domain of an attribute is a set of values the attribute may
take. For example, the domain of the attribute f9 (with label Adults) on Q
is {1,2,...,6}.

This chapter focuses on exploiting presentation patterns and spatial properties
of labels in schema extraction. But note that attribute names and domains may
also be useful [12] and it would be interesting to consider combining all these
evidences.

Note that an attribute may be represented in a variety of ways on the query inter-
face: (1) an input field (e.g., attribute f1 on Q), where the user may enter any suitable
value; (2) a selection list (e.g., attribute f3), where the user may only select from a
list of pre-defined choices; (3) a radio-button group (e.g., attribute f11), where each
button in the group provides an exclusive choice, and the domain of the attribute is
the set of all choices while the name of the attribute is taken to be the name of the
radio button group; and (4) a checkbox group, which is similar to a group of radio
buttons except that here the user may select more than one choice at a time.

Note also that label is visible to the user while name is not. As a consequence,
words in the label are usually ordinary words which can be understood semantically,
while words in the name are often concatenated or abbreviated. Nevertheless, we
found that the name of an attribute often can be very informative, and particularly
useful when the attribute does not have a label.

Current works represent a query interface with a flat set of attributes, as defined
above. For example, Figure 3(d) shows such flat schema of Q. But in fact, as Q
shows, closely related attributes (e.g., f1 and f2, both on the location of the flight)
may be grouped together. Furthermore, attributes and attribute groups may be intu-
itively ordered (e.g., f1, for origin, is placed before f2, for destination). As a result,
the query interface has a much richer structure. Such a structure conveys domain
knowledge and may be exploited for the effective integration of interfaces.

72 W. Wu et al.

3.2 Hierarchical Modeling of Query Interfaces

To capture both the grouping and ordering relationships of attributes on a query
interface, we model query interface with a hierarchical schema. Figure 3(e) shows
an example of such hierarchical modeling, which is technically an ordered tree. A
leaf node in the tree corresponds to an attribute on the interface. An internal node
corresponds to a group or a super-group of attributes on the interface. Nodes with
the same parent are sibling nodes. Sibling nodes are ordered by the sequence of their
corresponding attributes or attribute groups (if they are internal nodes) appearing on
the interface.

Note that nodes are annotated with the labels of their corresponding attributes or
attribute groups. If a node does not have a label, its ID is shown instead, where Ni’s
represent internal nodes and f j’s leaf nodes. In the rest of the chapter, we may also
call the nodes of the tree as the elements of the schema.

In [29], we show that the ordering relationships of the attributes may be exploited
to resolve the ambiguous 1-1 matches among attributes and the grouping relation-
ships of the attributes may be exploited to effectively identify the attributes involved
in complex matches.

From now on, when we refer to such modeling, we use the phrase “query inter-
face”. Extracting such query interfaces is difficult for the following reasons. First,
we must group the attributes appropriately. Next, we must extract the labels and as-
sign them to the right places. We describe how to extract such interfaces next. Note
that the names of attributes can be easily obtained from the HTML script of the
query interface. If an attribute is represented as a selection list, then its values can
also be easily obtained from the option sub-elements of the list. We will describe in
Section 5 how to obtain the values of an attribute represented as a radio-button or
checkbox group.

4 Extracting the Tree Structure of an Interface

In this section, we describe ExQ’s structure extraction algorithm, which is based
on spatial clustering. The algorithm takes as the input a query interface (e.g., Q
in Figure 4.a) and produces an unannotated ordered-tree schema of the interface
(e.g., SQ in Figure 4.b). In the next section, we will describe ExQ’s label attachment
algorithm which then assigns the labels from the interface to the nodes in the schema
to produce the final schema (e.g., Figure 3(e)).

The main idea of the algorithm is to exploit the spatial relationships (e.g., prox-
imity, alignment, and direction) of attributes on the query interface to effectively
discover both the grouping and ordering relationships among the attributes. In the
following, we start by describing a basic version of the algorithm which produces a
schema tree where each node can have at most two children. We then describe how
to remove this limitation via n-way clustering. Next, we discuss how to exploit other
information such as lines separators to help determine the grouping relationships of
attributes. Finally, we present the complete extraction algorithm.

Modeling and Extracting Deep-Web Query Interfaces 73

(f1-f2)

(f3-f5)

(f6-f8)

(f9-f10)

(f11)

(a) Query interface Q

N1

(b) SQ, the schema of Q (before label attachment)

f1 f2

f3 f4 f5 f6 f7 f8

f9 f10

N2 N3

N5 N6

N4 f11

(N2)

(N3)

(N5)

(N6)

(N4)

Fig. 4 Example of extracting tree structure of an interface

4.1 Structure Extraction via Spatial Clustering

The basic version of the extraction algorithm can be regarded as a conventional
hierarchical agglomerative clustering algorithm [13] where the objects to be clus-
tered are attribute blocks. Attribute block is the spatial representation of an attribute,
which can be obtained as follows.

If an attribute f is rendered as an input field (e.g., f1 and f2 on interface Q in
Figure 5(a)) or a selection list (e.g., f3 – f10 on Q), then f ’s attribute block is taken
to be the smallest rectangular region enclosing the input field or the selection list (see
Figure 5(b)). On the other hand, if f is represented as a group of radio buttons (e.g.,
f11) or checkboxes, then f ’s attribute block is taken to be the smallest rectangular
region enclosing all the radio buttons or checkboxes in the group (see Figure 5(b)).

In the following, we may also denote an attribute block B as [(x,y),(mx,my)],
where (x,y) is the top-left corner of B (with x as the x-coordinate and y as the
y-coordinate), and (mx,my) is the bottom-right corner of B. Note that the top-left
corner of the webpage is considered to be the origin of the coordinate system. The
x-coordinate and y-coordinate of an object are its horizontal and vertical offsets to
the origin, respectively.

We consider three types of spatial relations between the blocks: topological re-
lations (contain, overlap, and disjoint), direction relations (above, below, left, and
right), and alignment relations (top/bottom-aligned and left/right-aligned).

Definition 1 (Topological Relations). A block U is contained in a block V if ∀p∈U
(i.e., p is a point in U), we have p ∈V . A block U overlaps with a block V if ∃p ∈U
such that p ∈V and ∃q ∈U such that q /∈V. A block U is disjoint with a block V if
∀p∈U, we have p /∈V. ��
Definition 2 (Direction Relations). A block U is above (below) a block V if ∀p∈U
and ∀q ∈V, we have py > qy (py < qy), where py denotes p’s y-coordinate. A block
U is to the left (right) of a block V if ∀p∈U and ∀q ∈V , we have px < qx (px > qx),
where px denotes p’s x-coordinate. ��

74 W. Wu et al.

(a) A query interface Q

f1 f2

f4f3 f5

f7f6 f8

f9 f10

f11

(b) Q’s attribute blocks

Fig. 5 A query interface and its attribute blocks

Definition 3 (Alignment Relations). Consider two blocks U = [(x,y),(mx,my)]
and V = [(s,t),(ms,mt)]. U is left-aligned (right-aligned) with V if x = s (mx = ms);
and U is top-aligned (bottom-aligned) with V if y = t (my = mt). ��

Distance Function: Intuitively, if two blocks are close to each other and aligned,
it is likely that they belong to the same group. Accordingly, we define a distance
function between two blocks U and V , denoted as dist(U , V), as follows:

dist(U,V) =
point-dist(U,V)

align(U,V)
. (1)

point-dist(U,V) is the minimum Euclidean distance between any two points in U
and V . align(U , V) is given by left-align(U,V) + right-align(U,V) + top-align(U,V)
+ 2 ∗ bottom-align(U,V), where left-align(U , V) takes the value of one if U is left-
aligned with V , and zero otherwise. Other alignment functions are similarly defined.
If U and V are not aligned, align(U , V) is set to one, i.e., no adjustment will be made
to the point-dist. (Alternatively, the denominator in Formula 1 may be changed to
align(U,V) + 1, and then align(U , V) may be set to zero when U and V are not
aligned. In our experiments, the original Formula 1 was used.) Note that the weight
coefficient for bottom-align is set to two since intuitively two adjacent blocks on the
same line are more likely to be closely related.

Based on the above block distance function, the distance between two clusters
of attribute blocks can be defined as follows. Consider a cluster C which contains
a set of attribute blocks S = {B1,B2, ...,Bk}. We define a block for the cluster C,
denoted as BC, as the smallest rectangular region enclosing all the attribute blocks
in S. Then, the distance between two clusters C and C′ is measured by dist(BC, BC′).
We are now ready to describe the clustering algorithm.

Modeling and Extracting Deep-Web Query Interfaces 75

Clustering: The algorithm accepts as input a set of attributes on a query interface,
where each attribute is represented by its corresponding attribute block as described
above; and outputs a hierarchical clustering over the attributes. It starts by putting
each attribute in a cluster by itself, and then repeatedly merges two clusters with the
minimum distance, until all the attributes are put into a single cluster.

Note that the algorithm produces only binary clusterings, i.e., a cluster can only
have two sub-clusters. This does not correspond well to the grouping relationships
of attributes, since an attribute group may contain more than two sub-groups of
attributes. For example, attribute group { f3, f4, f5} on the interface Q (Figure 3(a))
contains three attributes. To cope with this, we extend the algorithm to handle n-way
clustering.

4.2 N-Way Clustering

The extended algorithm works similarly as the basic one: initially we have a set of
clusters, each containing a single attribute, and we repeatedly merge the clusters
until we have a single cluster with all the attributes. The key difference is in the
merge operation: rather than immediately merging two clusters with the minimum
distance, it first expands them into a proximity set of clusters, and then merges all
the clusters in the proximity set in a single step.

Specifically, consider two clusters C1 and C2, where dist(BC1 , BC2) = d. A prox-
imity set with respect to C1 and C2, denoted as S, can be obtained as follows. To
start with, we set S = {C1,C2}. We then use d as the reference distance, and keep
growing S by adding a new cluster Cx such that ∃Ci ∈ S, |dist(BCx ,BCi)−d|< δ ∗d,
where δ is a small constant (e.g., δ = .1 in our experiment). This growing process
stops when no such cluster can be found.

Example 1. Suppose clusters C1 = { f3}, C2 = { f4}, and C3 = { f5}. Then {C1,C2,C3}
may be a proximity set with respect to C1 and C2, since the distance between C3 and
C2 is very close to the distance between C1 and C2. ��

4.3 Exploiting Non-distance Information as Constraints

Besides the distance among the attributes, query interfaces may also contain other
information such as section titles or horizontal lines, which can be exploited to help
determine the grouping relationships of the attributes. For example, the attributes on
the interface Q (Figure 3(a)) can also be divided into four sections by the section
titles: “1. Where Do You Want to Go?”, “2. When Do You Want to Go?”, so on.

In this section, we describe how to search for these additional information on
the query interface and how to exploit them to obtain a partial clustering over the
attributes. We will describe in Section 4.4 how to incorporate the obtained partial
clustering to constrain the merging process in the spatial clustering algorithm.

Grouping Patterns: To systematically search for these information, we employ a
set of grouping patterns. Each grouping pattern specifies a way of grouping some

76 W. Wu et al.

Table 1 Grouping patterns

ExamplesPattern Type

Separator-
based

Attributes separated by a set of section labels which are left-aligned and
have the same large font. Or attributes separated by a set of left-aligned
horizontal lines.

Alignment-
based

Indentation-
based

Multiple rows of attributes which are top and bottom-aligned along the
row, and left and right-aligned across the rows.

A group of attributes which are all indented relative to a label which is
located right above and has a large font.

attributes on the interface. These grouping patterns fall into three categories (see
Table 1 for examples on each category).

• Separator-based patterns, which utilize separators such as section titles and
horizontal lines to divide the attributes into groups. Note that the labels which
have a larger font (compared to the most common font among the labels) and
are located at the left-most of the interface are regarded as section titles.
• Alignment-based patterns, which identify groups of attributes which are highly

aligned to one another. The discovery is done in a top-down fashion by exam-
ining the HTML script to find a set of attributes which might be aligned into
rows or columns using a HTML table element. The goal is to overcome the
limitation of the spatial clustering algorithm, which proceeds in a bottom-up
fashion and might lack a gloal picture on the objects. The discovered patterns
are then employed to constrain the clustering process to ensure that the dis-
covered attribute groups are respected and retained in the final results.
• Indentation-based patterns, which identify groups of attributes based on their

indentation relative to labels. The discovery may also be based on the fonts &
colors of the labels. See Table 1 for an example.

Partial Clustering: The above patterns may then be employed to obtain a partial
clustering over the attributes on the query interface. Note that such a partial clus-
tering may not be a complete clustering, rather it gives a rough idea of how the
final complete clustering should look like. For example, the partial clustering might
not indicate the grouping relationships of the attributes within each section on the
interface Q in Figure 3(a). Partial clusterings can be formally defined as follows.

Definition 4 (Partial Clustering). Consider a set of attributes S = { f1, f2, ..., fn}.
A flat partial clustering P over the attributes in S is a set of subsets of attributes,
i.e., P = {S1, ...,Sk}, such that Si ⊂ S and Si∩S j = /0 for i �= j. Note that P might
not have the property that∪1≤i≤kSi = S. Otherwise, P is a complete clustering over
the attributes in S.

Such a partial clustering may be further formed over some of the subsets in P .
Proceed recursively, the resulted nested clustering is called a hierarchical partial
clustering over the attributes in S. ��

Modeling and Extracting Deep-Web Query Interfaces 77

(a) A partial clustering (b) A complete clustering

c1

c3

c2 c7
c5

c4

c8

c6c3

c2

c5
m k

u v

a b c d

e f

x y

w

n

Fig. 6 Partial vs. complete clusterings

Since we are only concerned with hierarchical clusterings over the attributes, we
will simply use partial clusterings to refer to hierarchical partial clusterings.

Example 2. Figure 6 shows a partial clustering vs. a complete clustering over the
same set of attributes, where clusters are represented by dotted ovals. We observe
that at the first level, the complete clustering forms four clusters over the attributes,
but only two of them (C2 and C3) are given in the partial clustering. ��
Obtain Partial Clustering: Based on the above discussions, we are now ready
to describe PRECLUSTER, a procedure which takes as input a set S of attributes
on a query interface Q, and outputs a partial clustering P over the attributes in S.
PRECLUSTER proceeds in a top-down fashion. It first finds attributes groups among
the attributes in S by applying a set G of grouping patterns. These attribute groups
form the top level clusters of the partial clustering. It then recursively finds sub-
groups among the attributes within each group.

Specifically, PRECLUSTER consists of the following steps. (a) Pattern matching:
apply the patterns in G on S. Each pattern returns a set of subsets of attributes in S,
denoted as {S1, ...,Sk}, where Si ⊂ S and Si ∩ S j = /0 for i �= j. Let GS be a set of
all such subsets given by the patterns in G. If GS = /0, then stop. (b) Maximization:
from the subsets in GS, select a set of maximum subsets, denoted as G′S. A subset
Sx ∈ GS is a maximum subset if there does not exists Sy ∈ GS such that Sy ⊂ Sx. (c)
Recursion: if there is at least one subset in G′S which has more than two attributes,
recursively apply steps a–b on each such subset in G′S.

The maximum subsets obtained over the iterations of the above recursive proce-
dure form a top-down partial clustering over the attributes on the interface Q.

So given a partial clustering (e.g., Figure 6.a) over the attributes on a query inter-
face, the goal of the spatial clustering algorithm is in a sense to obtain a complete
clustering (e.g., Figure 6.b) which respects the partial clustering. As we will show
next, one way of doing this is to use the partial clustering to constrain the merging
process of the algorithm.

4.4 The Structure Extraction Algorithm

Figure 7 shows the complete structure extraction algorithm EXTR. EXTR accepts
as input S, a set of attributes on an interface, and outputs T , an unannotated

78 W. Wu et al.

EXTR(S)→ T :
Input: S, a set of attributes on an interface
Output: T , an unannotated ordered tree schema

1. Utilize grouping patterns to obtain partial clustering:
P ← PRECLUSTER(S)

2. Form initial clustering:
/* C contains a singleton cluster for each attribute f ∈ S */
C ← {{f} | f ∈ S}

3. Repeat the following steps until all attributes are in one cluster:
/* each iteration performs a n-way constrained merging operation */
a. Obtain clusters to be considered in the current iteration:

CP ← CONSTRAIN(C , P)
b. Find two clusters C1, C2 ∈ CP with the minimum distance
c. Expand them into a proximity set:

X ← OBTAINPROXIMITYSET(C1, C2, CP)
d. Merge clusters in X into a new cluster CX
e. Evaluate distances of CX with remaining clusters via Formula 1

4. H ← the hierarchical clustering output by step 3
5. Order attributes and attribute groups in H :

T ← ORDER(H)
6. Return T

Fig. 7 The structure extraction algorithm

ordered-tree schema of the interface. At the high level, EXTR is a hierarchical ag-
glomerative n-way clustering algorithm where the merging process is constrained
so that it does not violate the partial clustering obtained by PRECLUSTER.

It proceeds as follows. First, it applies PRECLUSTER to obtain a partial clustering
P over the attributes in S. P is then used to constrain the merging process via the
CONSTRAIN function at step 3(a). Given the current clusters in C and the partial
clustering P , CONSTRAIN finds a minimum cluster Cm ∈P such that Cm contains
a set of clusters in C, denoted as CP . Note that a cluster Cm ∈P is minimum if
� ∃C′m ∈P , such that C′m also contains all clusters in CP and C′m ⊂ Cm. If such a
minimum cluster Cm ∈P is found, CONSTRAIN returns the corresponding CP as
the output; otherwise, it returns C as CP .

Example 3. Suppose the partial clustering P is as given in Figure 6.b. Then in the
first iteration of the step 4, Cm = C5 and CP is a set of singleton clusters with the at-
tributes in Cm. ��
Then, in the remaining of step 3, only the clusters in CP are considered. First,
two clusters C1,C2 ∈ CP with the minimum distance are chosen. C1 and C2 are
then expanded into a proximity set X as described in Section 4.2. Note that X only
contains the clusters in CP . Next, the clusters in X are merged into a new cluster
CX . Finally, the distances of CX with the remaining clusters are evaluated, before the
next iteration.

