Skip to main content

Discrete Modeling of Biochemical Signaling with Memory Enhancement

  • Chapter
Transactions on Computational Systems Biology XI

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 5750))

Abstract

We present an enhancement of the Nondeterministic Waiting Time algorithm. This work is a continuation of our group’s previous modeling efforts. We have improved our algorithm with a “memory enhancement”. Previously, we have used our algorithm to explore the Fas-mediated apoptotic pathway in cells with a particular focus on cancerous or HIV-1-infected T cells. In this paper, we will describe the memory enhancement and give a simple three reaction model to illustrate the differences between our technique and a continuous, concentration-based approach using a system of ordinary differential equations. Furthermore, we provide our results from the modeling of two well-known models: the Lotka-Volterra predator-prey and a circadian rhythm model. For these models, we provide the results of our simulation technique in comparison to results from ordinary differential equations and the Gillespie Algorithm. We show that our algorithm, while being faster than Gillespie’s approach, is capable of generating oscillatory behavior where ordinary differential equations do not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barkai, N., Leibler, S.: Biological rhythms: Circadian clocks limited by noise. Nature 403, 267–268 (2000)

    Google Scholar 

  2. Boehning, D., van Rossem, D.B., Patterson, R.L., Snyder, S.H.: A peptide inhibitor of cytochrome c/inositol 1,4,5-triphosphate receptor binding blocks intrinsic and extrinisc cell death pathways. PNAS 102(5), 1466–1471 (2005)

    Article  Google Scholar 

  3. Cheruku, S., Păun, A., Romero-Campero, F., Pérez-Jiménez, M., Ibarra, O.: Simulating FAS-Induced Apoptosis by Using P Systems. In: Proceedings of Bio-inspired computing: theory and applications (BIC-TA), Wuhan, China, September 18-22 (2006); also extended version published as Progress in Natural Science 17(4), 424–431 (2006)

    Google Scholar 

  4. Dunlap, J.: Circadian Rhythms: An End in the Beginning. Science 280(5369), 1548–1549 (1998)

    Article  Google Scholar 

  5. Funahashi, A., Morohashi, M., Kitano, H.: CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. BIOSILICO 1(5), 159–162 (2003)

    Article  Google Scholar 

  6. Funahashi, A., Matsuoka, Y., Jouraku, A., Morohashi, M., Kikuchi, N., Kitano, H.: CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks. Proceedings of the IEEE 96(8), 1254–1265 (2008)

    Article  Google Scholar 

  7. Gillespie, D.T.: A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. Journal of Computational Physics 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  8. Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  9. Gibson, M.A., Bruck, J.: Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels. Journal of Physical Chemistry A 104, 1876–1889 (2000)

    Article  Google Scholar 

  10. Hoops, S., et al.: COPASI – a Complex Pathway Simulator. Bioinformatics 22(24), 3067–3074 (2006)

    Article  Google Scholar 

  11. Hua, F., Cornejo, M., Cardone, M., Stokes, C., Lauffenburger, D.: Effects of bcl-2 levels on fas signaling-induced caspase-3 activation: molecular genetic tests of computational model predictions. The Journal of Immunology 175(2), 985–995 (2005); Correction 175(9), 6235–6237 (2005)

    Article  Google Scholar 

  12. Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)

    Article  Google Scholar 

  13. Jack, J., Romero-Campero, F.J., Perez-Jimenez, M.J., Ibarra, O.H., Păun, A.: Simulating Apoptosis Using Discrete Methods: A Membrane System and a Stochastic Approach. Language Theory in Biocomputing (2007)

    Google Scholar 

  14. Jack, J., Rodriguez-Paton, A., Ibarra, O.H., Păun, A.: Discrete Nondeterministic Modeling of the FAS Pathway. Int. J. Found. Comput. Sci. 19(5), 1147–1162 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jack, J., Păun, A., Rodriguez-Paton, A.: Effects of HIV-1 Proteins on the Fas-mediated Apoptotic Signaling Cascade: A Computational Study of T cell Latency. In: Proceedings of WMC9: 2008. LNCS, vol. 5391, pp. 246–259 (2009)

    Google Scholar 

  16. Karn, J.: Tackling Tat. Journal of Molecular Biology 2(22), 235–254 (1999)

    Article  Google Scholar 

  17. Kitano, H.: Computational Systems Biology. Nature 420 (2002)

    Google Scholar 

  18. Kitano, H.: Systems Biology: A Brief Overview. Science 295, 55–60 (2002)

    Article  Google Scholar 

  19. Ma, L., Rice, J.J., Hu, W., Levine, A.J., Stolovitzky, G.A.: A plausible model for the digital response of p53 to DNA damage. PNAS 102(40), 14266–14271 (2005)

    Article  Google Scholar 

  20. Selliah, N., Finkel, T.: Biochemical mechanisms of HIV induced T cell apoptosis. Cell Death and Differentiation 8, 127–136 (2001)

    Article  Google Scholar 

  21. Vilar, J.M.G., et al.: Mechanisms of noise-resistance in general oscillations. PNAS 99(9), 5988–5992 (2002)

    Article  Google Scholar 

  22. Wagner, J., Ma, L., Rice, J.J., Hu, W., Levine, A.J., Stolovitzky, G.A.: p53-Mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM and delayed feedback. IEE Proc.-Syst. Biol. 152(3), 109–118 (2005)

    Article  Google Scholar 

  23. Weinberger, L., Burnett, J., Toettcher, J., Arkin, A., Schaffer, D.: Stochastic Gene Expression in a Lentivrial Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity. Cell 122(2), 169–182 (2005)

    Article  Google Scholar 

  24. Wiley, H.S., Shvartsman, S.Y., Lauffenburger, D.A.: Computational modeling of EGF-receptor system: a paradigm for systems biology. TRENDS in Cell Biology 13(1), 43–50 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jack, J., Păun, A. (2009). Discrete Modeling of Biochemical Signaling with Memory Enhancement. In: Priami, C., Back, RJ., Petre, I. (eds) Transactions on Computational Systems Biology XI. Lecture Notes in Computer Science(), vol 5750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04186-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04186-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04185-3

  • Online ISBN: 978-3-642-04186-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics