
Combining Nonmonotonic Knowledge Bases with
External Sources�

Thomas Eiter1, Gerhard Brewka2, Minh Dao-Tran1, Michael Fink1,
Giovambattista Ianni3, and Thomas Krennwallner1

1 Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter,dao,fink,tkren}@kr.tuwien.ac.at
2 Universität Leipzig, Augustusplatz 10-11, 04109 Leipzig, Germany

brewka@informatik.uni-leipzig.de
3 Dipartimento di Matematica, Universitá della Calabria, I-87036 Rende (CS), Italy

ianni@mat.unical.it

Abstract. The developments in information technology during the last decade
have been rapidly changing the possibilities for data and knowledge access. To
respect this, several declarative knowledge representation formalisms have been
extended with the capability to access data and knowledge sources that are exter-
nal to a knowledge base. This article reviews some of these formalisms that are
centered around Answer Set Programming, viz. HEX-programs, modular logic
programs, and multi-context systems, which were developed by the KBS group
of the Vienna University of Technology in cooperation with external colleagues.
These formalisms were designed with different principles and four different set-
tings, and thus have different properties and features; however, as argued, they are
not unrelated. Furthermore, they provide a basis for advanced knowledge-based
information systems, which are targeted in ongoing research projects.

1 Introduction

The developments in information technology during the last decade have been rapidly
changing the possibilities for data and knowledge access. The World Wide Web and the
underlying Internet provide a backbone for the information systems of the 21st century,
which will possess powerful reasoning capabilities that enable one to combine various
pieces of information, possibly stored in heterogeneous formats and with different se-
mantics, such that the wealth of information can be more profitably exploited. In that,
information from plain sources and software packages with simple semantics (such
as, e.g., from a route planner) will have to be mixed with semantically richer sources
like expert knowledge bases, in a suitable manner, bridging the gap between different
sources.

Driven by this need, extensions of declarative knowledge representation formalisms
have been developed with the capability to access external data and knowledge sources.

� This work has been supported by the Austrian Science Fund (FWF) projects P20840 &
P20841, the EC ICT Integrated Project Ontorule (FP7 231875), and the Vienna Science and
Technology Fund (WWTF) project ICT08-020.

S. Ghilardi and R. Sebastiani (Eds.): FroCoS 2009, LNAI 5749, pp. 18–42, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Combining Nonmonotonic Knowledge Bases with External Sources 19

Often, this is realized via an interface in the style of an API; examples of such rule based
formalisms are Prolog engines, or extensions of Answer Set Programming (ASP), which
is based on nonmonotonic logic programs. A particular application area where exten-
sions of nonmonotonic formalisms received a lot of attention recently is the Semantic
Web, cf. [35,41,1], and especially combinations of rules with external ontologies; see
[14,10] for overviews and discussions.

However, such extensions are non-trivial, especially if the flow of information be-
tween a knowledge base and the external sources is bidirectional. That is, the external
source influences the reasoning of the knowledge base, which in turn influences the
behavior of the external source. To define suitable semantics for such scenarios, in the
presence of heterogeneity and distribution, is a challenging problem.

At the Knowledge Based Systems (KBS) Group of the Vienna University of Tech-
nology, people have been working on this problem in several past and ongoing projects,
with a focus on combining nonmonotonic knowledge bases with external sources, in
cooperation with other researchers. The aim of this article is to give a short survey of
some of the formalisms that have been developed, and to provide (for the first time)
a more systematic view of these approaches, according to some characteristic features
which, on the one hand derive from the underlying setting and on the other hand also
determine the properties of the formalisms. Comparison to related work will be largely
omitted here, and we refer to the original papers for this.

Historic Background. The work at KBS on access to external sources in the last years
has precursors dating back more than a decade ago, in different areas: the action lan-
guage for the IMPACT agent platform [39] in the area of agents, and logic programs
with generalized quantifiers [13], in the area of nonmonotonic logic programming.

The IMPACT agent language [20,39] is a rule-based language for specifying the
behavior of a single agent, in terms of actions she may take, depending on the agent
state and input perceived from the environment and other agents via a message box. As
the agent program sits on top of internal data structures, access to such data structures
via code calls (available through APIs) in special code call atoms had been devised. As
these code calls are in fact logically independent of the physical realization, they can be
equally viewed as access to external data sources (as done in some system demos). A
suite of semantics has been defined for agent programs, including nonmonotonic ones
like minimal model and stable semantics.

Nonmonotonic logic programs with generalized quantifiers (GQLPs) were proposed
in [13] to increase the expressiveness of logic programs under answer set semantics, by
incorporating Generalized Quantifiers (GQs) akin to Lindström quantifiers in first-order
logic (such as majority quantifiers; see [40]); similar extensions had been conceived for
database query languages like SQL, to model aggregate functions, or to incorporate
transitive closure. Special GQ atoms allowed to evaluate GQs (which, semantically
boils down to decide whether a particular structure, determined by input predicates,
belongs to a class of first-order structures). Viewing logic programs as GQs, [13] devel-
oped an approach to modular logic programming in which a program module can access
other modules through an interface, which returns inferences of a module depending on
input provided by the calling module.

20 T. Eiter et al.

Table 1. Classification of formalisms

reduct GL-style FLP
world view

local model GQLPs HEX

globale state MCS MLPs

However, the formalisms in [20,13] have some limitations and shortcomings. Both
suffer from groundedness issues in the semantics, in that atoms might be true in “mod-
els” without “founded” support in terms of rules that derive these atoms (a ubiquitous
problem in knowledge representation and reasoning, most prominently discussed in
Autoepistemic Logic; see [31]). Furthermore, in IMPACT, the focus was on efficient
executability over (heterogenous) data structures, which was realized with rule unfold-
ing and pre-compilation; only a very rudimentary (monotonic) fragment of the language
was implemented. GQLPs were geared towards accessing sources with inherent logical
properties of admissible classes of structures, and modular logic programs on top did
not allow for recursion in module calls; furthermore, no implementation was available.1

Recent Work. Motivated by the growing desire for extensions of ASP to access ex-
ternal sources, which especially arose in the Semantic Web area, HEX-programs were
proposed in [17] as a basic formalism for this purpose, abstracting from the more special
description logic (dl-)programs [19] that combine ASP and OWL ontologies. To over-
come the problems of modular logic programming via GQLPs, a refined approach has
been recently presented in [7] which redefines the semantics of modular logic programs
and, noticeably, allows for arbitrary (mutual) recursion between modules. Orthogonal
to these formalisms are multi-context systems [2], which were motivated from a dif-
ferent angle, namely reasoning with contexts. Here, beliefs between several contexts,
which can be seen as agents with different views of a scenario, have to be exchanged;
naturally, this amounts to knowledge bases with external knowledge access, where non-
monotonicity is a desired feature.

As detailed in later sections, modular logic programs (MLPs) can be viewed as a spe-
cial setting for HEX-programs where external sources are nonmonotonic logic programs
themselves. In contrast, multi-context systems (MCSs) can be viewed as a generaliza-
tion of HEX-programs, in which information exchange is moved to the meta-level above
the knowledge bases that instantiate a generic logic. However, this view is superficial
and neglects important aspects that make the formalisms rather different.

From a principled view, the most important are the following two orthogonal aspects:

environment view. The definition of the semantics takes either an individual or a so-
cietal view; in the former, even though there is a collection of programs (or knowl-
edge bases) KB1, . . . ,KBn, the semantics is merely defined in terms of
local models for each individual knowledge base KB i; the semantics of the col-
lection implicitly emerges from the local models. In contrast, in the societal view,

1 The first systems supporting answer set semantics became available at that time; Gerald
Pfeifer, one of the chief developers of the DLV system, deemed GQLPs in 1997 as very inter-
esting and put a respective task on his growing todo list (it is still there).

Combining Nonmonotonic Knowledge Bases with External Sources 21

the collection has a global state, which consists of a collection of local models, one
for each KB i, that is explicitly accessible. The latter allows, e.g., to define pref-
erence over global states, and to single out most preferred ones. Protagonists of
the local-model semantics are GQLPs and HEX-programs, while MLPs and MCSs
have global-state semantics. Loosely speaking, in game-theoretic terms the former
semantics are akin to Nash equilibria, while the latter strive for Pareto-optimality.

program reduct. All formalisms involve, in the tradition of answer set semantics, a
notion of reduct which alters the rules of a program. The classical definition of an-
swer set semantics [24] uses the Gelfond-Lifschitz (GL) reduct [23], which given
an interpretation roughly removes grounded rules whose negative body part is false
in the interpretation, and strips off negative literals from the remaining rules. Later,
the Faber-Leone-Pfeifer (FLP) reduct [21] was presented which simply removes all
grounded rules with a false body. While the two reducts are equivalent for ordinary
logic programs, they behave differently for language extensions; an attractive fea-
ture of the FLP reduct is that it retains minimality of models, which helps to ensure
groundedness of the semantics. Of the formalisms considered here, GQLPs and
MCSs use a GL-style reduct, while HEX-programs and MLPs use the FLP-reduct.

In summary, this leads to a systematic classification of approaches shown in Table 1.
Each of the possible combinations, which comes with different features and properties,
is in fact populated by a formalism from above. Other formalisms we developed also fit
into this classification; e.g., dl-programs [19] are local-model/GL-style reduct.

