Skip to main content

Process Algebra Modelling Styles for Biomolecular Processes

  • Chapter
Transactions on Computational Systems Biology XI

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 5750))

Abstract

We investigate how biomolecular processes are modelled in process algebras, focussing on chemical reactions. We consider various modelling styles and how design decisions made in the definition of the process algebra have an impact on how a modelling style can be applied. Our goal is to highlight the often implicit choices that modellers make in choosing a formalism, and illustrate, through the use of examples, how this can affect expressability as well as the type and complexity of the analysis that can be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Henzinger, T.A.: Reactive modules. Formal methods in System Design 15(1), 7–48 (1990)

    Article  Google Scholar 

  2. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A Calculus of Looping Sequences for Modelling Microbiological Systems. Fundamenta Informaticae 72(1-3), 21–35 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Brim, L., Jacquet, J.-M., Gilbert, D.: A process algebra for synchronous concurrent programming. In: Hanus, M., Rodríguez-Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 165–178. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  4. Bortolussi, L.: Stochastic concurrent constraint programming. In: Proceedings of QAPL 2006: 4th International workshop on quantitative aspects of programming languages, vol. 164, pp. 65–80 (2006)

    Google Scholar 

  5. Bortolussi, L., Policriti, A.: Modelling biological systems in stochastic constraint programming. Constraints 13, 66–90 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Cardelli, L.: Brane Calculus. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Cardelli, L.: On process rate semantics. Theoretical Computer Science 391(1), 190–215 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cardelli, L., Panina, E.M., Regev, A., Shapiro, E., Silverman, W.: BioAmbients: An Abstraction for Biological Compartments. Theoretical Computer Science 325(1), 141–167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciocchetta, F., Guerriero, M.L.: Modelling Biological Compartments in Bio-PEPA. ENTCS 227, 77–95 (2009)

    MATH  Google Scholar 

  11. Ciochetta, F., Hillston, J.: Bio-PEPA: a framework for modelling and analysis of biological systems. Theoretical Computer Science (to appear)

    Google Scholar 

  12. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biomolecular interaction networks. Theoretical Computer Science 325(1), 25–44 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Calder, M., Vyshemirsky, V., Orton, R., Gilbert, D.: Analysis of signalling pathways using Continuous Time Markov Chains. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Degano, P., Prandi, D., Priami, C., Quaglia, P.: Beta-binders for biological quantitative experiments. Electronic Notes in Computer Science 164, 101–117 (2006)

    Article  Google Scholar 

  16. Gillespie, D., Petzold, L.: Numerical Simulation for Biochemical Kinetics. In: System Modelling in Cellular Biology. MIT Press, Cambridge (2006)

    Google Scholar 

  17. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. In: The Proceedings of 4th International Workshop on Computational Methods in Systems Biology 2006, Trento, Italy, October 18-19 (2006)

    Google Scholar 

  18. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  19. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)

    MATH  Google Scholar 

  20. Milner, R.: A Calculus for Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980)

    Book  MATH  Google Scholar 

  21. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  22. Priami, C.: Stochastic π-calculus. The Computer Journal 38, 578–589 (1995)

    Article  Google Scholar 

  23. Regev, A., Shapiro, E.: Cellular abstractions: cells as computation. Nature 419, 343 (2001)

    Article  Google Scholar 

  24. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using π-calculus process algebra. In: Pacific Symposium on Biocomputing 2001 (PSB 2001), pp. 459–470 (2001)

    Google Scholar 

  25. Tymchyshyn, O., Kwiatkowska, M.: Combining intra- and inter-cellular dynamics to investigate intestinal homeostasis. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 63–76. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Tribastone, M., Duguid, A., Gilmore, S.: The PEPA Eclipse Plug-in. Performance Evaluation Review 36(4), 28–33 (2009)

    Article  Google Scholar 

  27. Versari, C.: A Core Calculus for a Comparative Analysis of Bio-inspired Calculi. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 411–425. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Calder, M., Hillston, J. (2009). Process Algebra Modelling Styles for Biomolecular Processes. In: Priami, C., Back, RJ., Petre, I. (eds) Transactions on Computational Systems Biology XI. Lecture Notes in Computer Science(), vol 5750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04186-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04186-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04185-3

  • Online ISBN: 978-3-642-04186-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics