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Abstract. The rapidly increasing number of XML-related applications
indicates a growing need for efficient, dynamic, and native XML sup-
port in database management systems (XDBMS). So far, both industry
and academia primarily focus on benchmarking of high-level performance
figures for a variety of applications, queries, or documents – frequently
executed in artificial workload scenarios – and, therefore, may analyze
and compare only specific or incidental behavior of the underlying sys-
tems. To cover the full XDBMS support, it is mandatory to benchmark
performance-critical components bottom-up, thereby removing bottle-
necks and optimizing component behavior. In this way, wrong conclu-
sions are avoided when new techniques such as tailored XML operators,
index types, or storage mappings with unfamiliar performance character-
istics are used. As an experience report, we present what we have learned
from benchmarking a native XDBMS and recommend certain setups to
do it in a systematic and meaningful way.

1 Motivation

The increasing presence of XML data and XML-enabled (database) applications
is raising the demand for established XML benchmarks. During the last years,
a handful of ad-hoc benchmarks emerged and some of them served as basis for
on-going XML research [5, 29, 39], thus constituting some kind of XML “stan-
dard” benchmarks. All these benchmarks address the XDBMS behavior and
performance visible at the application interface (API) and fail to evaluate and
compare properties of the XDBMS components involved in XQuery processing.
However, the development of native XDBMSs should be test-driven for all sys-
tem layers separately, as it was successfully done in the relational world, too,
before such high-level benchmarks are used to confirm suitability and efficiency
of an XDBMS for a given application domain.

In the same way, only high-level features such as document store/retrieve and
complete XQuery expressions were drawn on the comparison and adaptation of
XML benchmark capabilities [21, 26, 31, 32]. They can be often characterized as
“black-box” approaches and are apparently inappropriate to analyze the inter-
nal system behavior in a detailed way. This applies to other approaches which
focused on specific problems such as handling “shredding” or NULL values effi-
ciently, too.



2 Related Work

Selecting an appropriate benchmark for the targeted application scenario can
be challenging and has become a favorite research topic especially for XML in
the recent years. In particular, the definitions of XPath [36] as an XML query
language for path expressions and of the Turing-complete XQuery [37] language,
which is actually based on XPath, caused the emergence of several XML bench-
marks.

One of the first XML benchmarks is XMach-1 [5] developed to analyze web
applications using XML documents of varying structure and content. Besides
simple search queries, coarse operations to delete entire documents or to in-
sert new documents are defined. Thus, XMach-1 does not address, among other
issues, efficiency checking of concurrency control when evaluating fine-grained
modifications in XML documents. Another very popular project is XMark [33],
providing artificial auction data within a single, but scalable document and 20
pre-defined queries. Actually such a benchmark is useful to evaluate search func-
tions at the query layer, whereas, again, multi-user access is not addressed at
all. A more recent alternative proposed by IBM can be used to evaluate trans-
actional processing over XML – TPoX [29], which utilizes the XQuery Update
Facility [38] to include XML modification operations. By referring to a real-world
XML schema (FixML), the benchmark defines three types of documents having
rather small sizes (≤ 26 KB) and 11 initial queries for a financial application
scenario. The dataset size can be scaled from several GB to one PB and the
performance behavior of multi-user read/write transactions is a main objective
of that project. Nevertheless, all benchmarking is done at the XQuery layer and
no further system internals are to be inspected in detail.

However, other benchmarks explicitly investigate the XQuery engine in a
stand-alone mode [1, 23]. Such “black box” benchmarks seem to be reasonable
for scenarios operating on XML-enabled databases having relational cores, e.g.,
[4, 10, 11, 35], because their internals are optimized during the last 40 years.