Modeling and Extracting Deep-Web Query Interfaces 79

The result of step 3 is a hierarchical clustering H over the attributes on the
interface. H corresponds to an unordered schema tree of the interface. Finally, step
5 orders the nodes in H to produce an ordered schema tree T via the ORDER

function.
ORDER considers the internal nodes of H in turn, and for each internal node I,

it arranges I’s child nodes by the spatial location of their corresponding attributes
or attribute groups on the interface. Specifically, suppose I has k children I1, I2, ...,
Ik. Denote the smallest rectangular box which encloses all the attributes (i.e., leaf
nodes) of the subtree rooted at Ii as BIi . Then, Ii precedes I j in the ordering, if one
of the following two conditions holds: (1) BIi and BIj overlaps in the y-direction,
and BIi is to the left of BIj ; or (2) BIi and BIj does not overlap in the y-direction, and
BIi is above BIj . Such an ordering corresponds to the intuitive left-right top-down
viewing sequence of the attributes on the interface by the users.

5 Extracting and Attaching the Labels

In Section 4.4, we described a structure extraction algorithm which takes as the input
a query interface (e.g., Q in Figure 8.a) and produces an unannotated schema of the
interface (e.g., SQ in Figure 8.b). In this section, we describe ExQ’s label attachment
algorithm which finds the labels from the interface for the nodes in the schema.

As described earlier, if an attribute is represented as a group of radio buttons or
checkboxes, then its values are the labels of the individual radio buttons or check-
boxes. In order to also extract these labels, we expand the schema of the interface
before label attachment so that every such attribute (e.g., f11 on Q) is transformed
into an attribute group (e.g., X1 in Figure 8.b) which contains as many (pseudo) at-
tributes as the number of radio buttons or checkboxes for the original attribute (e.g.,
y1, y2, and y3). Then, after the label attachment is finished, the pseudo attributes
will be removed from the expanded schema (e.g., Figure 8.c) to produce the final
schema (e.g., Figure 3(e)). Note that the labels for the pseudo attributes (e.g. Econ-
omy, Business, First Class) will become the values of the original attribute and
the label of the attribute group (e.g., Class of Service) will become the label of the
original attribute.

While there have been some works on label attachment [21], they either assume
that query interfaces are flat and thus do not consider the attachment of group labels,
or only handle groups of radio buttons and checkboxes (see related work section for
more details). Furthermore, the current solutions commonly employ distance-based
heuristics where labels are attached to the attributes with the smallest distances.
Such heuristics may not work well, especially for group labels. For example, con-
sider the interface snippet in Figure 9, which contains a group of two attributes (one
for each selection list). We observe that the group label Passengers is closer to the
first attribute than its actual label Adult.

To address these challenges, we take a closer look at the process of annotating
attributes and attribute groups on a query interface with labels. For each annota-
tion, we define an annotation block as the smallest rectangular region enclosing the

80 W. Wu et al.

(f1-f2)

(f3-f5)

(f6-f8)

(f9-f10)

(f11)

(a) Query interface Q

N1

(b) Expanded SQ (before label attachment)

f1 f2

f3 f4 f5

f9 f10

N2 N3

N5 N6

N4
X1

(N2)

(N3)

(N5)

(N6)

(N4)

(c) Expanded SQ (after label attachment)

Where…? When…? Number…? Class of Services

Return
Date

Departure
Date

Adults Children

f3 f4 f5 f6 f7 f8

From City To City

N1

f6 f7 f8

y1 y3y2

Economy Business First Class

Fig. 8 Example of label attachment

Fig. 9 Examples of label attachment where distance-based methods fail

annotating label and the attribute or attribute group the label annotates. For example,
Figure 8.a shows the annotation blocks (represented by dashed rectangular boxes)
for the attributes and attribute groups on the interface Q. The following observations
can be made. (In addition, a useful observation used in [11] is that labels followed
by “:” are more likely to be group labels.)

First, non-overlapping annotation blocks: It is unusual that annotation blocks
would overlap with each other. In other words, for any two annotation blocks, there
may only be two possibilities: either they are disjoint or one is contained within
another. This observation can be illustrated using Figure 8.a. For example, consider
the annotation block BN1 for the group N1, which encloses the group label (i.e., 1.
Where Do You Want to Go?) and the attributes in the group (i.e., f1 and f2). We
can observe that BN1 contains the annotation blocks for attributes f1 and f2 and does
not overlap with any other annotation blocks.

Second, label positioning: A group label is usually located either above or to
the left of the group, while an attribute label may also be located to the right of
the attribute, but seldom located below the attribute. For example, all the group
labels are located above the groups on the interface Q in Figure 8.a, and none of the

Modeling and Extracting Deep-Web Query Interfaces 81

Label

L
ab

el

L
ab

el

Label

(d) Below(a) Above (b) Left (c) Right

Fig. 10 Positions of the annotating label in an annotation block

attribute labels is located below the attributes. Figure 10 shows possible layouts of
an annotation block and the respective positions of the annotating label.

The Label Attachment Algorithm. Motivated by the above observations, we
propose a label attachment algorithm ATTACH. ATTACH accepts as input an unan-
notated schema tree T for an interface, and a set L of all labels on the interface.
It annotates the nodes in T with the labels in L , and returns an annotated schema
tree T a. The main ideas of ATTACH are as follows.

• Bottom-up: One way of annotating the nodes in a schema tree is to proceed in a
bottom-up fashion: we start with the leaf nodes and annotate a node only when
all of its child nodes have been annotated. For example, consider interface Q
in Figure 8.a. We first find labels for attributes f1 and f2 before finding label
for group N1.
• Group-based: Rather than annotating nodes in isolation, we may consider the

annotation of a node and its sibling nodes (i.e., nodes within the same group)
together. Intuitively, knowing that a label is unlikely to be assigned to neighbor
nodes helps determine the node which the label should be attached to.

Based on the above ideas, ATTACH considers the groups (i.e., internal nodes) in the
schema tree in the post-order. For example, the groups in the schema SQ (Figure 8.b)
are considered in this order: N2, N5, N6, N3, N4, X1, N1. For each group N, it anno-
tates the child nodes of N via ATTACHONE described below. For example, when N
= N2, ATTACHONE annotates attributes f1 and f2, and when N = N1, ATTACHONE

annotates N2, N3, N4, and X1. We now first define several necessary concepts.

Definition 5 (Attribute Set and Block of a Node). For each node x in a schema
tree, we define an attribute set, denoted as Ax, as a set of attributes (i.e., leaf nodes)
in the sub-tree rooted at x; and a block, denoted as Bx, as the smallest rectangular
region enclosing all the attributes in Ax. ��
ATTACHONE: ATTACHONE accepts as the input a group N and a set La of avail-
able labels. It assigns some labels from La to the child nodes of N and returns the
unassigned labels. It proceeds in three major steps: candidate generation, candidate
pruning, and match selection. We now describe them in detail.

(1) Candidate generation: For each child node x of N, ATTACHONE determines
which labels in La may be assigned to x, according to the non-overlapping annota-
tion areas observation. Specifically, a label l is regarded as a candidate label for x if
the annotation block enclosing the label l and the attributes in Ax, the attribute set
of x, does not overlap with any attributes not in Ax and any other labels in La.

For example, label l = From: City (Figure 8.a) is a candidate label for f1 since
the annotation block enclosing l and f1 does not overlap with any other attributes

82 W. Wu et al.

or labels. On the other hand, l may not be assigned to f2, since the annotation block
enclosing l and f2 overlaps with attribute f1 (and also another label To: City).

This step results in an attachment matrix M, whose rows correspond to the child
nodes of N, and columns correspond to the labels in La. The entry M[i, j] is one if
the j-th label is a candidate label for the i-th child node of N, and zero otherwise.

(2) Candidate pruning: This step prunes the candidates in M according to the label
positioning observation as well as the distances between labels and blocks. The
pruned matrix is denoted as M′.

It proceeds as follows. First, all candidate labels for a node x are pruned if the
distance between the labels and the node block Bx is larger than a threshold d. Next,
if x is an attribute and has a candidate label which is not located below Bx, then
all the labels below Bx are pruned. Finally, if x is an attribute group, then all its
candidate labels which are located below or to the right of Bx are pruned.

For example, since attribute f1 has a candidate label From: City located above it,
another candidate label 2. When Do You Want to Go?, located below it, is pruned.

ATTACH(T , L)→ T a:
Input: T , an unannotated schema tree; L , all labels on the interface
Output: T a, an annotated schema tree

1. Obtain a list of internal nodes of T in post-order:
<N1, N2, ..., Nk>← POSTORDER(T)

2. Initialize La to contain all labels on the interface:
a. Let La be a set of available labels
b. La←L

3. For each Ni, annotate its child nodes via ATTACHONE:
a. Let Lr be a set of unassigned labels
b. for i = 1 to k do

Lr ← ATTACHONE(Ni, La)
La← Lr

4. Return T a = the annotated T

ATTACHONE(N , La)→ Lr:
Input: N, an internal node; La, available labels
Output: Lr, remaining labels

1. Generate label candidates:
a. Let N be a set of child nodes of N
b. Let M be a |N |× |La| matrix
c. M← OBTAINATTACHMENTMATRIX(N , La)

2. Prune candidates based on annotation rules:
a. Let M′ be the updated attachment matrix
b. M′ ← PRUNECANDS(M)

3. Assign labels to nodes based on M′ via best-first strategy
4. Return Lr = unassigned labels in La

Fig. 11 The label attachment algorithm

Modeling and Extracting Deep-Web Query Interfaces 83

(3) Match selection: Based on the pruned attachment matrix M′ from step 2, this
step assigns labels to blocks via a best-first strategy, starting with the most confident
assignments. Specifically, the following cases are considered in turn: (a) a label l
can only be assigned to a node x and x does not have any candidates other than l; (b)
a label l can only be assigned to a node x and l is inside BN (i.e., the node block of
N); (c) a label l can only be assigned to a node x and l is to the right of BN ; and (d)
a label l can only be assigned to a node x, but not in case (b) or case (c). Note that
cases (b) and (c) are considered before case (d), since the labels which are inside or
to the right of BN are unlikely to be a label for the group N.

For each case, all the entries in M′ are checked. If an entry M′[i, j] falls into the
case, then the j-th label will be assigned to the i-th block and all entries at the i-th
row and the j-column of M′ will be set to zero. The above process is then repeated
until none of the entries in M′ falls into any of the cases.

For example, it can be shown that, after the candidate pruning step, the label
From: City will be the only candidate label for the attribute f1 and f1 does not have
any other candidate labels. Thus From: City will be assigned to f1 according to
case (a). For another example, consider assigning labels to a group of two attributes
(g1 and g2, each represented by a selection list) on the interface snippet shown in
Figure 9. First, Child (Age 2 to 11) will be assigned to g2 according to case (c),
since Child (Age 2 to 11) can only be assigned to g2 and is located to the right of
the group. Next, Adult will be assigned to the g1 according to case (b). Note that
Passengers will not be assigned to g1 since g1 has already been assigned a label.

Figure 11 gives the pseudo code of the label attachment algorithm, where Atta-
chOne is shown at the bottom.

6 Empirical Evaluation

We have evaluated ExQ with query interfaces of Deep-Web sources over varied
domains. In this section, we present experimental results.

Data Set: All experiments were performed on a real-world data set available from
the UIUC Web integration repository 1. The data set contains query interfaces to
Deep Web sources in five domains: airfare, automobile, book, job, and real estate,
with 20 query interfaces for each domain. Before the experiments, we manually
transformed the query interfaces in the data set into ordered-tree schemas, and used
them as the gold standard to gauge the performance of the algorithms.

Table 2 shows the details of the data set. For each domain, columns 2–7 show
the minimum, maximum, and average numbers of leaf nodes and internal nodes in
the schema trees of the interfaces in that domain. Columns 8–10 show the similar
statistics on the depth of the schema trees.

For each domain, we first evaluated the performance of the structure extractor on
capturing the grouping and ordering relationships of the attributes on the interfaces;

1 http://metaquerier.cs.uiuc.edu/repository/

84 W. Wu et al.

Table 2 Domains and characteristics of the data set

Domain
Leaf Nodes Internal Nodes Depth

Min Max Avg Min Max Avg Min Max Avg
Airfare 5 15 10.7 1 7 5.1 2 5 3.6
Auto 2 10 5.1 1 4 1.7 2 3 2.4
Book 2 10 5.4 1 2 1.3 2 3 2.3
Job 3 7 4.6 1 2 1.1 2 3 2.1

Real Estate 3 14 6.7 1 6 2.4 2 4 2.7

we then evaluated the effectiveness of the schema annotator in finding the right
labels for both the attributes and attribute groups.

Performance Metrics for Structure Extraction: For each interface, the schema
tree produced by the structure extraction algorithm was compared with the schema
tree in the gold standard with respect to their structures, i.e. the grouping and or-
dering of the attributes. A possible metric for comparing two trees is the tree edit
distance [25], where the distance between two trees is taken to be the number of
insertion, deletion, and relabeling operations necessary for transforming one tree
into the other. But this metric does not sufficiently capture the semantic aspects of
two trees, that is, the semantic closeness of two attributes in terms of their grouping
relationships, and the relative semantics of two attributes in terms of their ordering
relationships.

To address this challenge, we observe that the semantics of a schema tree can
actually be encoded with the constraints which the schema enforces on its elements.
In particular, we observe that the grouping and ordering relationships of attributes
in the schema may be captured with least-common-ancestor (LCA) constraints and
precedence constraints, to be formally defined below. Then, the semantic differ-
ences of two schema trees may be measured by the extent which the constraints
from one schema tree are satisfied by the other schema tree.

Definition 6 (LCA Constraint). Consider a schema tree S and denote the lowest
common ancestor of two attributes (i.e., leaf elements) x and y in S as LCA(x, y).
Consider three attributes x, y and z in S. We say that there exists a LCA constraint in
the form of (x,y)z in S, if LCA(x,y) < LCA(x,z) and LCA(x,y) < LCA(y,z), where
n1 < n2 denotes that element n1 is a proper descendant of element n2. ��
Intuitively, the LCA constraint (x,y)z indicates that two attributes x and y are se-
mantically closer to each other than either to the attribute z. LCA constraints thus
capture the semantic closeness of attributes expressed by the schema. It is interest-
ing to note that given all the LCA constraints from an unordered schema tree S, S
can be fully reconstructed in polynomial time [1].

Example 4. The LCA constraints in the schema S1 shown in Figure 12.a are: (a,b)d,
(a,b)e, (a,c)d, (a,c)e, (b,c)d, (b,c)e, (d,e)a, (d,e)b, and (d,e)c. ��

Modeling and Extracting Deep-Web Query Interfaces 85

c d e
a ba b c d e a b c e d

(b) Schema S2 (c) Schema S3(a) Schema S1

Fig. 12 Examples on constraints of schemas

Definition 7 (Precedence Constraint). Consider a schema S and a sequence of
attributes, denoted as qs, obtained from a pre-order traversal of S. We say that there
exists a precedence constraint between two attributes x and y, denoted as x ≺ y, in
the schema S, if x appears before y in qs. ��
The precedence constraints thus capture the relative ordering of the attributes, both
within the same group and across different groups.

Example 5. qS1 is <a,b,c,d,e>. As such, some examples of the precedence con-
straints in S1 are: a≺ b, a≺ c, a≺ d, and d≺ e. ��
Based on these constraints, we evaluated the performance of schema extraction via
grouping metrics and ordering metrics given as follows.

Grouping metrics: We measured the grouping performance of the structure ex-
traction algorithm with three metrics: (LCA) precision, (LCA) recall, and (LCA)
F-measure [23]. Denote the schema tree for an interface obtained by the structure
extraction algorithm as S′, and the schema tree given in the gold standard for the
interface as S. The precision is then taken to be the percentage of the LCA con-
straints which are correctly identified by the algorithm (i.e., they are in both S′ and
S) over all the LCA constraints identified by the algorithm (i.e., they are in S′). And
the recall is the percentage of the LCA constraints which are correctly identified
over all the LCA constraints in S. F-measure incorporates both precision and recall.
We use the F-measure where precision P and recall R are equally weighted, i.e.,
F = 2PR/(R + P).

Example 6. Suppose that S1 in Figure 12.a is the schema tree given by the gold
standard for an interface. Further suppose that S2 in Figure 12.b is the schema tree
given by the structure extraction algorithm for the same interface.

It can be verified that S2 have all the nine LCA constraints in S1 (see Example
4) plus an additional constraint (a,b)c. As such, the LCA precision of S2 is 9/10 = .9,
while the LCA recall of S2 is 9/9 = 1. ��
Ordering metrics: We measured the ordering performance of the structure extrac-
tion algorithm with two metrics: (precedence) precision and (precedence) recall.
Since the number of precedence constraints in a schema with n attributes is always
n(n− 1)/2, precedence precision is always the same as precedence recall. In other
words, precedence precision and precedence recall are both given by the ratio of
the number of the precedence constraints correctly identified by the algorithm over
n(n−1)/2.

86 W. Wu et al.

Example 7. Suppose that S1 in Figure 12.a is the schema tree given by the gold
standard for an interface. Further suppose that S3 in Figure 12.c is the schema tree
given by the structure extraction algorithm for the same interface.

It can be verified that the only different precedence constraints in S1 and S3 are
d ≺ e in S1 vs. e ≺ d in S3. As such, both the precedence precision and the prece-
dence recall are 9/10 = .9 (note that since n = 5, n(n−1)/2 = 10). ��

Performance Metrics for Label Attachment: We measured the performance of
the label attachment algorithm on finding both attribute labels and group labels.

Attribute labeling metrics: The performance on finding attribute labels was mea-
sured with two metrics: (attribute labeling) precision and (attribute labeling) recall.
The precision is the percentage of the correctly identified labels (i.e., labels attached
to correct attributes) over all the labels identified by the algorithm. And the recall is
the percentage of the correctly identified labels over all the attribute labels given in
the gold standard.

Group labeling metrics: Similarly, the performance on finding group labels was
measured with two metrics: (group labeling) precision and (group labeling) recall.
But since the groups identified by the structure extraction might not be always
correct, a more accurate way of evaluating the group labeling is to base it on the
attributes. In particular, for each attribute on the interface, we associate with the
attribute the labels of all groups which contain the attribute.