The different combinations are not unrelated, and in some cases, one type of com-
bination might coincide with another one or be reducible to it. For example, in special
cases, the choice of the reduct does not play a role (this holds, e.g., for the premier
fragment of dl-programs, cf. [17]). Furthermore, as we show in Section 5, under a natu-
ral condition MCSs can be encoded into HEX-programs. Finally, the classification also
shows ways for possible variations of existing formalisms (e.g., MCS).

Roadmap. The rest of this article is structured as follows. In the next section, we
recall the answer set semantics of nonmonotonic logic programs, where we provide
both the original definition [24] and the equivalent one in terms of the FLP-reduct [21].
In the Sections 3–5, we then consider HEX-programs, modular logic programs, and
multi-context systems and discuss their relationship. After that, we present in Section 6
ongoing work and projects, together with issues for research. The final Section 7 gives
a short summary and conclusions.

2 Preliminaries

In this section, we recall the answer set semantics of logic programs (over classical
literals) [24], which extends the stable model semantics [23] with classical (or, more
appropriately, strong) negation. For more background, see [24,22,15].

Syntax. Ordinary logic programs are built over a first-order vocabulary Φ with non-
empty finite sets P , C, F of predicate, constant, and function symbols (of arity n ≥ 1),
and a set X of variables. Terms are inductively built as usual from C and X using

22 T. Eiter et al.

function symbols from F . Atoms are expressions of the form p(t1, . . . , tn), where p ∈
P has arity n ≥ 0 and t1, . . . , tn are terms. A classical literal (simply literal) l is an
atom α or a negated atom ¬α; its complement is ¬α (resp., α). A negation-as-failure
literal (or simply NAF-literal) is a literal l or a default-negated literal not l.

A (disjunctive) rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βm, notβm+1, . . . , notβn (1)

where k + n > 0 and all αi and βj are literals. The disjunction α1 ∨ · · · ∨ αk is
the head of r, and the conjunction β1, . . . , βm, notβm+1, . . . , notβn is the body of r,
where β1, . . . , βm (resp., not βm+1, . . . , not βn) is the positive (resp., negative) body
of r. We use the notation H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪ B−(r), where
B+(r) = {β1, . . . , βm} and B−(r) = {βm+1, . . . , βn}.

If B(r) = ∅, then r is a (disjunctive) fact; we also omit “←” in this case. If H(r) = ∅,
then r is a constraint. If k = 1, then r is called normal, and if m = n, then r is positive
(or not-free).

A (disjunctive) program is a finite set of rules. A program P is normal (resp., posi-
tive), if each rule r ∈ P is normal (resp., positive).

While we have defined here programs with function symbols, traditional Answer Set
Programming does not consider function symbols, as they lead to undecidability; how-
ever, more recently, decidable fragments have received attention, cf. [9]. Furthermore,
Φ is often implicit from the rules of program P , i.e., Φ = ΦP ; if no constant appears in
P , an arbitrary constant symbol is added to C.

Semantics. The answer set semantics is defined in terms of consistent sets of classical
literals. Positive programs are assigned the minimal consistent sets of classical ground
literals that satisfy all rules; the semantics of arbitrary programs is defined by a reduc-
tion to positive programs.

As usual, a term, atom etc. is ground, if no variable occurs in it. Let HUP be the
Herbrand universe of a program P , which consists of all ground terms over ΦP . The
Herbrand base of P , denoted HBP , is the set of all ground (classical) literals with
predicate symbols from P and terms from HUP .

An interpretation I relative to P is a consistent subset of HBP . Satisfaction of
ground literals, rules, and programs relative to I is as follows. I is a model of

– a ground literal α (I |= α) iff α ∈ I;
– a ground rule r (I |= r) iff I |= H(r) whenever I |= B(r), where (i) I |= H(r) iff

there is some αi ∈ H(r) such that I |= αi, and (ii) I |= B(r) iff I |= βj for all
βj ∈ B+(r) and I �|= βj for all βj ∈ B−(r).

– a set of ground rules R (I |= R) iff I |= r for all r ∈ R.

Models of nonground rules r and programs P , are defined with respect to their
groundings grnd(r) and grnd(P) =

⋃
r∈P grnd(r), where grnd(r) consists of all

ground instances of r. A program P is (classically) satisfiable, if it has some model.
Then, for a positive program P , an answer set of P is any interpretation I such that

I |= P and J �|= P for every J ⊂ I , i.e., I is a minimal model of P under set inclusion.

Combining Nonmonotonic Knowledge Bases with External Sources 23

Definition 1 (Gelfond-Lifschitz reduct). The Gelfond-Lifschitz reduct, of a program
P relative to an interpretation I ⊆ HBP , denoted P I , is the ground positive program
that results from grnd(P) by

(i) deleting every rule r such that B−(r) ∩ I �= ∅, and
(ii) deleting the negative body from every remaining rule.

An answer set of a (disjunctive) program P is any interpretation I ⊆ HBP such that I is
an answer set of P I . The set of all answer sets of a program P is denoted by ansGL(P).

Example 1. Consider the normal logic program P , consisting of the following rules,
where g is an atom:

g ← not ¬g; ¬g ← not g. (2)

Then, the answer sets of P are given by M1 = {g} and M2 = {¬g}. Informally, the
rules allow to choose between g and ¬g; the single disjunctive fact g ∨ ¬g yields the
same result.

Example 2. The following rules select from a set (stored in a predicate p) one element:

sel(X)← p(X), not ¬sel(X).
¬sel(X) ∨ ¬sel(Y)← p(X), p(Y), X �= Y.

Informally, the first rule says that an element is picked by default, and the second that
from two elements, at least one is not picked (here “ �=” is a built-in predicate that can
easily be defined). Adding facts F = {p(ci) | 1 ≤ i ≤ n}, the resulting program P has
the answer sets Mi = F ∪ {¬sel(cj) | 1 ≤ j �= i ≤ n} ∪ {sel(ci)}, i = 1, . . . , n.

We note that strong negation does not increase expressivity and can be easily com-
piled away, by viewing ¬p as a fresh predicate symbol and adding the constraint ←
p(X1, . . . , Xn),¬p(X1, . . . , Xn); thus, in ASP formalisms (e.g., in HEX-programs)
strong negation is often omitted for simplicity.

Answer Sets using the FLP-reduct. Answer sets can be alternatively defined in many
ways, cf. [29]. For our concerns, the following is of particular interest.

Definition 2 (Faber-Leone-Pfeifer reduct). The Faber-Leone-Pfeifer (FLP) reduct of
a program P relative to an interpretation I ⊆ HBP , denoted fP I , is the ground pro-
gram consisting of rules r ∈ grnd(P) such that I |= B(r).

An FLP answer set of a disjunctive program P is an interpretation I ⊆ HBP such that
I |= fP I and no J ⊂ I exists such that J |= fP I . The set of all FLP answer sets of a
program P is denoted by ansFLP (P). Thus, FLP answer sets differ from the usual ones
only by the use of fP I instead of P I . Faber et al. [21] show that this is immaterial.

Proposition 1 ([21]). For every (disjunctive) program P , ansGL(P) = ansFLP (P).

This property does not generalize to extensions of logic programs in which the building
blocks αi and βj in a rule (1) may be other constructs than literals. This is the case e.g.
for aggregate atoms [21], or for GQ atoms in [13] and external atoms in [17].

24 T. Eiter et al.

3 HEX-Programs

HEX-programs are a basic formalism featuring a) external atoms for accessing outer
information in logic programs, and b) constructs for performing higher-order reason-
ing [17,18]. HEX-programs take inspiration and generalize their ancestors, such as the
action language of the IMPACT agent platform [20,39], dl-programs [19,16] and the
DLV-EX formalism [6,5]. Higher-order constructs enable a form of reasoning at the ter-
minological level, overcoming some limitations of traditional logic programming under
answer set semantics in this respect. This latter issue falls outside the scope of this pa-
per; thus, among the two main extensions characterizing HEX-programs, we will focus
next on external atoms.

3.1 Motivation and Outline

The conception of HEX-programs stems from some of its closest ancestors, that is dl-
programs [19,16], and the DLV-EX extension to the DLV system [6,5].

Focusing on interoperability with description logic bases, dl-programs make use of
dl-atoms to deal with this single species of external knowledge. Such atoms enable dl-
programs to query an external source of knowledge, expressed in a description logic of
choice, and allow a bidirectional flow of information about concept membership and role
assertions to and from external sources. Notably, dl-programs assume a known and finite
domain of individual constants. In general, invention of unknown values coming from
external sources is both an important theoretical issue, and a desirable practical feature.

On the other hand, DLV-EX focused on the possibility to introduce general purpose
external predicates, explicitly allowing to bring new constants from the outer realms
into play. Nonetheless, this framework has a flow of information based on constants
and values, without relations and higher order data as possible in HEX.

HEX-programs combine benefits of both frameworks within the notion of external
atoms: there can be many sorts of external atoms, each of which is connected to a
different kind of external knowledge and/or computation; also, it is possible to have
relational information flow from and to the logic program at hand.