Furthermore, it is interesting to take a look at the list of performance-critical
aspects suggested by [31] and [32]: bulk loading, document reconstruction, path
traversal, data type casting, missing elements, ordered access, references, value-
based joins, construction of large result sets, indexing, and full-text search for
the containment function of XQuery. Almost all aspects are solely focusing on
the application level or query level of XML processing, or they address rela-
tional systems, which have to cope with missing elements (NULL values). In-
deed, the development towards native XML databases, e.g., [15, 18, 28, 30, 34]
was necessary to overcome all shortcomings of “Shredding” [35] and lead to new
benchmark requirements and opportunities [27].

Other comparative work in [1] and [26] either compared existing XML bench-
marks or discussed the cornerstones of good XML benchmarks (e.g, [21, 32])
defining queries and datasets. The only work that tried to extend existing ap-
proaches is presented in [31]. Although the authors forgot to consider TPoX,
which has a focal point on updates, they extended other existing benchmarks
with update queries to overcome that drawback.



3 Performance-Critical Components

To explore the performance behavior of DBMS components, the analyzing tools
must be able to address their specific operations in a controlled way, provoke
their runtime effects under a variety of load situations, and make these effects
visible to enable result interpretation and to conduct further research regarding
the cause of bottleneck behavior or performance bugs. The characteristics of the
XML documents used are described in detail in the next section. Because the
component analysis always includes similar sets of node and path operations, we
do not want to repeat them redundantly and only sketch the important aspects
or operations leading to optimized behavior.
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Fig. 1. XTC Architecture – overview [15]

XTC (XML Transaction Coor-
dinator), our prototype XDBMS,
is used in all measurements [15].
Its development over the last four
years accumulated substantial ex-
perience concerning DBMS per-
formance. Based on this experi-
ence, inspection of the internal flow
of DBMS processing indicated the
critical components benchmarked,
which are highlighted in the illus-
tration of the layered XTC archi-
tecture depicted in Fig. 1. Many
of the sketched components have
close relationships in functionality
or similar implementations in the
relational world. Therefore, stable
and proven solutions with known
performance characteristics exist
for them. However, a closer study
of the components highlighted re-
veals that their functionality and implementation exhibit the largest differences
compared to those in a relational DBMS. Therefore, it is meaningful to concen-
trate on these components and their underlying concepts to analyze and optimize
their (largely unfamiliar) performance behavior.

While application-specific benchmarks such as XMark or TPoX are designed
to pinpoint the essentials of a typical application of a given domain and only use
the required resources and functions of it, benchmarks checking layer-specific
functionality or common DBMS components have to strive for generality and
have to serve for the determination of generic and sufficiently broad solutions.
For the on-going system development of XDBMSs, we want to emphasize that
benchmarks have to address each layer separately to deliver helpful hints for per-
formance improvement. Local effects (e.g., expensive XML mapping, compres-
sion penalties, quality of operator selection among existing alternatives, buffer
effects) are often invisible at the XQuery layer and must be analyzed via native



Table 1. Selected XML documents considered

Document Decription Size
Depth

Nodes Paths
max avg

dblp Computer science index 330 MB 6 3.4 17 Mio 153

unirot Universal protein resource 1.8 GB 6 4.5 135 Mio 121

lineitem TPC-H data 32 MB 4 3.0 2 Mio 17

treebnk Wall street journal records 86 MB 37 8.44 3.8 Mio 220k

SigRec Sigmod records 0.5 MB 7 5.7 23.000 7

XMark Artifical 12 MB 13 5.5 324.271 439
auction data 112 MB 13 5.6 3.2 Mio 451

account TPoX benchmark doc- ∼ 6 KB 8 4.7 ∼ 320 ∼ 100
order uments for accounts, ∼ 2 KB 5 2.6 ∼ 81 ∼ 83

security orders, and securities ∼ 6 KB 6 3.5 ∼ 100 ∼ 53

interfaces or tailored benchmarks. In the following, we show what kind of ap-
proaches help to systematically explore performance-critical aspects within the
layers of an XDBMS.