Example 8. The group labels associated with the attribute f3 in Figure 3.c are
Departure Date and When Do You Want to Go?. Intuitively, the group labels as-
sociated with an attribute, together with the label of the attribute, denote to the users
what the attribute means. ��
Based on the above discussions, the group labeling precision is taken to be the per-
centage of the group labels correctly associated with the attributes by the algorithm
over all the group labels associated with the attributes by the algorithm (note that
typically a group label may be associated with more than one attributes). And the
recall is taken to be the percentage of the group labels correctly associated with the
attributes by the algorithm over all the group labels associated with the attributes in
the gold standard.

6.1 Evaluating the Structure Extractor

Columns 2–4 of Table 3 show the performance of the structure extraction algorithm.

Grouping: Columns 2–3 show the performance of the structure extraction algorithm
on discovering the grouping relationships of the attributes over the five domains.
We observe that the precisions range from 82.4% in the job domain to 94.0% in the
book domain, with an average of 92.1%. Note that the job domain is the only domain
whose precision is lower than 90%. Detailed analysis indicated that some interfaces
in this domain use shaded area to indicate attribute groups. And since some of the

Modeling and Extracting Deep-Web Query Interfaces 87

0

20

40

60

80

100

Airfare Auto Book Job Real Estate

F
-m

ea
su

re

Baseline
Baseline + N-way
Baseline + N-way + Pre-clustering

Fig. 13 Effects of the n-way clustering and pre-clustering

attributes in these groups are actually farther away from each other than from the
attributes not from the same group, as a result, several attribute groups found by the
algorithm were incorrect. A possible remedy is to introduce a new grouping pattern
to recognize the attribute groups which are delimited with shaded areas.

We further observe that the recalls range from 90.8% in the book domain to
95.6% in the real estate domain, with an average of 93.9% over the five domains.
These indicate that the algorithm is highly effective in identifying the grouping re-
lationships of the attributes.

We also examined the effects of the n-way clustering and pre-clustering on the
grouping performance. Figure 13 shows the results. For each domain, the three bars
(from left to right) represent the performance produced respectively by the algo-
rithms without the n-way clustering and pre-clustering, with only the n-way cluster-
ing, and with both the n-way clustering and pre-clustering being incorporated. All
the performances are measured by F-measure. Note that the last bars correspond to
the figures shown in Table 3.

It can be observed that with the n-way clustering, the performance improved
consistently over the domains, with the largest increase (10.4 percentage points) in
the auto domain. Furthermore, the pre-clustering significantly improved the perfor-
mance in all five domains, ranging from 6.7 percentage points in the job domain to
as high as 20.8 percentage points in the auto domain. These indicate the effective-
ness of both the n-way clustering and pre-clustering.

Ordering: Column 4 shows the performance of the structure extraction algorithm in
identifying the ordering of attributes over the five domains. It can be observed that
the accuracy ranges from 96% in the real estate domain to as high as 99.7% in both
the auto and book domains. This indicates that the algorithm is highly effective in
determining the ordering of the attributes.

6.2 Evaluating the Schema Annotator

The last four columns of Table 3 show the performance of the label attachment
algorithm.

88 W. Wu et al.

Table 3 The performance of the schema extractor

Domains
Grouping Ordering Attribute Labels Group Labels
Prec. Rec. Prec.(Rec.) Prec. Rec. Prec. Rec.

Airfare 93.3 95.1 99.5 95.0 93.7 97.7 92.3
Auto 92.0 92.9 99.7 99.2 97.6 100 89.5
Book 94.0 90.8 99.7 91.6 91.6 94.4 82.7
Job 82.4 95.2 97.7 95.1 94.9 100 89.7

Real Est. 92.1 95.6 96.0 99.1 97.3 100 90.5

Average 90.8 93.9 98.9 96.0 95.0 98.4 88.9

Attribute labeling: Columns 5–6 show the performance on attribute labeling. We
observe that the precisions range from 91.6% in the book domain to as high as
99.2% in the auto domain, with an average of 96% over the five domains, and that
the recalls range from 91.6% to 97.6%, with an average of 95%. These indicate that
the label attachment algorithm is highly accurate in determining the labels of the
attributes.

Group labeling: The last two columns show the performance on group labeling. It
can be observed that high precisions are achieved over the five domains, with 94.4%
in the book domain, 97.7% in the airfare domain, and perfect precisions in the other
three domains.

It can be further observed that the recalls range from 82.7% in the book domain to
92.3% in the airfare domain. We examined the book domain which had the relatively
low recall. Detailed results indicated that there are several interfaces where some of
the groups identified by the structure extraction algorithms are only partial, that is,
they do not contain all the attributes in the group. As a result, the label attachment
assigns the group label to the partial group, resulting in the low recall. This indicates
that the label attachment algorithm could be very sensitive to the performance of the
structure extraction algorithm, which is not surprising.

Overall, the average precision 98.4% and the average recall 88.9% were achieved
on the five domains. These indicate that the label attachment is very effective in
identifying group labels.

7 Conclusions

We have presented the ExQ system for extracting & annotating schemas of Deep-
Web query interfaces. The key novelties of ExQ include: (1) a hierarchical mod-
eling approach to capture the inherent structure of interfaces & address limitations
of existing solutions; (2) a spatial-clustering based algorithm to discover attribute
relationships based on their visual representation; and (3) a schema annotation algo-
rithm motivated by human annotation process. ExQ has shown to be very effective
in the experiments with query interfaces in a variety of domains. Nevertheless, ExQ
is not perfect (like other automatic systems for information extraction). Besides

Modeling and Extracting Deep-Web Query Interfaces 89

further experiments with additional data sets, we are investigating the direction to
turn ExQ into an interactive system. In other words, ExQ may ask domain experts
questions to help resolve its uncertainties on attribute relationship and label attach-
ment. We note that similar methods have been successfully employed in schema
matching (e.g., [7, 29]) and other information extraction tasks (e.g., [14]).