Informally, one can exploit external predicates through external atoms such as the
RDF atom &rdf [urls , graphs](X, Y, Z). Here, graphs and urls constitute the input
list, while X , Y and Z refer to the attributes of a ternary relation which can be consid-
ered as the output relation of the external atom. The extension of the output relation of
an external atom depends on the input list, and on the definition of the external predi-
cate &rdf . Actually, the definitions of external predicates such as &rdf , are associated
with computable functions that take an input list l1, . . . , ln and an interpretation I , and
return an output relation. The availability of I as input value makes relational exten-
sions of predicates accessible to external atoms. Usually the names of predicates whose
extensions are accessed are mentioned in the input list, together with other input val-
ues. Consider for instance the atom &reach [knows, john](X): the predicate &reach
might be defined in a way such that &reach[knows , john](x) evaluates to true for any
x which is reachable from john through the current extension of the binary predicate
knows .

We now give a more formal overview of this simple, yet powerful framework.

Combining Nonmonotonic Knowledge Bases with External Sources 25

subRelation(brotherOf , relativeOf). (4)

brotherOf (john, al). relativeOf (john, joe). brotherOf (al ,mick). (5)

invites(john, X) ∨ skip(X)← X �= john, &reach [relativeOf , john](X). (6)

R(X, Y)← subRelation(P, R), P (X,Y). (7)

someInvited ← invites(john, X). (8)

← not someInvited . (9)

← °s [invites](Min,Max),Max > 2. (10)

Fig. 1. Example HEX-program

3.2 Formal Concepts

Syntax of HEX-Programs. The vocabulary Φ comprises besides C andX also external
predicate names G, which are prefixed with “&”. We note that constant symbols serve
both as individual and predicate symbols (no P is needed).

A higher-order atom (or atom) is a tuple (Y0, Y1, . . . , Yn), where Y0, . . . , Yn are
terms and n ≥ 0. Intuitively, Y0 is the predicate name, thus we use the familiar notation
Y0(Y1, . . . , Yn). The atom is ordinary, if Y0 is a constant. For example, (x, rdf :type, c),
node(X), and D(a, b), are atoms; the first two are ordinary.

An external atom is of the form

&g[Y1, . . . , Yn](X1, . . . , Xm) , (3)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input and output lists,
respectively), and &g ∈ G is an external predicate name. We assume that &g has fixed
lengths in(&g) = n and out(&g) = m for input and output lists, respectively. An
external atom provides a way for deciding the truth value of an output tuple depending
on the extension of a set of input predicates: in this respect, an external predicate &g is
equipped with a function f&g evaluating to true for proper input values.

A HEX-rule r is of the form (1), where all αi are (higher-order) atoms and each βj is
a (higher-order) atom or an external atom; strong negation is disregarded. H(r), B(r),
B+(r), and B−(r) are as in Section 2; r is ordinary, if it contains only ordinary atoms.

Definition 3. A HEX-program is a finite set P of HEX-rules. It is ordinary, if all rules
are ordinary.

Example 3 ([17]). Consider the HEX-program P in Figure 1. Informally, this program
randomly selects a certain number of John’s relatives for invitation. The first line states
that brotherOf is a subrelation of relativeOf , and the next line gives concrete facts.
The disjunctive rule (6) chooses relatives, employing the external predicate &reach .
This latter predicate takes in input a binary relation e and a node name n, returning the
nodes reachable from n when traversing the graph described by e (see the following
Example 5). Rule (7) axiomatizes subrelation inclusion exploiting higher-order atoms;
that is, for those couples of binary predicates p, r for which it holds subRelation(p, r),
it must be the case that r(x, y) holds whenever p(x, y) is true.

26 T. Eiter et al.

The constraints (9) and (10) ensure that the number of invitees is between 1 and 2,
using (for illustration) an external predicate °s from a graph library. Such a predi-
cate has a valuation function f°s where f°s(I, e,min,max) is true iff min and
max are, respectively, the minimum and maximum vertex degree of the graph induced
by the edges contained in the extension of predicate e in interpretation I .

Semantics of HEX-Programs. In the sequel, let P be a HEX-program. As for ordinary
programs, unless specified otherwise, C and G are implicitly given by P . The Herbrand
base of P , denoted HBP , is the set of all ground atoms and external atoms (we disre-
gard here negative literals). The grounding of a rule r, grnd(r), and of a program P ,
grnd(P), are analog as above.

Example 4 ([17]). Given C = {edge, arc, a, b}, ground instances of E(X, b) are, e.g.,
edge(a, b), arc(a, b), a(edge, b), and arc(arc, b). The ground instances of the external
atom &reach[edge, N](X) are all possible combinations where N and X are replaced
by elements from C; some examples are &reach[edge, edge](a), &reach[edge, arc](b),
and &reach [edge, edge](edge).

An interpretation relative to P is any subset I ⊆ HBP containing only atoms. The no-
tion of satisfaction (model) of rules and programs relative to I is defined as in Section 2,
using for ground higher-order atoms and external atoms the following clauses:

– I satisfies a ground higher-order atom a ∈ HBP (I |= a) iff a ∈ I .
– I satisfies a ground external atom a = &g[y1, . . . , yn](x1, . . . , xm) (I |= a) iff

f&g(I, y1, . . . , yn, x1, . . . , xm) = 1, where f&g is a (fixed) (n+m+1)-ary Boolean
function associated with &g ∈ G that assigns each tuple (I, y1 . . . , yn, x1, . . . , xm)
either 0 or 1, where n = in(&g), m = out(&g), I ⊆ HBP , and xi, yj ∈ C.

Example 5 ([17]). Let us associate with the external atom &reach a function f&reach

such that f&reach(I, E, A, B) = 1 iff B is reachable in the graph E from A. Let I =
{e(b, c), e(c, d)}. Then, I |= &reach[e, b](d) since f&reach(I, e, b, d) = 1.

Note that in contrast to the semantics of higher-order atoms, which in essence reduces
to first-order logic as customary (cf. [37]), the semantics of external atoms is in spirit
of second order logic since it involves predicate extensions.

A HEX-program P is satisfiable, if it has some model. Carrying the definition of
FLP-reduct fP I from Section 2 over naturally, we then have:

Definition 4. I ⊆ HBP is an answer set of a HEX-program P iff I is a minimal model
of fP I .

Considering example 3, as John’s relatives are determined to be Al, Joe, and Mick, P
has six answer sets, each of which contains one or two of the facts invites(john , al),
invites(john , joe), and invites(john ,mick).

In principle, the truth value of an external atom depends on its input and output
lists and on the entire model of the program. In practice, however, we can identify
certain types of input terms that allow to restrict the input interpretation to specific
relations. The Boolean function associated with the external atom &reach[edge, a](X)
for instance will only consider the extension of the predicate edge and the constant

Combining Nonmonotonic Knowledge Bases with External Sources 27

value a for computing its result, and simply ignore everything else of the given input
interpretation.

An important property of answer sets, which is guaranteed by the use of the FLP-
reduct, is groundedness.

Proposition 2 ([17]). Every answer set of a HEX-program P is a minimal model of P .

This would not be generally the case if instead of fP I we would use the GL-reduct
from Section 2; however, it is if all external atoms α in P are monotonic, i.e., whenever
I ⊆ J ⊆ HBP and I |=α′ for a ground instance α′ of α, then J |= α′. Then the fol-
lowing result, which generalizes Proposition 1, can be easily shown. Let ansFLP (P)
and ansGL(P) denote the answer sets of P defined using the FLP-reduct and the
GL-reduct, respectively.

Theorem 1. Suppose P is a HEX-program such that all external atoms in P are mono-
tonic. Then ansGL(P) = ansFLP (P).

3.3 Evaluation of HEX-Programs

Some concerns might be raised regarding practical evaluation of HEX-programs. Ar-
guably, the features of HEX-programs (mainly, the possibility of combining higher-
order constructs with external atoms, with no restriction on their usage) enforce some
design constraint that would compromise the practical adoption of this formalism in
its full generality. To this end, although keeping desirable advantages, feasible classes
of HEX-programs for implementation were identified in [18], together with a general
method for combining and evaluating sub-programs belonging to arbitrary classes, thus
enlarging the variety of programs whose execution is practicable. As detailed in [38]
HEX-programs can be evaluated by means of calls to a traditional answer set solver, in-
terleaved with calls to external atom functions. The evaluation order is given by means
of a generalization of the splitting sets method [30]. A recently explored way to further
improve evaluation is program decomposition, by exploiting independence information
of the external atoms, which is used to restrict the evaluation domain in each decom-
posed program [12].

3.4 Implementation and Applications

HEX-programs have been implemented within the dlvhex prototype,2 which is based on
a flexible and modular architecture. The evaluation of the external atoms is realized by
plugins, which are loaded at run-time. Third-party developers can easily contribute by
adding new external predicates to the (rich) pool of available external predicates.

HEX-programs have been deployed to a number of applications in different con-
texts, of which we mention some here. Hoehndorf et al. [28] showed how to combine
multiple biomedical upper ontologies by extending the first-order semantics of termi-
nological knowledge with default logic. The corresponding prototype implementation
of such kind of system is given by mapping the default rules to a HEX-program. Fuzzy

2 http://www.kr.tuwien.ac.at/research/systems/dlvhex/

http://www.kr.tuwien.ac.at/research/systems/dlvhex/

28 T. Eiter et al.

extensions of answer-set programs in relation with HEX-programs are given in [33,27].
While [33] maps fuzzy answer set programs to HEX-programs, [27] defines a fuzzy se-
mantics for HEX-programs and gives a translation to standard HEX-programs. In [34],
the planning language Kc was introduced which features external function calls in
spirit of HEX-programs. Also, HEX-programs have been applied to optimal credential
selection in the context of trust negotiation processes [38].