4 Storage Mapping

As the foundation of “external” XDBMS processing, special attention should be
paid to storage mapping. Native XDBMSs avoid shredding to overcome short-
comings in scalability and flexibility [35] and developed tree-like storage struc-
tures [15, 18, 34]. One of the most important aspects is stable node labeling to
allow for fast node addressing and efficient IUD1 operations on nodes or subtrees.
Two classes of labeling schemes emerged where the prefix-based schemes proved
to be superior to the range-based schemes; they are more versatile, stable, and
efficient [7, 8]. In addition, they enable prefix compression which significantly
reduces space consumption and, in turn, IO costs. Furthermore, a node label
delivers the label of all ancestors which is an unbeatable advantage in case of
hierarchical intention locking [12].

Another important mapping property deals with XML structure representa-
tion – in particular, with clever handling of path redundancy. A naive approach
is to map each XML element, attribute, and text node to a distinct physical
entity leading to a high degree of redundancy in case of repetitive XML path
instances. Because all implementations use dictionaries to substitute XML tag
names (element, attribute) by short numbers (i.e., integer), we do not consider
variations of dictionary encodings, but aimed to eliminate the structure part
to the extent possible. With the help of an auxiliary data structure called path
synopsis (a kind of path dictionary without duplicates), it is possible to avoid
structural redundancy at all [13]. However, text value redundancy has to be ad-
dressed by common compression techniques and can be benchmarked orthogonal
to the actual XML mapping.
1 Insert, Update, Delete
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Because ordering is an important aspect for XML processing, the storage
mapping has to observe the ordering and to a certain degree the round-trip prop-
erty. Furthermore, the storage mapping has to be dynamic to allow for IUD oper-
ations within single documents and collections of documents. For benchmarking,
we identified the following important aspects: space consumption (mapping effi-
ciency), ratio and overhead of optional compression techniques, document size,
document no., CPU vs. IO impact, and modifications (IUD).

Benchmark datasets, listed in Table 1, were choosen from different sources
to reflect the variety of XML documents. Therefore, we recommend to collect
benchmark numbers from real data (e.g., dblp) and artificial data (e.g., XMark),
tiny up to huge documents (e.g., TPoX, protein datasets), complex and simple
structured documents (e.g., treebank, dblp), as well as document-centric and
data-centric XML data (e.g., tpch data, sigmod records). The datasets used are
derived from [25, 29] and [33]. For scaling purposes, we generated differently sized
XMark documents and differently composed sets of TPoX documents.

Highlighting the fundamental importance of mapping efficiency, Fig. 2 gives
some basic insight into three different XML mapping approaches, namely naive,
prefix compressed, and elementless. While the naive approach simply maps each
XML entity combined with its node label to a physical record, the prefix com-
pressed mode drastically reduces this space overhead through prefix compression
of node labels. The final optimization is to avoid redundancy in structure part
at all, by the so-called structure virtualization where all structure nodes and
paths can be computed on demand by using the document’s path synopsis. The
mapping efficiency analysis in Fig. 2 shows that all kind of documents benefit
from optimized mappings when compared to plain (the external XML file size).

The second benchmark example (see Fig. 3) identifies the impact of the
mapping’s compression techniques. For this purpose, we used TPoX document
sets in the scaling range from 10 MB to 1000 MB and analyzed the share of
IO and CPU time spend to randomly access and process these sets. For small
sets (≤ 100 MB), the reduction of the IO impact is visible, whereas for large
sets (> 100 MB) the differences are nearly leveled out. However, several other



Table 2. Characteristics for selected XMark indexes build for an elementless document