References

1. Aho, A., Sagiv, Y., Szymanski, T., Ullman, J.: Inferring a tree from lowest common
ancestors with an application to the optimization of relational expressions. SIAM Journal
on Computing 10(3), 405–421 (1981)

2. Arasu, A., Garcia-Molina, H.: Extracting structured data from Web pages. In: Proceed-
ings of the 2003 ACM SIGMOD International Conference on Management of Data (SIG-
MOD 2003), pp. 337–348 (2003)

3. Barbosa, L., Freire, J.: Searching for hidden-Web databases. In: Proceedings of the 8th
ACM SIGMOD International Workshop on Web and Databases (WebDB 2005), pp. 1–6
(2005)

4. Bergman, M.: The Deep Web: Surfacing the hidden value. BrightPlanet.com (2000),
http://www.brightplanet.com/technology/deepweb.asp

5. Chang, K., He, B., Li, C., Patel, M., Zhang, Z.: Structured databases on the Web: Obser-
vations and implications. ACM SIGMOD Record 33(3), 61–70 (2004)

6. Crescenzi, V., Mecca, G., Merialdo, P.: RoadRunner: Towards automatic data extraction
from large Web sites. In: Proceedings of the 27th International Conference on Very Large
Data Bases (VLDB 2001), pp. 109–118 (2001)

7. Doan, A., et al.: Reconciling schemas of disparate data sources: A machine-learning
approach. In: SIGMOD 2001 (2001)

8. Doorenbos, R., Etzioni, O., Weld, D.: A scalable comparison-shopping agent for the
World-Wide Web. In: Proceedings of the First International Conference on Autonomous
Agents (AGENTS 1997), pp. 39–48 (1997)

9. He, B., Chang, K.: Statistical schema matching across Web query interfaces. In: Pro-
ceedings of the 2003 ACM SIGMOD International Conference on Management of Data
(SIGMOD 2003), pp. 217–228 (2003)

10. He, H., Meng, W., Yu, C., Wu, Z.: WISE-Integrator: An automatic integrator of Web
search interfaces for e-commerce. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.)
VLDB 2003. LNCS, vol. 2944, pp. 357–368. Springer, Heidelberg (2004)

11. He, H., Meng, W., Yu, C., Wu, Z.: Constructing interface schemas for search interfaces of
Web databases. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng,
Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 29–42. Springer, Heidelberg (2005)

12. Kaljuvee, O., Buyukkokten, O., Garcia-Molina, H., Paepcke, A.: Efficient Web form
entry on PDAs. In: Proceedings of the 10th International Conference on World Wide
Web (WWW 2001), pp. 663–672 (2001),
citeseer.nj.nec.com/kaljuvee01efficient.html

13. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Anal-
ysis. John Wiley & Sons, Chichester (1990)

14. Kristjansson, T.T., Culotta, A., Viola, P.A., McCallum, A.: Interactive information ex-
traction with constrained conditional random fields. In: AAAI (2004)

http://www.brightplanet.com/technology/deepweb.asp
citeseer.nj.nec.com/kaljuvee01efficient.html

90 W. Wu et al.

15. Kushmerick, N., Weld, D., Doorenbos, R.: Wrapper induction for information extrac-
tion. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI 1997), pp. 729–737 (1997)

16. Laender, A.H.F., Ribeiro-Neto, B.A., da Silva, A.S., Teixeira, J.S.: A brief survey of web
data extraction tools. SIGMOD Rec. 31(2) (2002)

17. Lerman, K., Minton, S., Knoblock, C.: Wrapper maintenance: A machine learning ap-
proach. Journal of Artificial Intelligence Research (JAIR) 18, 149–181 (2003)

18. Madhavan, J., Cohen, S., Dong, X.L., Halevy, A.Y., Jeffery, S.R., Ko, D., Yu, C.: Web-
scale data integration: You can afford to pay as you go. In: CIDR (2007)

19. McCann, R., AlShelbi, B., Le, Q., Nguyen, H., Vu, L., Doan, A.: Maveric: Mapping
maintenance for data integration systems. In: Proceedings of the 31st International Con-
ference on Very Large Data Bases (VLDB 2005), pp. 1018–1030 (2005)

20. Perkowitz, M., Doorenbos, R., Etzioni, O., Weld, D.: Learning to understand informa-
tion on the internet: An example-based approach. Journal of Intelligent Information Sys-
tems 8(2), 133–153 (1997)

21. Raghavan, S., Garcia-Molina, H.: Crawling the hidden Web. In: Proceedings of 27th
International Conference on Very Large Data Bases (VLDB 2001), pp. 129–138 (2001),
citeseer.nj.nec.com/raghavan01crawling.html

22. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. VLDB
Journal 10(4) (2001)

23. van Rijsbergen, C.: Information Retrieval. Butterworths, London (1979)
24. Wang, J., Wen, J., Lochovsky, F., Ma, W.: Instance-based schema matching for Web

databases by domain-specific query probing. In: Proceedings of the 30th International
Conference on Very Large Data Bases (VLDB 2004), pp. 408–419 (2004)

25. Wang, J., Zhang, K.: Finding similar consensus between trees: An algorithm and a dis-
tance hierarchy. Pattern Recognition 34, 127–137 (2001)

26. Widom, J.: Integrating heterogeneous databases: lazy or eager? ACM Computuing Sur-
veys (CSUR) 28(4) (1996)

27. Wu, W., Doan, A., Yu, C.: Merging interface schemas on the Deep Web via clustering
aggregation. In: Proceedings of the 5th IEEE International Conference on Data Mining
(ICDM 2005), pp. 801–804 (2005)

28. Wu, W., Doan, A., Yu, C.: WebIQ: Learning from the Web to match Deep-Web query
interfaces. In: Proceedings of the 22nd IEEE International Conference on Data Engineer-
ing (ICDE 2006), p. 44 (2006)

29. Wu, W., Yu, C., Doan, A., Meng, W.: An interactive clustering-based approach to inte-
grating source query interfaces on the Deep Web. In: SIGMOD 2004 (2004)

30. Zhang, Z., He, B., Chang, K.: Understanding Web query interfaces: Best-effort parsing
with hidden syntax. In: Proceedings of the 2004 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD 2004), pp. 107–118 (2004)

citeseer.nj.nec.com/raghavan01crawling.html

	Modeling and Extracting Deep-Web Query Interfaces
	Introduction
	Related Work
	Modeling Query Interfaces
	Flat vs. Hierarchical Modeling of Query Interfaces
	Hierarchical Modeling of Query Interfaces

	Extracting the Tree Structure of an Interface
	Structure Extraction via Spatial Clustering
	N-Way Clustering
	Exploiting Non-distance Information as Constraints
	The Structure Extraction Algorithm

	Extracting and Attaching the Labels
	Empirical Evaluation
	Evaluating the Structure Extractor
	Evaluating the Schema Annotator

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