4 Modular Nonmonotonic Logic Programming

We now turn to Modular Nonmonotonic Logic Programs (MLPs) [7], which have
their roots in Logic Programs with Generalized Quantifiers (GQLPs) [13] and HEX-
programs. GQLPs extend logic programs by generalized quantifiers (GQs), i.e., formu-
las Qx[R(x)] with generalized quantifier Qx over a structure defined by the relation R
(cf. [40] for background). For instance, for the transitive closure GQ Qtc , the rule

t(X, Y)← Qtc [e](X, Y) (11)

sets t to the transitive closure of the binary relation defined by e. Naturally, we may view
GQs as interfaces to logic programs; thus Qtc , may be defined as the logic program

tc(X, Y)← e(X, Y). (12)

tc(X, Y)← tc(X, Z), tc(Z, Y). (13)

with “input” predicate e and “output” predicate tc. Then, (11) may be seen as a module
that calls a submodule defined by (12) and (13). Following this line, GQLPs can be used
as a host to define a semantics for modular logic programs.

In [7], the modular logic programs allow for representing disjunctive logic programs
in modules, which can use module atoms to access and update knowledge in other logic
programs. Module atoms can be seen as an abstract way to interface with other pro-
grams, since the update mechanism of this kind of atoms gives rise to multiple instances
of logic programs. HEX-programs share this similarity of updating external knowledge
sources, but, unlike MLPs, these updates play only a role “locally,” while updates in
MLPs have the potential to trigger the creation of new “module instances,” which act
as new “global” entities. We will reconsider this issue later in this section. Next, we
compare MLPs with HEX-programs and GQLPs.

MLP vs. GQLPs and HEX-Programs. The first stepping stone towards modular logic
programs were GQLPs, which are programs that have besides standard literals also
generalized quantifier literals in the body of rules. On top of that, the interface to the
modules of a modular logic program can be conceived as GQs.

This approach has been enhanced in HEX-programs which use the FLP-reduct to
deal with negation-as-failure, and have disjunctive heads. Essentially, HEX-programs
are similar to GQLPs, and external atoms are in the same vein as GQLPs.

Both formalisms have limitations. In GQLPs, only hierarchical modular logic pro-
grams were defined, i.e., programs whose subprograms do not refer back to the calling
program. If one defines in a HEX-program external atoms as interfaces to logic program

Combining Nonmonotonic Knowledge Bases with External Sources 29

modules, this restriction is not explicit; however, there is an implicit understanding that
external sources are independent of the calling HEX-program, and thus that modules are
acyclic. Hence, the first problem worth to overcome is the acyclic module topology, and
to define a semantics that can deal with arbitrarily intertwined modules, where each of
them can call each other (or themselves), possibly in a recursive way.

A second shortcoming of GQLPs is that their answer sets lack groundedness. E.g.,

P = { p(a)← C∀[p] }

has two answer sets, viz. M1 = ∅ and M2 = {p(a)}. While M1 is a minimal model of
P (and thus intuitively grounded), M2 is not; hence, answer sets of GQLPs may be “un-
founded.” This anomaly is due to the use of a Gelfond-Lifschitz style reduct that treats
external atoms like not-literals; in this way, self-supporting beliefs are possible, simi-
lar as in Autoepistemic Logic (AEL); indeed, P paraphrases the canonical AEL theory
T = {Lp(a)⊃ p(a)} that has two stable expansions akin to M1 and M2 (cf. [31]).
Similarly, cyclic logic program modules based on HEX-programs lack groundedness
(the above example is easily recast to this setting using two cyclic modules).

The above shortcomings are remedied in MLPs: they impose no restriction on calls in
a program and allow for modules that may recursively access other modules; unfounded
answer sets are prevented by using the FLP-reduct, which ensures minimality of answer
sets. Furthermore, taking into account that modules are parts of a global program, MLPs
have a global-state semantics in which Pareto-optimal states are singled out.

4.1 Formal Concepts

Modular logic programs (MLPs) consist of modules as a means to structure logic pro-
grams. The modules allow for input provided by other modules, through call by value,
and may call each other in (mutual) recursion. We illustrate this on an example.

Example 6. Suppose we have three modules named P1[], P2[q2], and P3[q3] with rules
R1 = {q(a). q(b). ok ← P2[q].even .},

R2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q′2(X)∨q′2(Y)← q2(X), q2(Y),
X �= Y.

skip2 ← q2(X), not q′2(X).

even ← not skip2 .

even ← skip2, P3[q
′
2].odd .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, R3 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q′3(X)∨q′3(Y)← q3(X), q3(Y),
X �= Y.

skip3 ← q3(X), not q′3(X).

odd ← skip3, P2[q
′
3].even .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

respectively. Informally, ok is computed true in P1, if P2 (having formal parameter q2)
computes even true on input of predicate q’s value. P2 does so in mutual recursion with
P3 (having formal parameter q3), which computes odd ; for this, they compute for the
recursive call in q′i the input qi minus one randomly removed element (cf. Example 2).

Syntax of MLPs. The vocabulary Φ also has a setM of module names P with fixed
associated lists q = q1, . . . , qk (k ≥ 0) of predicate names qi ∈ P (the formal input
parameters), denoted P [q]; function symbols are disregarded.

30 T. Eiter et al.

Ordinary atoms (simply atoms) have the form p(t), where p ∈ P has arity n ≥ 0
and t = t1, . . . , tn are terms. A module atom has the form

P [p1, . . . , pk].o(t1, . . . , tl) , (14)

where (i) P ∈ M with P [q1, . . . , qk], (ii) p1, . . . , pk is an input list of predicate names
pi ∈ P matching the arity of qi, and (iii) o(t1, . . . , tl) is an ordinary atom (with o ∈ P).
Intuitively, a module atom provides a way for deciding the truth value of a (ground)
atom o() in a program P depending on a set of input predicates.

An MLP-rule r is of the form (1), where all αi are atoms, each βj is an atom or a
module atom, and k ≥ 1;3 r is ordinary, if it contains only ordinary atoms.

A module m = (P, R) consists of a module name P ∈ M and a finite set R of rules.
Main modules have no input (i.e., have P []), while library modules have arbitrary input.
As usual, empty input [] and argument lists () are omitted.

Definition 5. A modular logic program (MLP) is of the form P = (m1, . . . , mn), n ≥
1, where all mi = (Pi, Ri) are modules and at least one mi is a main module.

To have no unused modules, it is assumed that M = {P1, . . . , Pn}. P is ground, iff
each module Mi is ground, which means that all rules in Ri are ground.

The call graph of an MLP P is a labeled digraph CGP = (V, E, l) with vertex set
V = VC (P) and an edge e from Pi[S] to Pk[T] in E iff Pk[p].o(t) occurs in R(mi);
furthermore, e is labeled with an input list p, denoted l(e).

Example 7. The MLP in Example 6 consists of three modules P = (m1, m2, m3),
where m1 = (P1, R1) is the main module and Mi = (Pi[qi], Ri), i = 2, 3 are library
modules. Furthermore, m1 is ground while m2 and m3 are not.

Let Si
∅ = ∅, Si

a = {qi(a)}, Si
b = {qi(b)}, and Si

ab = {qi(a), qi(b)}. Then
VC (P) = {P1[∅], P2[S2

v], P3[S3
w]}, where v, w ∈ {∅, a, b, ab}, and CGP has edges

P1[∅] q→ P2[S2
v], P2[S2

v]
q′
2→ P3[S3

w], and P3[S3
w]

q′
3→ P2[S2

v].

Semantics of MLPs. The semantics of MLPs is given in terms of grounding and
Herbrand interpretations customary in logic programming. Naturally, also modules
(P [q], R) must be instantiated before they can be “used;” there is one instance per
possible input for q (referred to as value call). To focus on “relevant” module instances,
the call chain and an embracing context of value calls are considered, while others are
(in essence) ignored.

The Herbrand base of an MLP P (implicitly defining Φ = ΦP) is the set HBP of
all ground ordinary and module atoms from vocabulary Φ. The grounding grnd(r) of a
rule and grnd(R) of a rule set R are as usual; the grounding of a module m = (P [q], R)
is grnd(m) = (P [q], grnd(R)), and the grounding of an MLP P = (m1, . . . , mn) is
gr(P) = (grnd(m1), . . . , grnd(mn)).

To define module instances, we need the following notations. For any set S of ground
atoms and lists p = p1, . . . , pk and q = q1, . . . , qk of predicate names, let S|p =
⋃k

i=1{pi(c) ∈ S} and S|qp =
⋃k

i=1{qi(c) | pi(c) ∈ S}.
3 Constraints← B(r) (banned for satisfiability) are easily emulated with f ← not f, B(r).