# Type Definition Size Paths Clustering Entries

I1 CAS //* (all text nodes) 25.9 MB 514 (94 %) label 1,173,733

I2 CAS //* (all text nodes) 25.9 MB 514 (94 %) path 1,173,733

I3 CAS //item/location 0.26 MB 6 (1.1 %) label 21,750

I4 CAS //asia/item/location 0.025 MB 1 (0.2 %) label 2,000

I5 PATH //keyword 0.67 MB 99 (18 %) label 69,969

I6 PATH //keyword 0.43 MB 99 (18 %) path 69,969

I7 CONTENT all content nodes 21.3 MB - - 1,555,603

I8 ELEMENT all element nodes 10.2 MB - - 1,666,384

I9 CAS //* ∧ //@ 31.0 MB 548 (100 %) path 1,555,603

D1 DOCUMENT document index 94.5 MB - - 1,568,362

aspects heavily influence a storage-related benchmark, e.g., the block size chosen,
the available hardware (disk, CPU(s), memory), and the software (OS, load).

Summarizing, the benchmarks have exhibited the influence of various map-
ping options and available performance spectrum, even at the lower system lay-
ers. Because these mappings serve different objectives, it depends on the specific
XML document usage, which option meets the actual workload best.

5 Indexes

Although most XML indexing techniques proposed are developed to support
reader transactions, they are necessarily used in read/write applications. Af-
ter all, they have to observe space restrictions in practical applications. There-
fore, a universal index implementation has to meet additional requirements such
as maintenance costs and footprint. Moreover, its applicability, scalability, and
query support have to be analyzed, too.

On the one hand, we can find elementary XML indexes such as DataGuide [9]
variations that index all elements of an XML document or full-text indexes
covering all content nodes. Such indexes cover a fairly broad spectrum of search
support, but need a lot of space and induce high maintenance costs. On the
other hand, we can find more adjusted indexes such as path indexes [9, 24] or
CAS indexes [20] to fill existing gaps for specific access requirements.

Comparing different index types should overcome common pitfalls, i.e., spe-
cialized indexes should not be evaluated against generic indexes, because dif-
ferent sets of indexed elements lead to different index sizes, selectivities, and,
therefore, expressive power. Another drawback may be induced by unfavorable or
complex update algorithms leading to the difficult question which kind of work-
load is supported best. Moreover, destroying and rebuilding of indexes may be
frequently required on demand in highly dynamic environments, thereby draw-
ing the attention primarily to index building costs. Eventually, query evaluation
may be affected by costly index matching, in contrast to the relational case where
an attribute-wise index matching is fairly cheap.



Thus, to benchmark index configurations in sufficient quality, the perfor-
mance of an abundant range of documents, workloads, and index definitions
should be evaluated under the different storage mappings. However, due to space
restrictions, we can only refer to a set of examples based on elementless storage
to identify which (of the many) aspects must be observed first when benchmark-
ing indexes. Therefore, Table 2 shows a selection of different index types and
their characteristics supporting different kind of queries.2 For instance, the CAS
indexes I1 and I2 are equal except for their clustering techniques used, which
either optimize document-ordered access or path-based access. Moreover, the
path-based clustering may need an additional sort to combine entries from more
than one path instance. The indexes I3 and I4 serve as examples for refinement;
the more focused an index definition, the less XML entities are addressed, which
leads to smaller (and in case of IUD to cheaper maintenance of) indexes. How-
ever, their expressive power and usability for query support is reduced by such
refinements. Path indexes (e.g., I5 and I5) using prefix compression on their keys
may differ in size, in contrast to CAS indexes where the index size is indepen-
dent of the clustering. Furthermore, they can exploit optional clustering whose
performance benefit is, however, query dependent. Storage-type-independent in-
dexes such as the stated content index I7 and element index I8 are fairly generic
by covering the entire XML document. Thus, they need maintenance for each
IUD operation, but often provide limited fallback access and can thereby avoid
a document scan.
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Moreover, the complex-
ity of XML indexing is
shown by I7 and I9 which ac-
tually index the same nodes
(text and attribute con-
tent). But I9 needs more
space to include path infor-
mation and supports clus-
tering. Therefore, XML in-
dexes require fine-tuning to
exploit their features and
have to be tailored to the
workload. In contrast, un-
known workloads may bene-
fit from more generic index
approaches, whereas fixed
workloads may be best sup-
ported by very specific path indexes or CAS indexes.

Secondary features like the clustering may have a huge impact on query
performance. This is confirmed by the indexing example in Fig. 4, which clearly
shows that such details need to be considered for XML index benchmarking.

2 All indexes are built for an 112 MB XMark document containing a subset of the
document’s 3,221,913 XML entities (element, attribute, and text nodes).



Table 3. Tree-pattern queries used to benchmark join algorithms on XMark documents

# Query Matches

X1 /site//open auction[.//bidder/personref]//reserve 146982

X2 //people//person[.//address/zipcode]/profile/education 15857

X3 //item[location]/description//keyword 136260

X4 //item[location][.//mailbox/mail//emph]/description//keyword 86568

X5 //item[location][quantity][//keyword]/name 207639

X6 //people//person[.//address/zipcode][id]/profile[.//age]/education 7991

Comparing the cluster impact of path indexes I5 and I6, it becomes obvious
that low selectivities (i.e., small numbers of path classes) are better supported
by path-based clustering, whereas high selectivities (in our example ≥50 %) can
better take advantage of document-ordered, label-based clustering.

6 Path-Processing Operators

With each level of abstraction in the system architecture, the objects become
more complex, allowing more powerful operations and being constrained by a
larger number of integrity rules. Therefore, the parameter space of the operators
frequently increases dramatically such that exhaustive analysis is not possible
anymore. Because the options of the data structures and related operations at
the path-processing layer are already so abundant and offer so many choices
that it becomes hopeless to strive for complete coverage. Nevertheless, accurate-
enough benchmarking needs to consider the most influential parameters (e.g.,
stack size(s), index usage, recursion, false positive filtering) at least in principle.

Here, we sketch our search for optimal evaluation support concerning tree-
pattern queries and how we coped with their inherent variety and complexity.
Because so many path-processing operators and join mechanisms were proposed
in the literature for the processing of query tree patterns (QTP) and because
we wanted to check them with our own optimization ideas, we implemented for
each of the various solution classes the best-rated algorithm in XTC to pro-
vide an identical runtime environment and to use a full-fledged XDBMS (with
appropriate indexes available) for accurate cross-comparisons: Structural Joins,
TwigStack, TJFast, Twig2Stack, and TwigList [2, 6, 17, 19, 22]. Structural Join
as the oldest method decomposes a QTP into its binary relationships and ex-
ecutes them separately. Its key drawback is the high amount of intermediate
results produced during the matching process. TwigStack as a holistic method
processes a QTP as a whole in two phases, where at first partial results for each
QTP leg are derived, before the final result is created in an expensive merging
phase. TJFast, inspired by TwigStack, aims at improvements by reducing IO.
It uses a kind of prefix-based node labeling which enables the mapping of node
labels to their related paths in the document. As a consequence, only document
nodes potentially qualifying for QTP expressions have to be fetched, but it is still
burdened by the expensive merging phase. Twig2Stack and its refined version



TwigList evaluate QTPs without merging in a single phase, but they require
more memory than TwigStack and TJFast. In the worst case, they have to load
the entire document into memory.

We complemented the set of these competitors with tailored solutions – espe-
cially developed in the XTC context to combine prefix-based node labeling and
path synopsis use –, called S3and its optimized version OS3 [17], where query
evaluation avoids document access to the extent possible.

To figure out the query evaluation performance for them, we used a set of
benchmark queries (see Table 3) for XMark documents which guaranteed suf-
ficient coverage of all aspects needed to cross-compare the different path pro-
cessing and join algorithms under the variation of important parameters (type
of index, selectivity of values, evaluation mechanism (bottom-up or top-down),
size of documents, etc.).

Unlike all competitor methods, S3and OS3executed path expressions not di-
rectly on the XML document, but first evaluated them against a path-synopsis-
like structure, to minimize access to the document. Hence, variations of our idea
underlying the S3algorithm outperformed any kind of conventional path oper-
ator use, achieved stable performance gains and proved their superiority under
different benchmarks and in scalability experiments [17].

Fig. 5 shows our experimental results for the XMark (scale 5) dataset. Be-
cause the execution times for Structural Joins were typically orders of magni-
tude worse than those of the remaining methods, we have dropped them from
our cross-comparison. As a general impression, our own methods – in particular,
OS3– are definitely superior to the competitors, in terms of execution time and
IO time. As depicted in Fig. 5 (a), OS3 is at least three times faster than the
other methods. S3 also obtains the same performance except for X3, X4, and X5.
Here, S3 is about three times slower than TJFast for X4 and X5 and it is 1.3
times slower for X3 ; here, it exhibits the worst performance among all methods.
As a result, processing time and IO cost for queries like X4 (see Fig. 5 (a) and
(b)) are very high; OS3 can reduce these costs by tailored mechanisms [17]. As
a consequence, OS3 is often more than two times faster than TJFast – the best
of the competitor methods – for X3, X4, and X5.

Eventually such twig operators should be confronted with largely varying
input sizes to prove their general applicability, because stack-based operators
(e.g., TwigStack, Twig2Stack) or recursive algorithms stress memory capabilities
more than iterative algorithms and iterator-based operators. Another aspect, not
addressed in this work, is the preservation of document order for XML query
processing. A fair evaluation has to ensure that all operators deliver the same set
and order of results. Moreover, a comparison has to state if indexes were used
and if the competitive operators used different indexes.

7 Transaction Processing

Like all other types of DBMSs, also XDBMSs must be designed to scale in
multi-user environments with both queries and updates from concurrent clients.
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Of course, we should here leverage experience collected in decades of database
research, but we must also revise appropriateness of prevailing principles. As
already mentioned, aspects of logging and recovery are generally not different
for transactional XML processing, because all current storage mappings are still
build on page-based data structures. In terms of transaction isolation, however,
we have to meet concerns of XML’s hierarchical structures and new data access
patterns.

The TPoX benchmark – the first XML benchmark that covers updates –
defines a workload mix that queries and updates large collections of small doc-
uments. The authors claim that this setup is typical for most data-centric XML
applications, which implies that relevant documents are easily identified through
unique attribute values supported by additional indexes3. Hence, document-level
isolation would always provide sufficient concurrency. In general, however, data
contention increases rapidly with the share of non-exact queries like, e.g., range-
queries, and the ratio between document size and number of documents.

Research-focused transaction benchmarks for XDBMS should take this as-
pects into account, should not restrict themselves solely to current XML use
cases, and, thus, close the door for new types of applications profiting from the
use of semi-structured data. Therefore, we strive for an application-independent
isolation concept, which provides us with both competitive performance through
simple document-level isolation if sufficient and superior concurrency for fine-
grained node-level isolation if beneficial.

The essence of our efforts is a hierarchical lock protocol called taDOM [16].
It bases on the concepts of multi-granularity locking, which are used in most
relational DBMSs, but is tailored to maximize concurrent access to XML doc-
ument trees. To schedule read and write access for specific nodes, siblings, or
whole subtrees at arbitrary document levels, transactions may choose from so-
phisticated lock modes that have to be acquired in conjunction with so-called
intention locks on the ancestor path from root to leaf. The concept of edge
3 90% of the TPoX workload directly addresses relevant document(s) through unique

id attribute values supported by additional indexes for the measurements.



locks [16] complements this approach to avoid phantoms during navigation in
the document tree.
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Fig. 6. Scalability of node-level locking