Combining Nonmonotonic Knowledge Bases with External Sources 31

Then, for a module mi = (Pi[qi], Ri), a value call with input S is a pair (Pi, S)
where S ⊆ HBP|qi , also written as Pi[S]; its instantiation with S is the rule set
IP(Pi[S]) = Ri ∪ S. The possible instances of all modules mi in P are naturally
indexed by the set VC (P) of all possible Pi[S]. Technically, they form an (indexed)
tuple I(P) = (IP(Pi[S]) | Pi[S] ∈ VC (P)) called the instantiation of P. The latter is
a rule base, which are tuples R = (RPi[S] | Pi[S] ∈ VC (P)) of rule sets RPi[S].

An interpretation M is now an (indexed) tuple (Mi/S | Pi[S] ∈ VC (P)) of sets
Mi/S of ordinary ground atoms. At a value call Pi[S], it satisfies (is a model of)

– a ground atom α ∈ HBP, denoted M, Pi[S] |= α, iff (i) α ∈ Mi/S when α is
ordinary, and (ii) o(c) ∈Mk/((Mi/S)|qk

p), when α = Pk[p].o(c) is a module atom;
– a ground rule r (M, Pi[S] |= r), iff M, Pi[S] |= H(r) or M, Pi[S] �|= B(r), where
(i) M, Pi[S] |= H(r), iff M, Pi[S] |= α for some α ∈ H(r), and (ii) M, Pi[S] |=
B(r), iff M, Pi[S] |= α for all α ∈ B+(r) and M, Pi[S] �|= α for all α ∈ B−(r);
– a set of ground rules R (M, Pi[S] |= R) iff M, Pi[S] |= r for all r ∈ R.

Furthermore, M satisfies a rule base R (M |= R), if grnd(RPi[S]) at all Pi[S] are
satisfied by M, and M satisfies P (M |= P), if M |= I(grnd(P)).

To focus on relevant module instances w.r.t. an interpretation M, we use the relevant
call graph CGP(M) of P, which is the subgraph of CGP containing all edges e :

Pi[S]
l(e)→ Pk[T] in CGP such that (Mi/S)|qk

l(e) = T , with nodes induced by the edges
plus all main module instantiations (called relevant instances w.r.t. M).

Example 8. For the interpretation M such that M1/∅ = {q(a), q(b), ok}, M2/S2
ab =

{q2(a), q2(b), q′2(a), skip2, even}, M2/∅ = {even}, and M3/S3
a = {q3(a), skip3,

odd}, the nodes of CGP(M) are P1[∅], P2[S2
ab], P2[∅], and P3[S3

a].

The nodes of CGP(M) are the smallest set of module instances which is intuitively
involved in building an answer set. As an over-approximation, a superset C of these
nodes, called context, is used in [7]; we omit this here for simplicity.

To define answer sets, we first need minimal models, which are given as follows: let
M ≤M′ iff Mi/S ⊆M ′

i/S for all Pi[S]. Then a model M of P (resp., a rule base R)
is minimal, if P (resp., R) has no model M′ �= M such that M′ ≤M.

Now the FLP-reduct is generalized to work on MLPs componentwise where mod-
ule instantiations outside the relevant call graph are not touched. Formally, the reduct
fP(Pi[S])M of P at Pi[S] w.r.t. M is (i) the FLP-reduct fIgr(P)(Pi[S])Mi/S , i.e., {r ∈
Igr(P)(Pi[S]) | M, Pi[S] |= B(r)}, if Pi[S] is in CGP(M), and (ii) Igr(P)(Pi[S])
otherwise. The reduct of P w.r.t. M is fPM = (fP(Pi[S])M | Pi[S] ∈ VC (P)).

Definition 6. An interpretation M of an MLP P is an answer set of P, iff M is a
minimal model of fPM.

Example 9. Recall interpretations of the form M from Example 8. It is easily verified
that for every node Pi[S] in CGP(M), the respective interpretation Mi/S is minimal
for fP(Pi[S])M. Therefore, any such M is an answer set of P iff for every Pi[S]
outside CGP(M), the interpretation Mi/S is a minimal model of Igr(P)(Pi[S]).

32 T. Eiter et al.

4.2 Semantic Properties of MLPs

MLPs conservatively extend ordinary logic programs, and many of the nice semantic
properties of the latter generalize to them. We recall below a couple of them from [7].

Proposition 3 ([7]). Let R be an ordinary logic program. Then M is an answer set
of R iff M = (M1/∅) with M1/∅ = M is an answer set of the MLP (m1), where
m1 = (P1[], R) is a main module and P1 is a module name.

An important observation is that the answer sets of an MLP P are grounded; this is due
to the use of the FLP-reduct (a GL-style reduct would behave differently).

Proposition 4. Every answer set of P is a minimal model of P.

Moreover, in absence of negation-as-failure also the converse holds.

Proposition 5. The answer sets of a positive MLP P coincide with its minimal models.

For a suitable notion of intersection, we get that the models of a Horn MLP P are closed
under intersection; hence, a Horn MLP has a canonical answer set.

Proposition 6. Every Horn MLP P has a single answer set, which coincides with its
least model.

4.3 Computation

Exploiting Proposition 6, answer sets of Horn MLPs can be computed by means of a
bottom up fixed-point computation. However, this is not effective, as many irrelevant
module instantiations might be considered that do not contribute to the part of interest,
given by the main modules. As has been shown in [7], in the general case, one has to
deal with double exponential many instantiations, which is clearly infeasible in practice.
This calls for refined methods that overcome the need to instantiate all possible modules.

Further work [8] addresses efficient evaluation of MLPs using a generalization of
the splitting sets method [30] that takes relevance information into account. For a cer-
tain subclass of MLPs that obeys a notion of call stratification and input stratification,
we have an algorithm that evaluates MLPs top-down, more importantly, expands only
relevant instantiations during the evaluation, which speeds up the process.

5 Multi-context Systems

In this section, we turn to another nonmonotonic formalism that provides access to ex-
ternal sources in the realm of context-based reasoning. Informally, a multi-context sys-
tem describes the information available in a number of contexts (e.g., to different agents
or views) and specifies the information flow between those contexts. Furthering work
in [32,25], the Trento School developed monotonic heterogeneous multi-context sys-
tems [26] with the aim to integrate different inference systems; informally, they viewed
contexts as pairs Context i = ({Ti}, Δbr) where each Ti = (Li, Ωi, Δi) is a formal
system, and Δbr consists of bridge rules of the form

(c1 p1), . . . , (ck pk)⇒ (cj qj)

Combining Nonmonotonic Knowledge Bases with External Sources 33

using labeled formulas (c p) where p is from the language Lc. Giunchiglia and Serafini
gave a collection of such contexts a semantics in terms of local models plus compat-
ibility conditions, which respects information flow across contexts via bridge rules.
Noticeably, reasoning within/across contexts is monotonic.

Brewka et al. [4] extended the framework to Contextual Default Logic (CDL), im-
proving on [36], where bridge rules with negation were considered. CDL integrates
nonmonotonic inference systems of the same kind, viz. theories in Reiter’s Default
Logic. Here, defaults may refer to other contexts and play the role of bridge rules.

The Multi-Context Systems (MCS) of [2] generalized these approaches, by accom-
modating heterogeneous and both monotonic and nonmonotonic contexts, thus capable
of integrating “typical” monotonic KR logics like description logics or temporal log-
ics, and nonmonotonic logics like Reiter’s Default Logic, Answer Set Programming,
circumscription, defeasible logic, or theories in autoepistemic logic; in several of the
latter, a knowledge base gives rise to multiple belief sets in general. In our taxonomy,
MCSs have a “global-state” semantics, that is defined via bridge rules and follows the
classical ASP definition, extended to this setting. Before we present MCSs in more
detail, it is helpful to compare them to MLPs and HEX-programs.

MCSs vs. MLPs and HEX-Programs. Compared to MLPs, MCSs are more general
since the contexts (viewed as modules) consist of general reasoning systems or logics,
respectively, and not only of ASP programs. The MCS semantics is similar in spirit
to the semantics of MLPs in [13], but global-state rather than local-state, and quite
different from MLPs in [7], which are global-state and use FLP-reduct.

For HEX-programs, the comparison shows a more complex picture:

– MCSs are similar to HEX-programs where the external sources are knowledge bases.
– We may view MCSs as a more general, hybrid formalism than such HEX-programs,
in which bridge rules for the information flow are distinguished (at the meta-level) from
the formulas of the knowledge base; HEX-rules with external atoms can be seen as bridge
rules, and HEX-rules without as rules of the knowledge base describing the local state.
– HEX-programs are local-state and use the FLP-reduct, while MCSs are global-state
and use GL-style reducts. The local-state property prevents a naive encoding of MCSs
into HEX (as local belief sets of other contexts can not be directly accessed); however, un-
der some (weak) condition, such an encoding is possible; we discuss this in Section 5.2.
– In HEX-programs, we may abstractly access knowledge bases through powerful
reasoning services of an API beyond checking formula membership in local belief sets.

5.1 Formal Concepts

In [2], a “logic” is, very abstractly, a tuple L = (KBL, BSL, ACCL), where

– KBL is a set of well-formed knowledge bases, each being a set (of formulas),
– BSL is a set of possible belief sets, each being a set (of formulas), and
– ACCL : KBL → 2BSL assigns each kb ∈ KBL a set of acceptable belief sets;

L is monotonic, if ACCL assigns each kb a single belief set (denoted Skb), and kb ⊆ kb′

implies Skb ⊆ Skb′ . We can think of knowledge bases as logic programs, classical
theories etc; the possible belief sets are those which are syntactically admissible (e.g.,

34 T. Eiter et al.

deductively closed sets of sentences, set of literals, etc); and ACCL respects that a
knowledge base might have one, multiple, or even no acceptable belief set in the logic.

Access to other contexts is facilitated via bridge rules for heterogenous logics. Given
logics L = L1, . . . , Ln, an Li-bridge rule over L, 1 ≤ i ≤ n, is of the form

s← (r1 : p1), . . . , (rj : pj), not (rj+1 : pj+1), . . . , not (rm : pm) (15)

where rk ∈ {1 . . . , n} and pk is an element of some belief set of Lrk
, 1 ≤ k ≤ m, and

kb ∪ {s} ∈ KBi for each kb ∈ KBi.
Multi-context systems are then defined as follows.

Definition 7. A multi-context system M = (C1, . . . , Cn) consists of contexts Ci =
(Li, kbi, bri), where Li = (KBi, BSi, ACCi) is a logic, kbi ∈ KBi is a knowledge base,
and bri is a set of Li-bridge rules over L = L1, . . . , Ln, 1 ≤ i ≤ n.

Example 10. As a simple example, we consider M = (C1, C2), where the contexts
are different views of a paper by its co-authors A1 and A2 who reason in different log-
ics. In C1, we have Classical Logic as L1, the knowledge base kb1 = { unhappy ⊃
revision }, and the bridge rules br1 = { unhappy ← (2 :work) }. Intuitively, if A1

is unhappy about the paper, then she wants a revision, and if A2 finds that the paper
needs more work, then A1 feels unhappy. In C2, we have Answer Set Programming as
L2, the knowledge base kb2 = { accepted ← good , not ¬accepted } and bridge rules
br2 = {work ← (1 : revision); good ← not (1 :unhappy)}. Intuitively, A2 thinks that
the paper, if good, is usually accepted; moreover, she infers that more work is needed if
A1 wants a revision, and that the paper is good if there is no evidence that A1 is unhappy.

The semantics of an MCS is defined in terms of special belief states, which are se-
quences S = (S1, . . . , Sn) such that each Si is an element of BSi. Intuitively, Si should
be a belief set of the knowledge base kbi; however, also the bridge rules must be re-
spected; to this end, kbi is augmented with the conclusions of its bridge rules that are
applicable. More precisely, a bridge rule r of form (15) is applicable in S, if pi ∈ Sri ,
for 1 ≤ i ≤ j, and pk �∈ Srk

, for j + 1 ≤ k ≤ m. Denote by head(r) the head of r and
by app(R, S) the set of bridge rules r ∈ R that are applicable in S. Then,

Definition 8. A belief state S = (S1, . . . , Sn) of a multi-context system M is an equi-
librium iff Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)}), 1 ≤ i ≤ n.

An equilibrium thus is a belief state which contains for each context an acceptable belief
set, given the belief sets of the other contexts.

Example 11 (ctd). Reconsidering M = (C1, C2) from Example 10, we find that M has
two equilibria, viz.

– E1 = (Cn({unhappy , revision}), {work}) and
– E2 = (Cn({unhappy ⊃ revision}), {good , accepted}),

where Cn(·) is the set of all classical consequences. As for E1, the bridge rule of C1

is applicable in E1, and Cn({unhappy , revision}) is the (single) acceptable belief set
of kbi ∪ {unhappy}; the first bridge rule of C2 is applicable in E1, but not the second;
clearly, {work} is the single answer set of kb2 ∪ {work }.

Combining Nonmonotonic Knowledge Bases with External Sources 35

As for E2, the bridge rule of C1 is not applicable in E1, and Cn({unhappy ⊃
revision} = Cn(kb1); now the second bridge rule of C2 is applicable but not the first,
and {good , accepted} is the single answer set of kb2 ∪ {good}.
The notion of equilibrium may remind of similar game-theoretic concepts, and in fact
we may view each context Ci as a player in an n-person game where players choose
belief sets. Assume that an outcome (i.e., belief state) S = (S1, . . . , Sn), has for Ci

reward 1 if Si ∈ ACCi(kbi∪{head(r) | r ∈ app(bri, S)}) and 0 otherwise. Then, it is
easy to see that each equilibrium of M is a Nash equilibrium of this game (indeed, each
player has optimal reward); on the other hand, there might be Nash equilibria that do
not correspond to any equilibrium. This may happen e.g. if no acceptable belief sets are
possible. For instance, the MCS M = (C1, C2), where C1 and C2 are isolated answer
set programs {a ← not a}, has no equilibrium, but S = (∅, ∅) is a Nash-equilibrium
of the game. Clearly, if M has equilibria, then they coincide with the Pareto-optimal
solutions of the game; under additional conditions (e.g., ACCi(bi ∪Hi) �= ∅ for each
Hi ⊆ {h(r) | r ∈ bri}) they coincide with the Nash equilibria.

Groundedness. Equilibria suffer, similar as the answer sets of modular logic programs
in [13], from groundedness problems due to cyclic justifications. Informally, the reason
is that bridge rules might be applied unfoundedly. E.g., in Example 10, unhappy has
in E1 = (Cn({unhappy , revision}), Cn({work})) only a cyclic justification: it is
accepted in C1 via the bridge rule, as work is accepted in C2; the latter is also via a
bridge rule, as revision is accepted in C1 (by modus ponens from unhappy ⊃ revision
and unhappy). Here, the application of the bridge rules is unfounded.

Inspired by the definition of answer set semantics, [2] proposed grounded equi-
libria to overcome this. They are defined in terms of a GL-style reduct which trans-
forms M = (C1, . . . , Cn), given a belief state S = (S1, . . . , Sn), into another MCS
MS = (CS

1 , . . . , CS
n) that behaves monotonically, such that a unique minimal equilib-

rium exists; if it coincides with S, we have groundedness.
Formally, CS

i = (Li, redi(kbi, S), brS
i), where redi(kbi, S) maps kbi and S to a

monotonic core of Li and brS
i is the GL-reduct of bri w.r.t. S, i.e., contains s ← (r1 :

p1), . . . , (rj : pj) for each rule of form (15) in bri such that pk /∈ Srk
, k = j+1, . . . , m.

In addition, the following reducibility conditions are assumed: (i) redi(kbi, Si) is
antimonotonic in Si, (ii) Si is acceptable for kbi iff ACCi(redi(kbi, Si)) = {Si}, and
(iii) redi(kbi, S) ∪ Hi = redi(kbi ∪H, S), for each Hi ⊆ {head(r) | r ∈ bri}. This
condition is trivially satisfied by all monotonic logics, by Reiter’s Default Logic, answer
set programs, etc. Grounded equilibria are then defined as follows.

Definition 9. A belief state S = (S1, . . . , Sn) is a grounded equilibrium of M iff S is
the unique minimal equilibrium of MS , where minimality is componentwise w.r.t. ⊆.

Example 12 (ctd.). In our review example, naturally red(kbi, S) is identity and
red(kb2, S) the GL-reduct. Then E1 is not a grounded equilibrium: ME1 has the single
minimal equilibrium (Cn({unhappy ⊃ revision}), ∅)) �= E1. On the other hand, E2

is a grounded equilibrium of M .

Grounded equilibria are in fact equilibria of M , as well as minimal ones. Similar as for
answer sets, the grounded equilibrium of MS can be characterized as the least fixpoint
of an operator [2].

36 T. Eiter et al.

5.2 Mapping MCSs into HEX-Programs

As mentioned above, the global state view of MCSs contrasts with the local-state and
inference-based view of HEX-programs, but under some condition, an MCS can be en-
coded into a HEX-program.

Suppose that M = (C1, . . . , Cn) is such that in all contexts Ci, every belief set
S ∈ACC(kb′i) has a kernel κ(kb′i, S) = S ∩ Ki, for some (small finite) set Ki, that
uniquely identifies S, where kbi ⊆ kb′i ⊆ kbi ∪{head(r) | r ∈ bri}. (As noted in [2],
the usual logics have such kernels; e.g., for Answer Set Programming, κ(kb′i, S) = S
and Ki is the set of all ground literals.)

The equilibria of M can then be encoded by a HEX-program PM as follows.

1. For each p ∈ Ki, set up rules

ap,i ← not āp,i, āp,i ← not ap,i (16)

where ap,i āp,i are fresh atoms. They guess in an interpretation I a kernel
κI

i = {p | ap,i ∈ I} for some belief set of kbi ∪HI
i , where HI

i = {head(r) |
r∈ bri, as,i ∈ I}.

2. For each formula (rl : pl) in a bridge rule r ∈ bri of form (15), we set up an
external atom &con rl [](apl

), whose associated fcon rl
(I, apl

) returns 1 iff pl is
in an acceptable belief set of kbrl

∪HI
rl

with kernel κI
rl

.
3. We then replace each (rl : pl) in the body of r by &con r , l [](apl

), and replace the
head s by the atom as,i. So we have

as,i ← &con r1 [](ap1), . . . , &con rj [](apj),
not &con rj+1 [](aj+1), . . . , not &con rm [](apm). (17)

4. Furthermore, we add

bs,i ← not as,i (18)

← not &con rl [](a�), (19)

where bi
s are fresh atoms. The rule (18) blocks minimization, while (19) eliminates

an invalid guess for a kernel κI
i of some acceptable belief set of kbi ∪HI

i .