To exemplify the benefits of
node-level locking in terms of
throughput and scalability, we
executed a mix of eight read-only
and update transaction types on
a single 8 MB XML document
and varied the number of concur-
rent clients. All transaction types
follow a typical query access pat-
tern. They choose one or more
jump-in nodes directed by a sec-
ondary index and navigate from
there in the document tree to
build the query result or find the update position (see also [3]). The results
in Fig. 6 show that the reduced locking overhead of document-level isolation
only paid off in the single client case with a slightly higher throughput. In all
other cases, node-level isolation improved not only the transaction rates, but also
the scalability of the system, because a too coarse-grained isolation dramatically
increases the danger of the so-called convoy effect. It arises if a system cannot
scale with the rate of incoming client requests, because the requested data is ex-
clusively accessed by update transactions. Accordingly, the more clients we had,
the more document-level isolation suffered from rapidly growing request queues
leading consequently to increasing response times, more timeouts, and finally a
complete collapse.

Although this example nicely illustrates the potential of node-level locking,
it creates new challenges that we have to conquer. One of the first experiments
with fine-grained locking, for example, surprisingly revealed that isolation levels
lower than repeatable achieve less throughput, which is completely different from
what we know from relational databases [14]. The reason for this are exploding
numbers of request-release cycles for the intention locks on the document tree; a
phenomena that was not known from the small-granule hierarchies in relational
systems. Further work led to the cognition that prefix-based node labels were
not only a sake for storage and query purposes but also for cheap derivation of
ancestor node labels for intention locks. Finally, latest results [3] proved that we
can overrule the objections that taDOM is too expensive for larger documents. A
simple yet effective lock escalation mechanism allows us to balance lock overhead
and concurrency benefits dynamically at runtime.

In the latter experiments, we also identified the importance of update-aware
query planning as a new research topic. By now, we are not aware of any work
that covers the implications of concurrent document access and modification
and the danger of deadlocks during plan generation. Another open question is
the concurrency-aware use of the various XML indexes and their interplay with
document storage.



8 Integrated View

In addition to component-level, respectively, layer-level analysis, we must also
take the dependencies and implications of certain design decisions into account.
As already indicated in the previous sections, key aspects like, e.g., the cho-
sen node labeling scheme have a huge effect on the whole system. As another
example, the virtualization of the inner document structure leverages not only
the storage mapping, but also indexing and path-processing operators in higher
system layers. On the other hand, however, improvements in one part of the
system can also impose new challenges on other system components. In the con-
currency experiments in [3], for example, we reached such a high concurrency at
the XML level that our storage structures became the concurrency bottleneck –
a completely new challenge for XML storage mappings.

Obviously, the next step towards scalable and generic XDBMS architectures
must turn the attention to the interplay of all layers at the system boundary.
For the beginning, we can fall back on existing toolboxes to evaluate the perfor-
mance of XML key functions like navigation (DOM), streaming (SAX, StaX),
and path evaluation (XPath). Thereafter, a wide range of XQuery benchmarks
should be applied to identify the pros and cons of an architecture. Of course, it
seems not possible to cover all potential performance-relevant aspects in every
combination with exhaustive benchmarks, but, based on our experience, we can
say that we need meaningful combinations of the following orthogonal aspects
to get a thorough picture. The database size should be scaled in both directions,
the number of documents and the individual document size. To cover the full
range of XML’s flexibility, different degrees of structure complexity should be
addressed with unstructured, semi-structured, structured, and mixed-structured
documents in terms of repeating “patterns”. Furthermore, variations of param-
eters such as fan-out and depth can also give valuable insights. Queries should
assess capabilities for full-text search, point and range queries over text con-
tent, as well as structural relationships like paths and twigs and combinations of
both. Update capabilities should be addressed by scaling from read-only work-
loads over full document insertions and deletions to fine-grained intra-document
updates. Finally, these workloads have to be evaluated in single and multi-user
scenarios.