We then can establish the following result.

Theorem 2. The answer sets I of PM correspond 1-1 to the equilibria S =
(S1, . . . , Sn) of M , where each Si is in ACC(kbi ∪HI

i) and has the kernel κI
i .

Similarly, the grounded equilibria of a (reducible) M can be encoded elegantly into a
HEX-program P r

M , which results from PM as follows:

– replace in the rules (17) &con rl [](apl
) with &con rl S [](apl

), where
fcon rl

S (I, apl
) returns 1 iff pl is in the (single) acceptable belief set of red(kbrl

∪
HI

rl
, Srl

), where Srl
is the acceptable belief set of kbrl

∪HI
rl

with kernel κI
rl

,
– drop the rules (18), and
– for each p ∈ Ki, add the constraints

← not &con i [](ap), ap,i. (20)

←&con i [](ap), not ap,i. (21)

Combining Nonmonotonic Knowledge Bases with External Sources 37

Informally, they check whether the single minimal equilibrium of MS coincides
with S = (S1, . . . , Sn), by considering the guessed kernels κI

i of all Si.

For the resulting program, one can show:

Theorem 3. The answer sets I of P r
M correspond to 1-1 to the grounded equilibria

S = (S1, . . . , Sn) of M where each Si is in ACC(kbi ∪HI
i) and has the kernel κI

i .

Refinements and alternative encodings, also for special cases, remain to be explored.

6 Ongoing Work

As demonstrated in the previous sections, combining knowledge bases with external
sources based on answer set semantics is a major research focus of the KBS group at
the Vienna University of Technology. Together with our external colleagues, we aim
at furthering this work in several directions. Our research is driven by the general goal
to develop the theoretical underpinnings for practicable and efficient implementations
that serve the needs of relevant applications, as demonstrated by means of prototype
implementations through experimentation and show-case applications.

Currently, we pursue the following two research projects on the topic:

– Modular Hex programs, funded by the Austrian Science Fund (FWF), with the
goal to research and implement formalisms and reasoning techniques for providing a
powerful reasoning framework in the context of modular logic programming.

– Inconsistency Management for Knowledge-Integration Systems, funded by the Vi-
enna Science and Technology Fund (WWTF), with the goal to provide a general for-
malism and a suite of basic methods for inconsistency management in MCS, together
with algorithms for their practical realization.

In the following, we summarize research issues to be addressed in these projects.

6.1 MLPs

A natural extension of MLPs is to allow program modules not only to call other mod-
ules, but also to assess external sources, i.e., ‘modules’ which are not necessarily spec-
ified as logic programs themselves. Intuitively, this is achieved by extending current
MLP syntax and semantics to allow for HEX-programs in rule bases. While this is cer-
tainly of avail, also in a global view where modules are part of a ‘global program’ as
an entity, optimization and relevance issues will gain importance for effective imple-
mentations. Thus, the crucial research question to address in this setting will be how to
efficiently evaluate such MLPs. Some ideas to exploit generalizations of the splitting set
method for restricted subclasses taking relevance information into account are briefly
sketched at the end of Section 4, and initial results for the current MLP setting are
reported in [8]. Further improvements, in particular when combining MLPs with HEX-
programs, may be obtained by respecting further information that helps in pruning the
evaluation to relevant parts. A particular case is when parts of the domain can be dis-
regarded during the evaluation of program parts with external calls or module calls due

38 T. Eiter et al.

to available independence information. Results for HEX-programs in this direction ap-
pear in [12], and experiments indicate promising improvements. An interesting related
research issue is how to obtain such independence information. While it may often be
easy to ‘see’ for the programmer, it is unclear how to proceed in a principled manner.

In a second step, we plan to carry over the MLP approach to a local-model view,
with the aim to handle distributed settings appropriately, i.e., without the need of a
global view for local evaluation. Semantically, this is achievable with a HEX-style state
semantics for MLPs. Turning to such a distributed view will raise further challeng-
ing research issues. Concerning practical algorithms and efficient evaluation, additional
characteristics of networks come into play, for instance, connection failures, scalability,
or network latency. Moreover, the data traffic, i.e., the amount of data exchanged for
external evaluation, must be kept low. To deal with these requirements, we envisage se-
mantical relaxations and approximations in the vein of well-founded semantics or more
general fixpoint semantics, algebraic techniques using operators, and/or multi-valued
semantics.

Another aspect, which needs special attention in this setting, is the treatment of in-
consistency. While in the global view, one might assume that the knowledge encoding
is ‘coordinated’ (e.g., by a team of cooperating programmers), in a distributed setting
we ought to assume that modules are created without a priori knowledge of their appli-
cation, increasing the likelihood of arising conflicts. A research goal in this respect is
to relax consistency requirements, in order to ‘hide’ conflicting information and ensure
system operability. Resorting to partial models or paraconsistent reasoning techniques
might be helpful. Furthermore, as mentioned earlier, incompleteness due to network
errors may hinder distributed evaluation; appropriate methods are needed to cope with
such situations. Techniques similar to open world reasoning might be developed for
dealing with incomplete information in general, while three-valued (multi-valued) in-
terpretations would allow to treat missing information due to network failures in an
agnostic way. The MWeb framework [1] and [35] may give inspiration for this.

6.2 MCSs

MCSs constitute a promising approach to deal with important requirements for ac-
cessing and using data and knowledge in modern interconnected information systems,
namely heterogeneity of formalisms and pointwise exchange of information rather than
a central integration. However, for a practical realization, methods for adequate incon-
sistency handling are missing. Our research efforts address this issue at different levels.
On the one hand, we are interested in applying MCS technology in order to facilitate
genuine semantics of formalisms, e.g., context-based argumentation frameworks, to-
gether with ad hoc inconsistency management components. On the other hand, we aim
at providing a platform for developing genuine inconsistency management of MCSs.

Argumentation. Argumentation Context Systems (ACSs) [3] specialize multi-context
systems in one respect, and are more general in another. First of all, in contrast to the
MCS of [2], they are homogeneous in the sense that all reasoning components in an
ACS are of the same type, namely Dung style argumentation frameworks [11]. The
latter are widely used as abstract models of argumentation. They are based on graphs

Combining Nonmonotonic Knowledge Bases with External Sources 39

whose nodes represent abstract arguments and edges describe attacks between argu-
ments. Different semantics for argumentation frameworks have been defined; they spec-
ify extensions, i.e., subsets of the arguments which are considered jointly acceptable.

However, ACSs go beyond MCSs in two important aspects:

– The influence of an ACS module M1 on another module M2 can be much stronger
than in an MCS. M1 may not only provide information for M2, it may directly affect
M2’s KB and reasoning mode: M1 may invalidate arguments or attack relationships in
M2’s argumentation framework, and even determine the semantics to be used by M2.
In addition to peer-to-peer type forms of information exchange among modules, this
allows one to capture hierarchical forms of argumentation as they are common in legal
reasoning, where a judge may declare certain arguments as invalid, or where the type
of trial requires a particular proof standard. Technically, this is achieved by an explicit
representation of contexts in a genuine description language. Note that such a context is
different from the usual one in MCSs: it acts as a modifier of a module’s argumentation
framework, and determines its semantics and reasoning mode (skeptical vs. credulous).
– A major focus in ACSs is on inconsistency handling. Modules are equipped with
additional components called mediators. The main role of the mediator is to take care
of inconsistencies in the information provided by connected modules. It collects the
information coming in from connected modules and turns it into a consistent context
for its module, using a pre-specified consistency handling method which may be based
on preference information about other modules. The choice of the consistency handling
method allows a broad range of scenarios to be modeled, from strictly hierarchical ones
(a judge decides) to more “democratic” forms of decision making (based on voting).

We are currently investigating how to extend heterogeneous MCSs, which are not nec-
essarily based on argumentation, in a similar fashion.

Inconsistency Management Architecture. When generalizing inconsistency manage-
ment beyond specialized contexts, methods for inconsistency handling appropriate for
homogenous settings cannot be utilized directly, and it is less clear how to deal with
conflicts due to interaction of heterogenous knowledge bases. The objective is to ab-
stract from techniques developed for particular formalisms with the eventual goal, to
provide a general formalism and a suite of basic methods, which can be employed to
declaratively specify suitable inconsistency management policies at different levels of
sophistication on top of basic inconsistency management actions.

There are several research issues to achieve this goal, and different conceptual ar-
chitectures can be conceived. Topologically, one may think of a hierarchical structure,
where first of all each context is equipped with a local inconsistency manager, like
the mediators in the above setting, acting locally and thus having access to all the
information of its associated context and being capable of performing actions to ensure
local consistency. This, however, will not guarantee consistency at a global level, i.e.,
the existence of an equilibrium for the MCS. For this purpose, a collection of contexts
may agree to trust a dedicated entity to serve as their joint consistency manager,
which has access to all bridge rules relevant for the contexts it is in charge of, as well
as additional (but not all) information the contexts are willing to exhibit in order to

40 T. Eiter et al.

resolve potential inconsistencies. Hierarchically extending this setting, with decreasing
information exhibited from level to level, eventually a global inconsistency manager
may take high-level decisions in order to ensure global consistency.