To identify meaningful combinations, there must be an exchange between
database researchers and application developers. On the one hand, specific ap-
plication needs must be satisfied by the XDBMS and, on the other hand, applica-
tions have to be adjusted to observe the strengths and weaknesses of XDBMSs.
Although the flexibility of XML allows many ways to model data and rela-
tionships in logically equivalent variants, it may have a strong influence on the
performance of an XDBMS, e.g., in terms of buffer locality. Hence, system ca-
pabilities will also cause a rethinking the way how to model XML data, because
data modeling driven solely by business needs will not necessarily lead to an opti-
mal representation for an XDBMS-based application. Consequently, there must
be a distinction between logical and physical data modeling as in the relational
world.



9 Conclusions

We believe that benchmarking is a serious task for database development and,
furthermore, we think that current benchmarks in the XML domain do not cover
the entire XML complexity provided by native XDBMSs. To reveal important
insights how database-based XML processing (e.g., XQuery) is executed, we
started to implement various and promising algorithms for all layers in the entire
DBMS architecture. Although this approach is time-consuming (and sometimes
error-prone, too), it allows for direct comparisons and analyses of competitive
ideas and justifies the development of our own native XDBMS – XTC. However,
in this work we want to motivate the bottom-up development and simultaneous
benchmarking, by giving some insight into critical aspects which arose during
the development. Furthermore, we emphasize common pitfalls and results gained
through tailored benchmarking of distinct components.

In addition, it turned out that benchmarking is an interplay of hardware,
software, workload (data and queries), measuring setup, and fairness. Hardware
selection has to be reasonable w.r.t. main memory, number of CPUs, disk size
and speed, etc. For instance, the trade-off between CPU and IO costs can either
be adjusted through the selection of algorithms or often by hardware adjust-
ments. New concepts such as distributed processing or adaptivity can rapidly
extend the benchmark matrix. Thus, benchmarking different algorithms needs
to be performed under realistic system configurations (e.g., current and proper-
sized hardware). When it comes to workload modeling, either real-world datasets
and queries and/or artificial datasets representing a wide range of applications
should be used. Unfortunately, this is a difficult problem and needs sound consid-
erations. Moreover, the situation that one algorithm put to benchmark is totally
dominating its competitors is rather rare, in fact, most often its preferences are
emphasized and shortcomings omitted in scientific contributions.

New findings by benchmarking gained new techniques and alternative algo-
rithms may lead to a rethinking, and thereby to a reimplementation, which may
trigger expensive development costs, too. Thus unfortunately, the integration
of new ideas is slow and cumbersome. Here, research is challenged to evaluate
by proof-of-concept implementations such new ideas, before commercial systems
may adopt them.

9.1 Should We Propose Another XML Benchmark?

A logic conclusion, drawn after evaluating critical aspects of XML processing
mentioned in this work and existing XML benchmarks, is to develop another
(new) XML benchmark. However, we do not think that a new benchmark is
necessary at all. The rich variety of XML workloads (i.e., datasets and queries)
allows for generating critical (and corner) cases. For instance, during our storage
layer benchmarking we started with single large documents from [25], before we
learned that real applications may also need to process several million (small)
documents [29]. Therefore, we extended our storage benchmarks to meet all
kinds of XML documents. Furthermore, XML processing pervades certain areas



such as information retrieval, where fast reads are mandatory, or the area of
application logging, where prevalently inserts and updates occur concurrently.
Thus, the spectrum of transactional processing is quite wide and requires tailored
protocols to ensure ACID capabilities. Thus, to evaluate concurrent transactional
behavior, for instance, is possible by weighting pre-defined benchmark queries
of [29, 33] according to the objectives put to benchmark.

However, an open system design is helpful to adjust the measuring points for
meaningful results. That means, either internal behavior (algorithms) have to
be published and implemented into a single system or at least proper interfaces
are available on each system put to test.

9.2 Future Work

For our future work, we plan to extend our benchmark findings and continue
the bottom-up approach towards the query and application level. Here, we want
to address XPath/XQuery in more detail, schema processing, XML applications
and use cases, XML data modeling, and the domain of information retrieval
on XML. Furthermore, aspects like query translation, query optimization, and
XQuery language coverage are critical points for comparing XQuery compilers.
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