At each level, basic methods and algorithms for inconsistency handling need to be
developed, such as for consistency checking, conflict explanation finding, conflict as-
sessment, and methods for conflict resolution, taking into account the information that
is available for the inconsistency manager. These basic methods shall be obtained build-
ing on ideas of existing techniques for specific formalisms. Corresponding algorithms
shall be developed by reduction to computational logic, in particular HEX programming
might be exploited, akin to the mapping of MCSs in HEX-programs presented in Sec-
tion 5.2. Again, optimizations w.r.t. scalability and efficiency are deemed to be crucial,
and shall be achieved by semantic relaxations and/or syntactic restrictions.

7 Conclusion

We have briefly reviewed some nonmonotonic formalisms that allow to access external
information sources, focusing on HEX-programs, recent modular logic programs, and
multi-context systems, which have been developed at the Knowledge-Based Systems
Group of the Vienna University of Technology in joint work with other researchers.
In a systematic view, we have classified them according two distinguishing properties,
namely the kind of environment view (local-model versus global-state) and the reduct
(GL-style or FLP) used for the definition of the semantics; accordingly, the formalisms
have different properties.

We have also compared the formalisms at a more fine grained level, pointing out
similar behaviors on fragments and possible mappings between them (in particular,
from MCSs to HEX-programs). Ongoing work is concerned with further developing
the formalisms, and with applications based on them in research projects, targeting
inconsistency management in heterogenous knowledge bases and query answering in
distributed global knowledge bases.

Despite the progress in the last years, much more research efforts are needed in
order to satisfy the growing need for formalisms with external information access, be-
sides formalisms which are based on Answer Set Programming. Suitable semantics for
collections of knowledge bases, pooled together in different settings will be needed
(e.g., in small closed systems of a few nodes, and in open peer to peer systems where
(many) nodes may dynamically enter and leave a system), which take peculiarities and
pragmatic constraints into account (like network topology, communication cost, loss of
messages etc.).

Developing efficient algorithms for reasoning in a distributed environment is a fur-
ther challenging issue, in particular in the presence of nonmonotonic negation. For this,
sophisticated optimization techniques are needed to increase the performance of simple
prototype implementations satisfactorily. In the end, reasonable scalability for expres-
sive formalisms still needs to be achieved. Nevertheless, we are confident that a success
similar to the one recently seen in paradigms like SAT solving, CSP and ASP is possible
in this area as well.

Combining Nonmonotonic Knowledge Bases with External Sources 41

References

1. Analyti, A., Antoniou, G., Damásio, C.V.: A principled framework for modular web rule
bases and its semantics. In: Proc. 11th Int’l. Conf. Principles of Knowledge Representation
and Reasoning (KR 2008), pp. 390–400. AAAI Press, Menlo Park (2008)

2. Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic Multi-Context Systems.
In: AAAI 2007, pp. 385–390. AAAI Press, Menlo Park (2007)

3. Brewka, G., Eiter, T.: Argumentation context systems: A framework for abstract group argu-
mentation. In: LPNMR 2009. LNCS. Springer, Heidelberg (2009)

4. Brewka, G., Roelofsen, F., Serafini, L.: Contextual Default Reasoning. In: IJCAI 2007, pp.
268–273 (2007)

5. Calimeri, F., Cozza, S., Ianni, G.: External sources of knowledge and value invention in logic
programming. Ann. Math. Artif. Intell. 50(3-4), 333–361 (2007)

6. Calimeri, F., Ianni, G.: External sources of computation for answer set solvers. In: Baral,
C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp.
105–118. Springer, Heidelberg (2005)

7. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular Nonmonotonic Logic Program-
ming Revisited. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 145–
159. Springer, Heidelberg (2009)

8. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Relevance-driven evaluation of modular
nonmonotonic logic programs. In: LPNMR 2009. LNCS. Springer, Heidelberg (to appear,
2009)

9. de la Banda, M.G., Pontelli, E. (eds.): Logic Programming (ICLP 2008). LNCS, vol. 5366.
Springer, Heidelberg (2008)

10. Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., Małuszyński, J.: Hybrid
reasoning with rules and ontologies. In: Bry, F., Małuszyński, J. (eds.) Semantic Techniques
for the Web: The REWERSE perspective. LNCS, vol. 5500, p. 50. Springer, Heidelberg
(2009)

11. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

12. Eiter, T., Fink, M., Krennwallner, T.: Decomposition of Declarative Knowledge Bases with
External Functions. In: IJCAI 2009. AAAI Press, Menlo Park (2009)

13. Eiter, T., Gottlob, G., Veith, H.: Modular Logic Programming and Generalized Quantifiers.
In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 290–309.
Springer, Heidelberg (1997)

14. Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and Ontologies for the Semantic
Web. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert,
S. (eds.) Reasoning Web 2008. LNCS, vol. 5224, pp. 1–53. Springer, Heidelberg (2008)

15. Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Answer set programming: A primer.
In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C.,
Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 40–110. Springer,
Heidelberg (2009)

16. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the semantic web. Artif. Intell. 172(12-13), 1495–
1539 (2008)

17. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In: IJCAI 2005, pp. 90–
96. Professional Book Center (2005)

18. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective Integration of Declarative Rules
with external Evaluations for Semantic Web Reasoning. In: Sure, Y., Domingue, J. (eds.)
ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Heidelberg (2006)

42 T. Eiter et al.

19. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set Program-
ming with Description Logics for the Semantic Web. In: KR 2004, pp. 141–151. Morgan
Kaufmann, San Francisco (2004)

20. Eiter, T., Subrahmanian, V., Pick, G.: Heterogeneous Active Agents, I: Semantics. Artificial
Intelligence 108(1-2), 179–255 (1999)

21. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Seman-
tics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 200–212. Springer, Heidelberg (2004)

22. Gelfond, M.: Answer sets. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook
of Knowledge Representation, Foundations of Artificial Intelligence, ch. 7, pp. 285–316.
Elsevier, Amsterdam (2007)

23. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: ICLP
1988, pp. 1070–1080. MIT Press, Cambridge (1988)

24. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and deductive databases.
New Generation Computing 9, 365–385 (1991)

25. Giunchiglia, F.: Contextual reasoning. Epistemologia XVI, 345–364 (1993)
26. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: How we can do without

modal logics. Artificial Intelligence 65(1), 29–70 (1994)
27. Heymans, S., Toma, I.: Ranking services using fuzzy hex-programs. In: Calvanese, D.,

Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 181–196. Springer, Heidelberg (2008)
28. Hoehndorf, R., Loebe, F., Kelso, J., Herre, H.: Representing default knowledge in biomed-

ical ontologies: Application to the integration of anatomy and phenotype ontologies. BMC
Bioinformatics 8(1), 377 (2007)

29. Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg (2008)

30. Lifschitz, V., Turner, H.: Splitting a Logic Program. In: ICLP 1994, pp. 23–37. MIT Press,
Cambridge (1994)

31. Marek, V., Truszczyński, M.: Nonmonotonic Logics – Context-Dependent Reasoning.
Springer, Heidelberg (1993)

32. McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1029–1035 (1987)
33. Nieuwenborgh, D.V., Cock, M.D., Vermeir, D.: Computing Fuzzy Answer Sets Using dlvhex.

In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 449–450. Springer, Heidel-
berg (2007)

34. Nieuwenborgh, D.V., Eiter, T., Vermeir, D.: Conditional Planning with External Functions.
In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp.
214–227. Springer, Heidelberg (2007)

35. Polleres, A., Feier, C., Harth, A.: Rules with Contextually Scoped Negation. In: Sure, Y.,
Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 332–347. Springer, Heidelberg (2006)

36. Roelofsen, F., Serafini, L.: Minimal and absent information in contexts. In: Proc. IJCAI 2005
(2005)

37. Ross, K.A.: Modular stratification and magic sets for datalog programs with negation. J.
ACM 41(6), 1216–1266 (1994)

38. Schindlauer, R.: Answer-Set Programming for the Semantic Web. PhD thesis, Vienna Uni-
versity of Technology, Austria (December 2006)

39. Subrahmanian, V., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Ozcan, F., Ross, R.: Heterogeneous
Agent Systems: Theory and Implementation. MIT Press, Cambridge (2000)

40. Väänänen, J.: Generalized quantifiers, an introduction. In: Väänänen, J. (ed.) ESSLLI 1997.
LNCS, vol. 1754, pp. 1–17. Springer, Heidelberg (2000)

41. Wang, K., Billington, D., Blee, J., Antoniou, G.: Combining description logic and defeasi-
ble logic for the Semantic Web. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS,
vol. 3323, pp. 170–181. Springer, Heidelberg (2004)

	Combining Nonmonotonic Knowledge Bases with External Sources
	Introduction
	Preliminaries
	[\sc hex}-Programs
	Motivation and Outline
	Formal Concepts
	Evaluation of {\sc hex}-Programs
	Implementation and Applications

	Modular Nonmonotonic Logic Programming
	Formal Concepts
	Semantic Properties of MLPs
	Computation

	Multi-context Systems
	Formal Concepts
	Mapping MCSs into {\sc hex}-Programs

	Ongoing Work
	MLPs
	MCSs

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

